人教版数学高一作业系统抽样

合集下载

高一必修二数学知识点抽样

高一必修二数学知识点抽样

高一必修二数学知识点抽样抽样是统计学中的一项重要技术工具,它可以通过对部分个体进行观察和研究,来推断整体的特征和性质。

在高一必修二数学课程中,我们学习了许多与抽样相关的知识点,本文将对这些知识点进行梳理和总结。

一、抽样方法1. 简单随机抽样简单随机抽样是最常用的一种抽样方法,它是指从总体中随机地抽取若干个个体,使得每个个体被抽取的概率相等。

例如,我们要调查某班级学生的身高,可以使用简单随机抽样方法,先给每个学生编号,然后通过随机抽取编号的方式来选择样本。

2. 系统抽样系统抽样是在总体中按照一定的规则选择样本的方法。

例如,我们要调查某超市一天内的销售情况,可以选择每隔一定时间(如每小时)记录一次销售额,这样得到的样本就是按照系统抽样方法选择的。

3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中分别进行抽样的方法。

例如,我们要调查某城市不同年龄段人口的健康情况,可以先将人口按年龄分层,然后从每个年龄段中分别进行抽样。

4. 整群抽样整群抽样是将总体划分为若干个互不重叠的群组,选择部分群组进行抽样的方法。

例如,我们要调查某地区的农田面积情况,可以将该地区的农田划分为不同的农场,然后从不同的农场中进行抽样。

二、样本容量与抽样误差样本容量是指进行抽样研究时所选择的样本的大小。

样本容量的大小直接影响到推断性统计的可靠性。

通常情况下,样本容量越大,推断结果越可靠。

确定样本容量时需要考虑抽样误差。

抽样误差是指使用样本估计总体参数时,由于样本的随机性而引起的估计误差。

抽样误差的大小与样本容量、总体的变异程度等因素有关。

在实际抽样研究中,我们需要根据抽样误差的允许范围来确定合适的样本容量。

三、抽样调查的应用抽样调查在各个领域都有广泛的应用,尤其在社会调查、市场调研、医学研究等方面起着重要的作用。

例如,通过抽样调查可以估计某种药物的副作用发生率、了解市场上某种产品的受欢迎程度、探究某个社会问题的普遍性等。

人教版数学高一课时作业系统抽样

人教版数学高一课时作业系统抽样

2.1.2 系统抽样一、选择题1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为( )A .抽签法B .随机数表法C .系统抽样法D .其他抽样2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A .10B .100C .1 000D .10 0003.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样间距为k =⎣⎡⎦⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i 0,则i 0+k ,…,i 0+(n -1)k 号码均被抽取构成样本,所以每个个体被抽取的可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,325.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A ,编号落入区间的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15二、填空题6.下列抽样中不是系统抽样的是________.①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0(1≤i 0≤5),以后选i 0+5,i 0+10号入选;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止;④在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈.7.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.8.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.10.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.11.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案1.【解析】根据系统抽样的概念可知,这种抽样方法是系统抽样.【答案】C2.【解析】将10 000个个体平均分成10段,每段取一个,故每段容量为1 000.【答案】C3.【解析】系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i 0编号无关,故选A.【答案】A4.【解析】据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B 符合条件. 【答案】B5.【解析】从960人中用系统抽样方法抽取32人,则抽样间距为k =96032=30, 因为第一组号码为9,则第二组号码为9+1×30=39,…,第n 组号码为9+(n -1)×30=30n -21,由451≤30n -21≤750,即151115≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10(人).【答案】C6.【解析】选项③不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余3个间隔都相同,符合系统抽样的特征.【答案】③7.【解析】由题意,分段间隔k =484=12,所以6应该在第一组,所以第二组为6+12=18. 【答案】188.【解析】由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数为3,综上知第7组中抽取的号码为63.【答案】639.解 (1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.10.解 (1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即为0 001号到0 100号中随机抽取一个号l ;(6)按编号将l ,100+l ,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.11.解 (1)由题意此系统抽样的间隔是100,根据x =24和题意得,24+33×1=57,第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x +33×0=87得x =87,由x +33×1=87得x =54,由x +33×3=187得x =88…, 依次求得x 值可能为21,22,23,54,55,56,87,88,89,90.。

【同步练习】必修3 2.1.2 系统抽样-高一数学人教版(必修3)(解析版)

【同步练习】必修3  2.1.2 系统抽样-高一数学人教版(必修3)(解析版)

第二章统计2.1.2 系统抽样一、选择题1.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【答案】D【解析】要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件,故选D.2.在高一年级402人中要抽取10名同学进行问卷调查,若采用系统抽样方法,下列说法正确的是A.将402人编号,做成号签,再用抓阄法抽取10名B.将402人随机编号,然后分成10个组,其中两个组每组41人,其余各组每组40人,再从第一组中随机抽取一个编号,从而得到各组中的编号C.先将402人中随机剔除2人,再将余下400人随机编号平均分成10组,从第一组中随机抽取一个编号,再按抽样距40在其余各组中依次抽取编号D.按照班级在每班中按比例随机抽取【答案】C3.2007名学生中选取50名学生参加中学生夏令营,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的概率A.不全相等B.均不相等C.都相等,且为502007D.都相等,且为140【答案】C【解析】根据题意,先用简单随机抽样的方法从2007人中剔除7人,则剩下的再按系统抽样的抽取时,每人入选的概率为20005050200720002007⨯=,故每人入选的概率相等.故选C.4.某班的54名同学已编学号为1,2,3,…,54,为了解该班同学的作业情况,老师收取了学号能被5整除的10名同学的作业本,这里运用的抽样方法是A.简单随机抽样法B.系统抽样法C.随机数表法D.抽签法【答案】B5.为了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样的方法抽取样本进行分组时,每组的个体数为A.24 B.25 C.26 D.28【答案】B【解析】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵5008=200×25+8,故应从总体中随机剔除个体的数目是8,每组的个体数为25,故选B.6.中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为A.10 B.100 C.1000 D.10000【答案】C【解析】系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,先将整体分成若干个小组,在每个小组中抽取一个.现要从已确定编号的一万名小观众中抽出十名幸运小观众,其组容量为1000010=1000.故选C.7.南山中学实验学校2015级入学考试共设置60个试室,试室编号为001~060,现根据试室号,采用系统抽样的方法,抽取12个试室进行抽查,已抽看了007试室号,则下列可能被抽到的试室号是A.002 B.031 C.044 D.060【答案】A【解析】样本间隔为60÷12=5,∵样本一个编号为007,则抽取的样本为:002,007,012,017,022,027,032,037,042,047,052,057.∴可能被抽到的试室号是002,故选A.8.长郡中学将参加摸底测试的1200名学生编号为1,2,3,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为A.68 B.92 C.82 D.170【答案】B【解析】样本间隔为1200÷50=24,第一组中抽出的学生编号为20,则第四组中抽取的学生编号为:20+ 24×3=92,故选B.9.将40件产品依次编号为1~40,现用系统抽样(按等距离的规则)的方法从中抽取5件进行质检,若抽到的产品编号之和为90,则样本中的最小编号为A.2 B.3 C.4 D.5【答案】A【解析】该系统抽样的抽取间隔为40÷5=8,设抽到的最小编号x,则x+(8+x)+(16+x)+(24+x)+(32+x)=90,所以x=2.故选A.二、填空题10.从总体容量为503的总体中,用系统抽样方法抽取容量为50的样本,首先要剔除的个体数是____________,抽样距是____________.【答案】3 10【解析】总数不能被样本容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵503=50×10+3,故应从总体中随机剔除个体的数目是3,抽样距为503350=10.故答案为:3,10.11.某大型超市为了促销,欲从已确定编号的20000名消费者中抽取200名幸运者进行奖励,现采用系统抽样方法抽取,则每组的个体数是____________.【答案】100【解析】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵20000=200×100,故每组的个体数为100.故答案为:100.12.某单位有技术工人36人,技术员24人,行政人员12人,现需从中抽取一个容量为n的样本,如果采用系统抽样或分层抽样,都不需要剔除个体,如果样本容量为n+1,则在系统抽样时,需从总体中剔除2个个体,则n=____________.【答案】6【解析】由题意知用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,用系统抽样时,需在总体中先剔除2个个体,∵总体容量为36+24+12=72;当样本容量为n 时,系统抽样的间隔为72n ,分层抽样比例是72n ,抽取的工人为72n ×36=2n ,技术员为72n ×24=3n ,行政人员为 72n ×12=6n ,∴n 是6的倍数,72的约数,且小于等于12;即n =6,12;当样本容量为n =6时,n +1=7,系统抽样的间隔为727=10…2,∴需从总体中剔除2个个体,满足题意;当样本容量为n =12时,n +1=13,系统抽样的间隔为7213=5…7,∴需从总体中剔除7个个体,不满足题意;综上,样本容量n =6.故答案为:6.13.简单随机抽样,系统抽样的共同特点是____________.【答案】抽样过程中每个个体被抽取的机会相同【解析】二种抽样方法有共同点也有不同点,它们的共同点就是抽样过程中每个个体被抽取的机会相同.故答案为:抽样过程中每个个体被抽取的机会相同.三、解答题14.从含有100个个体的总体中抽取10个个体,请用系统抽样法给出抽样过程.15.某车间有189名职工,现在要按1:21的比例选派质量检查员,采用系统抽样的方式进行,请写出其抽样过程.【解析】第一步:先将189人按1到189号进行编号第二步:确定分段间隔为21,确定组数189÷21=9,所以将189人分成9组,每组21人,第三步:在第一段用简单随机抽样确定第一个个体编号(如1号).第四步:按一定规则抽取样本(如1+21n ,0≤n ≤8).16.一个总体中有840个个体,随机编号为0,1,2,3,…,839,以编号顺序将其平均分为10个小组,组号依次为0,1,2,3,…9.现要用系统抽样的方法抽取一容量为10的样本.(1)假定在组号为0这一组中先抽取得个体的编号为21,请写出所抽取样本个体的10个号码;(2)求抽取的10人中,编号落在区间[252,671]的人数.17.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.【解析】(1)随机地将这1003个个体编号为0001,0002,0003, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.第一步:将总体中的1000个个体重新编号为0,1,2,…,999并依次分为50个小组,第一组的编号为0,1,2,…19;第二步:在第一组用随机抽样方法,随机抽取的号码为l(0≤l≤19),那么后面每组抽取的号码为个位数字为l+20n,n∈N*的号码;第三步:由这50个号码组成容量为50的样本.说明:总体中的每个个体被剔除的概率相等(31003),也就是每个个体不被剔除的概率相等10001003⎛⎫⎪⎝⎭.采用系统抽样时每个个体被抽取的概率都是501000,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是10005050 100310001003⨯=.。

人教新课标版数学高一数学人教B版必修3学案 系统抽样

人教新课标版数学高一数学人教B版必修3学案 系统抽样

2.1.2 系统抽样自主学习学习目标1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.自学导引1.系统抽样的概念将总体分成________的若干部分,然后按照预先制定的规则,从每一部分抽取________个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在抽样过程中,由于抽样的间隔________,因此系统抽样也称作________抽样.2.适用的条件总体中个体差异不大并且总体的容量________.3.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样.(1)先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号,准考证号,门牌号等;(2)确定分段间隔k 对编号进行分段,当N n (n 是样本容量)是整数时,取k =________; (3)在第一段用____________确定一个个体编号s (s ≤k );(4)按照一定的规则抽取样本.通常是将s 加上间隔k 得到第2个个体编号________,再加k 得到第3个个体编号________,依次进行下去,直到得到容量为n 的样本.对点讲练知识点一 系统抽样的概念例1 下列抽样中,最适宜用系统抽样法的是( )A .从某厂生产的20 000个电子元件中随机抽取6个做样本B .从某厂生产的2 000个电子元件中随机抽取5个做样本C .从某厂生产的2 000个电子元件中随机抽取200个做样本D .从某厂生产的20个电子元件中随机抽取7个做样本点评 解决该类问题的关键是掌握系统抽样的特点及适用范围.变式迁移1 某学校附近的一家小型超市为了了解一年的客流情况,决定用系统抽样从一年中抽出52天作为样本实施调查(即从每周抽取1天,一年恰好有52个星期),你觉得这样的选择合适吗?为什么?知识点二系统抽样的应用例2为了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.点评(1)解决系统抽样问题中两个关键的步骤为:①分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.②起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.(2)当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.变式迁移2某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.知识点三系统抽样的综合应用例3某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队参加某项活动,怎样抽样?点评 (1)当问题比较复杂时,可以考虑在一个问题中交叉使用多种方法,面对实际问题,准确合理地选择抽样方法,对初学者来说是至关重要的.(2)选择抽样方法的规律①当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. ②当总体容量较大,样本容量较小时,可采用随机数表法.③当总体容量较大,样本容量也较大时,适合用系统抽样法.变式迁移3 某单位在岗职工共有624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?系统抽样的理解 (1)系统抽样的本质是“等距抽样”,要取多少个样本就将总体分成多少组,每组中取一个;(2)若总体个数不能被样本个数整除,则先从总体中剔除若干个个体达到整除状态,重新编号,并根据样本个数进行分组;(3)剔除个体及第一段抽样都用简单随机抽样;(4)系统抽样是等可能抽样,每个个体被抽到的可能性都是n N;(5)系统抽样适用于总体容量较大,且分布均衡(即个体间无明显的差异)的情况.注意:如果总体中个体数N 正好被样本容量n 整除,则每个个体被入样的可能性是n N,若N 不能被n 整除,需要剔除m 个个体,m =N -n ·⎣⎡⎦⎤N n (这里⎣⎡⎦⎤N n 表示不超过N n的最大整数),此时每个个体入样的可能性仍是n N ,而不是n N -m.课时作业一、选择题1.为调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A .3,2B .2,3C .2,30D .30,22.从2 008名学生中选取50名学生组成参观团,若采用下面的方法选取:先用简单随机抽样方法从2 008人中剔除8人,剩余的2 000人再按系统抽样的方法进行,则每人入选的机会( )A .不全相等B .均不相等C .都相等D .无法确定3.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,324.从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为(N nN n N nA 、B 中抽取样本容量太小,不适宜.D 中总体元素较少,不适宜.C 中总体容量和样本容量都较大,适于用系统抽样.故选C .应先剔除2家,间隔k =9030=3. 2.C3.B4.C5.C6.35 47解析 因为1 64535=47,故采用系统抽样法时,编号后分成35组,每组47个个体. 7.系统抽样8.501 003解析 每个个体被抽到的可能性为样本容量总体容量=501 003. 9.解 采用系统抽样较合理.设每班一组,共36组,编号为1~36组,先在第一组用简单随机抽样抽出一名学生,再将其他各组与此学生学号相同的学生全部抽出.10.解 第一步:采用随机的方式给个体编号:0001,0002, (2004)第二步:利用随机数表法剔除4个个体.第三步:分段,由于20∶2 000=1∶100,故将总体分为20组,其中每组含100个个体,即间隔k =100;第四步:在第一组中随机抽取一个号码,比如0066号;第五步:“起始号”+“间隔”确定样本中的各个个体,如166,266,…,1966. 这20个号所对应的学生组成样本.。

人教版系统抽样-高中数学(共29张PPT)教育课件

人教版系统抽样-高中数学(共29张PPT)教育课件

从 2 008 名学生志愿者中选取 50 名组成一个志愿团,若采 用下面的方法选取:先用简单随机抽样方法从 2 008 人中剔除 8 人,余下的 2 000 人再按系统抽样的方法进行选取,则每人入选 的机会是________,分段间隔为________.
解析:在抽样过程中,每个个体被抽取的概率相等,均为Nn , 故每人入选的机会都是2 50008,分段间隔为2 50000=40.
思考7:系统抽样适合在哪种情况下使用? 系统抽样公平吗?
[注意]:①系统抽样适合于总体的个体数 较多的情形.
②系统抽样也是等概率抽样,即每个 个体被抽到的概率是相等的,其概率仍 为P=n/N,从而保证了抽样的公平性.
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?




































:
















❖■ 电 你 是 否 有 这 样 经 历 , 当 你 在 做 某 一 项 工 作 和 学 习 的 时 候 , 脑 子 里 经 常 会 蹦 出 各 种 不 同 的 需 求 。 比 如 你 想 安 心 下 来 看 2 小 时 的 书 , 大 脑 会 蹦 出 口 渴 想 喝 水 , 然 后 喝 水 的 时 候 自 然 的 打 开 电 视 。 。 。 。 。 。 , 一 个 小 时 过 去 了 , 可 能 书 还 没 看 2 页 。 很 多 时 候 甚 至 你 自 己 都 没 有 意 思 到 , 你 的 大 脑 不 停 地 超 控 你 的 注 意 力 , 你 就 这 么 轻 易 的 被 你 的 大 脑 所 左 右 。 你 已 经 不 知 不 觉 地 变 成 了 大 脑 的 奴 隶 。 尽 管 你 在 用 它 思 考 , 但 是 你 要 明 白 你 不 应 该 隶 属 于 你 的 大 脑 , 而 应 该 是 你 拥 有 你 的 大 脑 , 并 且 应 该 是 你 可 以 控 制 你 的 大 脑 才 对 。 一 切 从 你 意 识 到 你 可 以 控 制 你 的 大 脑 的 时 候 , 会 改 变 你 的 很 多 东 西 。 比 如 控 制 你 的 情 绪 , 无 论 身 处 何 种 境 地 , 都 要 明 白 自 己 所

实验高一系统抽样与分层抽样人教版

实验高一系统抽样与分层抽样人教版
解:(1)确定样本容量与总体的个体数之比100:500=1:5。
(3)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人,然后合在一起,就是所抽取的样本。
(2)利用抽样比确定各年龄段应抽取的个体数,依次为 ,即25,56,19。
01
分层抽样是等可能抽样,它也是公平的。用分层抽样从个体为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的可能相等 为n/N。
变式训练:
课堂总结: 三种抽样方法的比较
当堂检测
1、在下列问题中,各采用什么抽样方法抽取样本较适合?
(1)从20台电脑中抽取4台进行质量检测; (2)从2004名同学中,抽取一个容量为20的样本 (3)某中学有180名教工,其中业务人员136名,管理人员20名,后勤人员24名,从中抽取一个容量为15的样本。
3
按3确定的数目在各层中随机抽取个体,合在一起得到容量为n的样本
4
分层
5
求比
6
定数
7
抽样
8
分层抽样的抽取步骤:
9
某中学高中学生有900名。为了考察他们的体重情况,打算抽取样本容量为45的一个样本。已知高一有400名学生,高二有300名学生,高三有200名学生.采用分层抽样应该怎么样抽取呢?
如果高一,高二,高三的学生数分别为402,296,202应该怎样抽取呢?
2
2
1
例1:某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取62个工人进行调查。如何采用系统抽样方法完成这一抽样?
分析:因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应先剔除4人。
例题分析:
2、采用系统抽样的方法,从个体数为1003的总体中抽取一个容量50的样本,则在抽样过程中,被剔除的个体数为( ),抽样间隔为( )。

高中数学2.1 抽样方法(2)——系统抽样新人教版必修1A

高中数学2.1 抽样方法(2)——系统抽样新人教版必修1A
教后感言
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;
(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的。
练习:(1)你能举几个系统抽样的例子吗?
三、建构数学
1.系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
说明:由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为
情境:某校高一年级共有20个班级,每班有50名学生。为了了解高一学生的视力状况,从这1000名学生中抽取一个容量为100的样本进行检查,应该怎样抽取?
二、学生活动
用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法?
( )电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
2.系统抽样的一般步骤:
(1)采用随机的方式将总体中的个体编号(编号方式可酌情考虑,为方便起见,有时可直接利用个体所带有的号码,如学生的准考证号、街道门牌号等);
(2)为将整个的编号分段(即分成几个部分),要确定分段的间隔,当 ( 为总体个数, 为样本容量)是整数时, ,当 不是整数时,通过从总体中删除一些个体(用简单随机抽样的方法)使剩下的总体中个体的个数 能被 整除,这时 ;

人教版数学高一教学设计系统抽样

人教版数学高一教学设计系统抽样

2.1.2系统抽样三维目标1.知识与技能(1)了解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.重点难点重难点:系统抽样的定义及操作步骤.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.教学建议本课利用多媒体辅助教学,在教法上充分体现教师“问题诱导,启发讨论”的引导作用,在学法上突出学生的“自主探究,合作交流”的学习方式,真正实现“教师为主导,学生为主体”的新课程理念,让学生通过“析案例、议疑难、现过程、得结论、做小结”等一系列学习活动来掌握重点,突破难点,充分发挥学生的主动性和参与性.以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.【问题导思】1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】 可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取?【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.[例1] (1)法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.【解析】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15 号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. 【答案】(1)C (2)40[类题通法]系统抽样的判断方法判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.[活学活用]某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )A .抽签法B .随机数表法C .系统抽样法D .放回抽样法【解析】选C 此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n ,符合系统抽样特点.【答案】C[例2] (1)50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应 取的数是________.【解析】∵采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,∴在第k 组抽到的是7+16(k -1),∴从33~48这16个数中应取的数是7+16×2=39.【答案】39(2)某企业对新招的504名员工进行岗前培训,为了了解员工的培训情况,试用系统抽样的方法按照下列要求抽取员工,请你写出具体步骤.①从中抽取8名员工,了解基本理论的掌握情况.②从中抽取50名员工,了解实际操作的掌握情况.解 ①第一步,将504名员工随机编号,依次为001,002,003,…,503,504,将其等距分成8段,每一段有63个个体;第二步,在第一段(001~063)中用简单随机抽样方法随机抽取一个号码作为起始号码,比如26号;第三步,起始号+间隔的整数倍,确定各个个体:将编号为26,26+63,26+63×2,…,26+63×7的个体抽出组成样本.②第一步,用随机方式给每个个体编号:001,002,003,…,503,504;第二步,利用随机数表法剔除4个个体,比如剔除编号为004,135,069,308的4个个体,然后再对余下的500名员工重新编号,分别为001,002,003,…,499,500,并等距分成50段,每段10个个体;第三步,在第一段001,002,003,…,010中用简单随机抽样方法抽出一个号码(如006)作为起始号码;第四步,起始号+间隔的整数倍,确定各个个体,将编号为006,016,026,…,486,496的个体抽出组成样本.[类题通法]设计系统抽样应关注的几个问题(1)系统抽样一般是等距离抽取,适合总体中个体数较多,个体无明显差异的情况;(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍的方法得到其他的编号.注意要保证每一段中都能取到一个个体;(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数表的方法),不影响总体中每个个体被抽到的可能性.[活学活用]某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.[例3]人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人,如何确定人选?解获得过国家级表彰的人员选5人,适宜使用抽签法:其他人员选30人,适宜使用系统抽样法.(1)确定获得过国家级表彰的人员人选:①用随机方式给29人编号,号码为1,2, (29)②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;③将得到的号签放入一个不透明的袋子中,搅拌均匀;④从袋子中逐个抽取5个号签,并记录上面的号码;⑤从总体中将与抽到的号签的号码相一致的个体取出,人选就确定了.(2)确定其他人员人选:第一步:将990名其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.(1),(2)确定的人选合在一起就是最终确定的人选.[类题通法]系统抽样与简单随机抽样的区别和联系1.区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈一定的周期性,可能会使抽样的代表性很差;(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上产品质量的检验,不知道产品的数量,因此不能用简单随机抽样.2.联系(1)将总体均分后的起始部分进行抽样时,采用的是简单随机抽样;(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;(3)与简单随机抽样一样是不放回的抽样;(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.[活学活用]下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,后两位数为12;确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改.(3)何处是用简单随机抽样?解(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:取一张人民币,末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:取一张人民币,其末位数为2.[例4]什么抽样方法比较恰当?简述抽样过程.【思路探究】 编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样 解 (1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.[类题通法]当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[活学活用]从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.解 第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k =80080=10个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.易错易误辨析系统抽样概念不清致误[典例] 从2 009名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 009人中剔除9人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 009人中,每个人入选的机会( )A .都相等,且为502 009 B .不全相等 C .均不相等 D .都相等,且为140【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除9人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 009. 【答案】A课堂小结抽样方法的选取:1.若总体由差异明显的几个层次组成,则选用分层抽样.2.若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大、样本容量较小时宜用随机数表法;当总体容量较大、样本容量也较大时宜用系统抽样.3.采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n;当总体容量不能被样本容量整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =[N n]. 当堂检测1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( )A .简单随机抽样B .抽签法C .随机数表法D .系统抽样【解析】符合系统抽样的特征.【答案】D2.为了解2 400名学生对某项教改的意见,打算从中抽取60名学生调查,采用系统抽样法,则分段间隔k 为( )A .40B .30C .20D .60【解析】k =2 40060=40. 【答案】A3.某单位有职工200人,35岁以下有40人,35岁到50岁的有120人,51岁及以上的有40人,用分层抽样的方法从中抽取40人,各年龄段分别抽取人数为( )A .8,24,8B .4,12,20C .24,28,30D .16,16,32 【解析】各年龄段的比为1∶3∶1,∴各段人数分别为40×15=8,40×35=24,40×15=8. 【答案】A4.某运输队有货车1 200辆,客车800辆,从中抽取110调查车辆的使用和保养情况,请给出抽样过程.解利用分层抽样.第一步,确定货车和客车各应抽取多少辆.货车:1 200×110=120(辆),客车:800×110=80(辆);第二步,用系统抽样法分别抽取货车120辆,客车80辆;第三步,把抽取的货车和客车组成样本.。

人教版数学高一人教B必修3讲义系统抽样

人教版数学高一人教B必修3讲义系统抽样

2.1.2 系统抽样1.理解系统抽样的概念.(重点)2.掌握系统抽样的一般步骤,会用系统抽样从总体中抽取样本.(重点)3.能用系统抽样解决实际问题.(难点)[基础·初探]教材整理 系统抽样的概念阅读教材P 52,完成下列问题.当总体元素个数很大时,样本容量就不宜太小,采用简单随机抽样,就显得费事.这时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在系统抽样中,由于抽样的间隔相等,因此系统抽样也被称作等距抽样.1.判断(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.( )(2)系统抽样的过程中,每个个体被抽到的概率不相等.( )(3)用系统抽样从N 个个体中抽取一个容量为n 的样本,要平均分成n 段,每段各有N n 个号码.( )【答案】 (1)√ (2)× (3)×2.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为( )A .5,10,15,20B .2,6,10,14C .2,4,6,8D .5,8,11,14【解析】 将20分成4个组,每组5个号,间隔等距离为5.【答案】 A3.已知标有1~20号的小球20个,按下面方法抽样(按从小号到大号排序):(1)以编号2为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________.【解析】这20个小球分4组,每组5个,(1)若以2号为起点,则另外三个球的编号依次为7,12,17,这4球编号平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三个球的编号依次为8,13,18,这4球编号平均值为3+8+13+184=10.5.【答案】(1)9.5(2)10.5[小组合作型]系统抽样的概念(1)某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.【精彩点拨】解决此类问题的关键是根据系统抽样的概念及特征,抓住系统抽样适用的条件作出判断.【尝试解答】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n(n∈N*)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k=1 200 30=40.【答案】(1)C(2)40判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体;(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样;(3)最后看是否等距抽样.[再练一题]1.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况【解析】A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D若总体容量较大,样本容量较小时可用随机数表法.【答案】 C系统抽样的方案设计某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【导学号:00732044】【精彩点拨】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【尝试解答】按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.当总体容量能被样本容量整除时,分段间隔k=Nn;当用系统抽样抽取样本时,通常是将起始数s加上间隔k得到第2个个体编号(s+k),再加k得到第3个个体编号(s+2k),依次进行下去,直到获取整个样本.[再练一题]2.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10B.11C.12D.16【解析】分段间隔k=524=13,可推出另一个同学的学号为16,故选D.【答案】 D[探究共研型]系统抽样的特点探究1【提示】(1)系统抽样适用于总体容量较大,且个体之间无明显差异的情况;(2)剔除多余的个体及第1段抽样都用简单随机抽样的方法;(3)系统抽样是等可能抽样,每个个体被抽到的可能性相等.探究2怎样判断一种抽样是否为系统抽样?【提示】判断一种抽样是否为系统抽样,关键有两点:(1)是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;(2)是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样.探究3在系统抽样中,N不一定能被n整除,那么系统抽样还公平吗?【提示】在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以,系统抽样是公平的.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【精彩点拨】编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样【尝试解答】(1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[再练一题]3.从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.【解】第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数表法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k=80080=10个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.1.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4D.5【解析】因为1 252=50×25+2,所以应随机剔除2个个体,故选A.【答案】 A2.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24B.25C.26D.28【解析】因为5 008=200×25+8,所以选B.【答案】 B3.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()A.7B.5C.4D.3【解析】由系统抽样知第一组确定的号码是125-15×8=5.【答案】 B4.在一个个体数目为2 017的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为_________.【导学号:00732045】【解析】因为采用系统抽样的方法从个体数目为2 017的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 017.【答案】100 2 0175.中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.【解】(1)将303盒月饼用随机的方式编号;(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;(3)在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码l;(4)将编号为l,l+30,l+2×30,l+3×30,…,l+9×30的个体抽出,组成样本.。

高一数学系统抽样和分层抽样

高一数学系统抽样和分层抽样

(4)按照规则抽取样本:l;l+k;l+2k;……l+nk
系统抽样时,将总体中的个体均分后的每一段进 行抽样时,采用简单随机抽样;系统抽样每次抽样时, 总体中各个个体被抽取的概率也是相等的;如总体的个 体数不能被样本容量整除时,可以先用简单随机抽样从 总体中剔除几个个体,然后再按系统抽样进行。需要说 明的是整个抽样过程中每个个体被抽到的概率仍然相等。
提出问题
(1)一个礼堂有30排座位,每排有40个座位。一 次报告会礼堂坐满了听众。会后为听取意见留下了 座位号为20的30名听众进行座谈。这里选用了哪种 抽取样本的方法?写出抽取过程。
(2)要抽样了解某年参加高考考生的语文考试成绩, 我们可以
①按照科目分类:文科、理科、艺术、体育和外语五个层次。
②按照地区分类:大城市、中等城市、城镇、乡镇四个层次。
(1)一个礼堂有30排座位,每排有40个座位。一次报告会礼 堂坐满了听众。会后为听取意见留下了座位号为20的30名听众 进行座谈。这里选用了哪种抽取样本的方法?写出抽取过程。
1 由于每排的座位有40个,各排每个号码被抽取的概率都是4,0
1 第1排被抽取前,其他各排中各号码被抽取哪率也是 ,40也就是
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 取一个容量为n的样本,那么每个个体被抽取的概卒等Nn于
随机抽样的方法: 抽签法 随机数表法
1、抽签法
先将总体中的所有个体(共N个)编号(号码可以从1到 N),并把号码写在形状、大小相同的号签上(号签可以用 小球、卡片、纸条等制作),然后将这些号签放在同一个箱 子里,进行均匀搅拌。抽签时,每次从中抽出1个号签,连续 抽取n次,就得到一个容量为n的样本。对个体编号时,也可 以利用已有的编号。例如学生的学号,座位号等。

人教版数学高一课时作业 系统抽样_ 分层抽样

人教版数学高一课时作业 系统抽样_ 分层抽样

2.1.2系统抽样2.1.3分层抽样一、选择题1.为了抽查某城市小轿车年检情况,在该城市采取抽车牌末位数字为6的小轿车进行检查,这种抽样方法是()A.随机数法B.抽签法C.系统抽样法D.其他抽样方法2.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为()A.2 B.3 C.4 D.53.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种及20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.74.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p35.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.106.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14二、填空题7.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.8.某工厂生产A.B.C三种不同型号的产品,产品数量之比为2∶3∶5.现用分层抽样的方法抽出一个容量为n的样本,其中A种型号产品有16件,那么此样本的容量n=________.9.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.10.某班共有学生52人,现根据学生的学号用系统抽样的方法抽取一个容量为4的样本,已知学号为6号、32号、45号的同学在样本中,那么样本中剩下的一个同学的学号是________号.三、解答题11.一个公司有职工160人,其中业务人员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.12.某停车场停有6辆卡车、12辆小轿车和18辆电动车,现要从这些车辆中抽取一个容量为n的样本进行某项指标调查.若采用系统抽样的方法或分层抽样的方法抽取,则不用剔除个体;若样本容量增加1,则在采用系统抽样的方法时,需要在总体中先剔除1个个体,求样本容量n.13.为了对某课题进行研究,分别从A.B.C三所高校中用分层抽样法抽取若干名教授组成研究小组,其中高校A 有m 名教授,高校B 有72名教授,高校C 有n 名教授(其中0<m ≤72≤n ).(1)若A.B 两所高校中共抽取3名教授,B.C 两所高校中共抽取5名教授,求m 、n ;(2)若高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,求三所高校的教授的总人数.参考答案1.C解析:由于每个车牌的末位数字为0,1,2,…,9十个数字之一,某辆车车牌末位数字为6是随机的,这相当于将所有汽车分成若干组,每组10个(车牌的末位数字依次为0,1,2,…,9),取每一组中的第6个,故为系统抽样.2.B解析:由题意得系统抽样的抽样间隔为244=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )=48,所以x =3,故选B .3.C解析:四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×110=2,抽取的果蔬类的种数为20×210=4,二者之和为6,故选C . 4.D解析:因为采取简单随机抽样、系统抽样和分层抽样抽取样本时,总体中每个个体被抽中的概率相等,故选D .5.A解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 6.B解析:由于84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 7.3解析:由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3. 8.80解析:16÷22+3+5=80. 9.37 20解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x 100,解得x =20.10.19解析:∵45-32=13,∴抽样间隔为13,故抽取学生的学号依次为6.19.32.45,故填19.11.解:样本容量与职工总人数的比为20∶160=1∶8,所以业务人员、管理人员和后勤服务人员各应抽取的人数分别为1208、168和248,即分别为15.2和3,每一层抽取时采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就得到要抽取的样本.12.解:由题意知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n 36,分层抽样过程中,抽取的卡车数为n 36·6=n 6,轿车数为n 36·12=n 3,电动车数为n 36·18=n 2, 所以n 应是6的倍数,36的约数,且0<n <36,即n =6,12,18.当样本容量为(n +1)时,剔除一个个体后的总体容量是35,系统抽样的间隔为35n +1,所以35n +1必须是整数, 所以n 只能取6,即样本容量n =6.13.解:(1)∵0<m ≤72≤n ,A.B 两所高校中共抽取3名教授,∴B 高校中抽取2人,∴A 高校中抽取1人,C 高校中抽取3人,∴1m =272=3n,解得m =36,n =108. (2)∵高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,∴23(m +n )=72,解得m +n =108,∴三所高校的教授的总人数为m +n +72=180.。

人教新课标A版高一数学《必修3》2.1.2 系统抽样

人教新课标A版高一数学《必修3》2.1.2 系统抽样

研一研·问题探究、课堂更高效
探究点二 问题1 系统抽样的一般步骤 用系统抽样从总体中抽取样本时,首先要做的工作是
什么?
答 将总体中的所有个体编号.
问题2
如果用系统抽样从505件产品中抽取50件进行质量检
查,由于505件产品不能均衡分成50部分,对此应如何处理?
答 先从总体中随机剔除5个个体,再均衡分成50部分.
研一研·问题探究、课堂更高效
问题2 你能归纳系统抽样的定义吗?
答 一般地,要从容量为N的总体中抽取容量为n的样本,
可将总体分成均衡的若干部分,然后按照预先制定的规 则,从每一部分抽取一个个体,得到所需要的样本,这种 抽样的方法叫做系统抽样.
研一研·问题探究、课堂更高效
例1 下列抽样中不是系统抽样的是 ( ) A.从标有1~15号的15个小球中任选3个作为样本,按从小 号到大号排序,随机确定起点i,以后为i+5,i+10(超 过15则从1再数起)号入样 B.工厂生产的产品,用传送带将产品送入包装车间前,检 验人员从传送带上每隔五分钟抽一件产品检验 C.搞某一市场调查,规定在商场新门口随机抽一个人进行 询问,直到调查到事先规定的调查人数为止 D.电影院调查观众的某一指标,通知每排(每排人数相等) 座位号为14的观众留下来座谈
答第一步,将总体的N个Fra bibliotek体编号.第二步,确定分段间隔k,对编号进行分段. 第三步,在第1段用简单随机抽样确定起始个体编号l. 第四步,按照一定的规则抽取样本.
问题7
系统抽样适合在哪种情况下使用?与简单随机抽样比
较,哪种抽样方法更使样本具有代表性?

总体中个体数比较多;系统抽样更使样本具有代表性.
研一研·问题探究、课堂更高效

人教版高一数学必修三第二章系统抽样

人教版高一数学必修三第二章系统抽样

2.1.2系统抽样问题导学(1)什么是系统抽样?(2)系统抽样与简单随机抽样有什么关系?(3)系统抽样的特点是什么?1.系统抽样的概念一般地,要从容量为N的总体中抽取容量为n的样本,可先将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽样的方法就是系统抽样.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)分段:确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn .(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l (l ≤k ).(4)成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.■名师点拨系统抽样的特点(1)适用于个体数较多,且个体之间无明显差异的总体.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称为等距抽样,这里的间隔一般为k =⎣⎡⎦⎤N n ⎝⎛⎭⎫⎣⎡⎦⎤N n 表示不大于N n的最大整数. (3)在第一部分的抽样采用简单随机抽样.(4)在系统抽样中,每个个体被抽取的可能性相等,均为nN (N 为总体容量,n 为样本容量).(5)抽取的个体按从小到大的顺序排列时,从第2个号码起,每个号码与前面一个号码的差都等于同一个常数.判断正误(对的打“√”,错的打“×”)(1)系统抽样中,在起始部分抽样时采用简单随机抽样.()(2)系统抽样中,每个个体被抽到的可能性与所分组数有关.()(3)系统抽样中,所分组数和样本容量是一致的.()答案:(1)√(2)×(3)√校学生会把全校同学中学籍号末位为0的同学召集起来开座谈会,运用的抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.简单随机抽样答案:C(2019·辽宁省凌源市三校期末联考)高二(1)班有50名学生,随机编的学号为1,2,…,50,现用系统抽样方法,从中选出5名学生,则这5名学生的学号可能是()A.6,16,26,36,46 B.5,12,24,36,48C.7,17,23,31,45 D.2,12,26,31,44解析:选A.利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10,由此可得B,C,D均错误,A正确.故选A.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.解析:由题意,分段间隔k=484=12,所以6应该在第一组,所以第二组为6+484=18.答案:18系统抽样的判断下列抽样中不是系统抽样的是()A.标有1~15号的15个球中,任选3个作样本,从小号到大号排序,随机选i0号作为起始号码,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,在用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽取一件产品进行检验C.对某一市场调查,规定在商场门口随机抽取一个人进行询问调查,直到调查到事先规定的调查人数为止D.在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的听众留下来座谈【解析】B项中,传送带的速度是恒定的,实际上是将某一段时间内生产的产品分成一组,且可以认为这些产品已经排好,又总在某一位置抽取样品,这正好符合系统抽样的概念.选项C因事先不知道总体的个数,而且抽样时不能保证每个个体等可能入样,因此它不是系统抽样,故选C.【答案】 C(1)系统抽样的特点是:①总体中的个体有限;②不放回抽样;③每个个体被抽到的可能性相等;④等距抽样.(2)当总体容量较大,样本容量也较大时,适宜采用系统抽样法.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样解析:选C.A 项中总体有明显层次,不适宜用系统抽样法;B 项中样本容量很小,适宜用随机数表法;D 项中总体容量很小,适宜用抽签法.故选C.系统抽样的方案设计某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.【解】 第一步:把这些图书分成40个组,由于36040=9,所以每个小组有9册书;第二步:对书进行编号,编号分别为0,1, (359)第三步:从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书.比如说,其编号为k ;第四步:按顺序抽取编号分别为下面的数字的图书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.把本例中的“360册”改为“362册”,其他条件不变应怎么设计?解:第一步:把这些图书分成40个组,由于36240的商是9,余数是2,所以每个小组有9册书,还剩2册书,这时抽样间隔就是9;第二步:先用简单随机抽样的方法从这些书中抽取2册,不参与检验; 第三步:将剩下的书进行编号,编号分别为0,1, (359)第四步:从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书.比如说,其编号为k ;第五步:按顺序抽取编号分别为下面的数字的图书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.解决系统抽样问题的两个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.用系统抽样法抽取样本,当N n 不为整数时,取k =[Nn],即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.某校高三年级的295名学生已经随机编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.解:(1)因为按照1∶5的比例抽取,所以样本容量为295÷5=59,分段间隔为5.(2)我们把295名学生分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依此类推,第59组是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第1组的5名学生中抽1名学生,不妨设编号为k(1≤k≤5),则编号为k+5L(L=0,1,2,…,58)的这59个个体就是所抽取的样本,如当k =3时的样本编号为3,8,13,…,288,293.系统抽样中的有关计算将一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.现要用系统抽样法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有1个的后两位数是87,求x的取值范围.【解】(1)当x=24时,按规则可知所抽取样本的10个号码依次为24,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为0,33,66,99,132,165,198,231,264,297.又抽取样本的10个号码中有1个的后两位数是87,从而x可以为87,54,21,88,55,22,89,56,23,90.所以x的取值范围是{21,22,23,54,55,56,87,88,89,90}.系统抽样计算问题的解法及技巧(1)在简单随机抽样、系统抽样中,若总体数为N,样本容量为n,则每个个体被抽到的,对于这三个值,我们可以知二求一.概率P=nN(2)若已知总体数,且样本容量已知,则采用系统抽样方法进行抽样时,如果要剔除一些个体,那么需要剔除的个体数为总体数除以样本容量所得的余数.(3)利用系统抽样的概念与等距特点,若在第一段抽取的编号为m,分段间隔为d,则在第k段中抽取的第k个编号为m+(k-1)d.(4)若求落入区间[a,b]的样本个数,则可通过列出不等式a≤m+(k-1)d≤b,解出满足条件的k的取值范围,再根据k∈N*,求出其范围内的正整数个数即可.(2019·福建省五校联考)某次考试结束后,从考号为0001~1000号的1 000份试卷中,采用系统抽样法抽取50份试卷进行试评,则在考号区间[100,199]之中被抽到的试卷份数为()A.一定是5份B.可能是4份C.可能会有10份D.不能具体确定解析:选A.样本间隔为1 000÷50=20,考号区间[100,199]的个数为100,则100÷20=5,即一定是5份.故选A.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体解析:选C.根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.2.(2019·云南省玉溪第一中学期中考试)已知高一(1)班有48名学生,班主任将学生随机编号为01,02,…,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A.16 B.22C.29 D.33解析:选C.样本间隔为48÷8=6,则抽到的号码为5+6(k-1)=6k-1,当k=2时,号码为11,当k=3时,号码为17,当k=4时,号码为23,当k=5时,号码为29,故选C.3.(2019·广西钦州市期末考试)2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮,节目组为热心观众给予奖励,要从2 018名观众中抽取50名幸运观众,先用简单随机抽样从2 018人中剔除18人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 018人中,每个人被抽到的可能性()A.均不相等B.不全相等C.都相等,且为251 009D.都相等,且为140解析:选C.简单随机抽样中,每个个体被抽到的机会都是均等的,且被抽到的概率为样本容量比上总体容量,故在2 018人中,每个人被抽到的可能性都相等,且为251 009.故选C.[A基础达标]1.(2019·黑龙江省哈尔滨市第三中学期末考试)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样两种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2, 则()A.p1>p2B.p1<p2C.p1=p2D.p1≠p2解析:选C.简单随机抽样和系统抽样都是反映概率的,具有等效性.故选C.2.(2019·四川省绵阳市期末教学质量测试)用系统抽样法从130件产品中抽取容量为10的样本,将130件产品从1~130编号,按编号顺序平均分成10组(1~13号,14~26号,…,118~130号),若第9组抽出的号码是114,则第3组抽出的号码是()A.36 B.37C.38 D.39解析:选A.由题,可知系统抽样的组数为10组,间隔为13,设第一组抽取的号码为x,由系统抽样的法则,可知第n组抽取的号码为x+13(n-1),所以第9组抽取的号码为x+13(9-1)=114,解得x=10.所以第3组抽取的号码为10+13(3-1)=36.故选A.3.(2019·湖南省张家界市期末联考)有50件产品,编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的第一个样本编号为7,则第三个样本编号是() A.12 B.17C.27 D.37解析:选C.样本间隔为50÷5=10,第一个编号为7,则第三个样本编号是7+2×10=27.故选C.4.(2019·福建师范大学附属中学期末考试)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( )A .10B .11C .15D .16解析:选D.由题可得,系统抽样的间距为13,则3+13=16在样本中.故选D.5.(2019·广东省惠州市期末考试)从编号为0,1,2,3,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一组样本,若编号为42的产品在样本中,则该组样本中产品的最小编号为( )A .8B .10C .12D .14解析:选B.系统抽样的分段间隔为805=16,设样本中产品的最小编号是x ,42是第三个编号,因此x +2×16=42⇒x =10.故选B.6.若总体中含有1 600个个体,现在要采用系统抽样法从中抽取一个容量为50的样本,则编号应均分为________段,每段有________个个体.解析:因为1 60050=32,所以应均分为50段,每段32个个体. 答案:50 327.(2019·广西玉林市期末考试)玉林市有一学校为了从254名学生中选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为________.解析:学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.因为254=42×6+2,故应从总体中随机剔除个体的数目是2.答案:28.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3, (1000)(3)将总体按编号顺序均分成50部分,每部分包含20个个体.(4)在编号为1,2,3,…,20的第一部分个体中,利用简单随机抽样抽取一个号码,比如抽取的号码是18.(5)以18为起始号码,这样得到一个容量为50的样本:18,38,58,…,978,998.9.某中学举行了为期3天的新世纪教职工体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校教职工中产生的影响,对全校500名教职工进行了问卷调查.如果要在所有答卷中抽出10份用于评估,应该如何抽样?请详细叙述抽样过程.解:法一:采用随机数表法,步骤如下:(1)先将500份答卷编号,可以编号为000,001,002, (499)(2)在随机数表中随机选取一个起始位置.(3)规定向右连续读取数字,以3个数为一组,如果读取的三位数大于499,则跳过去不读,如果遇到前面已经读过的,也跳过去不读,这样一直到取满10个号码为止.法二:系统抽样法,步骤如下:(1)将500份答卷编号:1,2,3, (500)(2)按1~50,51~100,101~150,…,451~500分成10组,每组50个编号.(3)在第一组中运用抽签法随机选择一个编号(步骤略),比如所选号码为17,则其他各组应取出的号码分别为67,117,167,217,267,317,367,417,467.(4)将上述10个号码代表的答卷取出作为样本即可.[B能力提升]10.下列有关系统抽样的说法正确的是()①从某厂生产的2 000个电子元件中随机抽取50个入样,适宜用系统抽样法;②有1 252名学生的成绩,采用系统抽样的方法抽取一个容量为50的样本,则总体中随机剔除的个体数目是2,但对于被剔除的2名学生来说,这样做是不公平的;③从1 252个个体中采用系统抽样的方法抽取一个容量为50的样本,因为要从总体中随机剔除2个个体,所以每个个体被抽到的可能性为501 250=125.A.①B.①③C.②③D.①②③解析:选A.①正确,因为总体容量较大,适宜用系统抽样法;②错误,整个抽样过程中每个个体被抽到的可能性仍然相等,因为每个个体被抽到的机会相等,所以每个个体被剔除的机会也相等;③错误,若总体中的个体数N 被样本容量n 整除,则每个个体入样的可能性是n N ,若N 不能被n 整除,需要剔除m 个个体,此时每个个体入样的可能性仍是n N ,而不是n N -m,所以③中每个个体被抽到的可能性为501 252=错误!.故选A. 11.(2019·贵州省铜仁市第一中学期中考试)一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为i ,那么依次错位地取出后面各段的号码,即第k 段中所抽取的号码的个位数为i +k 或i +k -10(i +k ≥10),则当i =7时,所抽取的第6个号码是________________.解析:由题意,第0组抽取的号码为7;则第1组抽取的号码的个位数为7+1=8,所以选18;第2组抽取的号码的个位数为8+1=9,所以选29;第3组抽取的号码的个位数为9+1-10=0,所以选30;第4组抽取的号码为10+1-10=1,所以选取41;第5组抽取的号码的个位数为1+1=2,所以选52.答案:5212.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.13.(选做题)某班共分5个组,每个组都有8名学生,学生的座次是按照个子高矮进行排列的.为调查此班学生的身高情况,李立是这样做的:分段间隔是8,按照每个小组的座次顺序进行编号.你觉得这样抽取的样本具有代表性吗?解:假设这个班的学生是这样编号(这个编号也代表他们的身高)的:第一组a1<a2<a3<a4<a5<a6<a7<a8;第二组b1<b2<b3<b4<b5<b6<b7<b8;第三组c1<c2<c3<c4<c5<c6<c7<c8;第四组d1<d2<d3<d4<d5<d6<d7<d8;第五组e1<e2<e3<e4<e5<e6<e7<e8.如果按照李立的抽样方法,比如在第一组抽取了8号,也就是a8,那么所抽取的样本为a8,b8,c8,d8,e8所对应的学生的身高.显然,这样的样本不具有代表性,他们代表的身高偏高.。

人教版高中数学高一人教A版必修3习题 2.1.2系统抽样

人教版高中数学高一人教A版必修3习题 2.1.2系统抽样

第二章统计2.1 随机抽样2.1.2 系统抽样A级基础巩固一、选择题1.若采用系统抽样的方法从一个容量为524的总体中抽取样本,则当不需要剔除个体时,抽样的间距为()A.3B.4C.5D.6解析:由于只有524÷4的余数为0,所以抽样间距为4.答案:B2.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2 B.3 C.4 D.5解析:因为1 252=50×25+2,所以应随机剔除2个个体.答案:A3.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24 B.25 C.26 D.28解析:因为5 008除以200的整数商为25.答案:B4.要从已编号(1~50)的50枚最新研制的某型号导弹中,随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32解析:间隔应为505=10. 答案:B5.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( )A .10B .11C .12D .16解析:分段间隔k =524=13,可推出另一个同学的学号为16. 答案:D二、填空题6.在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为________.解析:因为采用系统抽样的方法从个体数目为2 003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003. 答案:1002 0037.若总体含有1 645个个体,采用系统抽样的方法从中抽取一个容量为35的样本,则编号后确定编号分为________段,每段有________个个体.解析:由N =1 645,n =35,知编号后确定编号分为35段,且k =N n =1 64535=47,则分段间隔k =47,每段有47个个体. 答案:35 478.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是________.解析:用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.答案:5三、解答题9.某单位共有在岗职工624人,为了调查工人上班时,从离开家到来到单位的路上平均所用时间,决定抽取24名工人调查这一情况,如何采用系统抽样方法完成这一抽样?解:其抽样步骤如下:第一步,将624名在岗职工随机的编号:1,2,3, (624)第二步,由于样本容量与总体容量的比是1∶26,所以我们将总体平均分成24个部分,其中每一部分包含26个个体.第三步,在第一部分,即1号到26号用简单随机抽样,抽取一个号码,比如是8.第四步,以8作为起始数,然后顺次抽取34,60,86,112,138,164,190,216,242,268,294,320,346,372,398,424,450,476,502,528,554,580,606,这样就得到一个容量为24的样本.10.为了了解高二2 013名学生中使用数学教辅的情况,请你用系统抽样抽取一个容量为50的样本.解:其抽样步骤如下:(1)随机地将这2 013个个体编号为1,2,3,…,2 013.(2)利用简单随机抽样,先从总体中剔除13个个体(可利用随机数表),剩下的个体是2 000能被样本容量50整除,然后再重新编号为1,2,3,…,2 000.(3)确定分段间隔2 00050=40,则将这2 000名学生分成50组,每组40人,第1组是1,2,3,…,40;第2组是41,42,43,…,80;依次下去,第50组是1 961,1 962,…,2 000.(4)在第1组用简单随机抽样确定第一个个体编号i (i ≤40).(5)按照一定的规则抽取样本.抽取的学生编号为i +40k (k =0,1,2,…,39),得到50个个体作为样本,如当i =2时的样本编号为2,42,82,…,1 962.B 级 能力提升1.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样距为k =N n(取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i0,则i0+k,…,i0+(n-1)k号码均被抽取构成样本,所以每个个体被抽取的可能性是()A.相等的B.不相等的C.与i0有关D.与编号有关解析:系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i0编号无关.答案:A2.一个总体中有100个个体,随机编号为00,01,02, (99)依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m =5,则在第5组中抽取的号码是________.解析:由题意知第5组中的数为“40~49”10个数.由题意知m=5,k=5,故m+k=10,其个位数字为0,即第5组中抽取的号码的个位数是0,综上知第5组中抽取的号码为40.答案:403.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组抽取的号码的后两位数是x+33k的后两位数.(1)当x=24时,写出所抽样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位是87,求x的取值范围.解:(1)由题意知此系统抽样的间隔是100,第1组后两位数是24+33=57,所以第1组号码为157;k=2,24+66=90,所以第2组号码为290,以此类推,10个号码为:24,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为:0,33,66,99,132,165,198,231,264,297.又抽取的10个号码中有一个的后两位数是87,从而x可以是87,54,21,88,55,22,89,56,23,90.所以x的取值范围是{21,22,23,54,55,56,87,88,89,90}.。

人教版数学高一-人教A版 系统抽样 精品教学设计

人教版数学高一-人教A版 系统抽样 精品教学设计

2.1.2系统抽样【教学目标】:1. 正确理解系统抽样的概念.2. 掌握系统抽样的一般步骤.【教学重难点】:教学重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.教学难点:灵活应用系统抽样的方法解决统计问题.【教学过程】:复习回顾:随机抽样有什么优缺点?答:优点是简单易行;缺点是当样本容量较大时工作量大且不易实现“搅拌均匀”.情境导入:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?新知探究:一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系N].统抽样又称等距抽样,这时间隔一般为k=[n(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号基础上加上分段间隔的整倍数即为抽样编号.练一练:(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。

人教版数学高一B版必修32.1.2系统抽样

人教版数学高一B版必修32.1.2系统抽样

预习导航1.正确理解系统抽样的概念.2.掌握系统抽样的一般步骤.3.正确理解系统抽样与简单随机抽样的关系.1.系统抽样当总体元素个数很大时,样本容量就不宜太小,采用简单随机抽样,就显得费事.这时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样,也叫等距抽样.系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样.当总体元素个数较少时,常采用简单随机抽样,当总体中元素个数较多时,常采用系统抽样.【做一做1】下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶7,从中抽取200人作为样本B.从某厂生产的2 000个电子元件中随机抽取5个作为样本C.从某厂生产的2 000个电子元件中随机抽取200个作为样本D.从某厂生产的20个电子元件中随机抽取5个作为样本解析:根据系统抽样的定义和特点进行判断.选项A总体中的个体有明显的不同,不适宜用系统抽样;选项B样本容量太小,适宜用随机数表法;选项D总体容量很小,适宜用抽签法,所以应选C.答案:C2.系统抽样的步骤一般地,要从容量为N的总体中抽取容量为n的样本,系统抽样的步骤为:①编号:(有时可直接使用个体自身所带的号码,如学号、准考证号、门牌号等);②分段:对编号进行分段,要保证“等距”分段;③确定起始编号:在第一段用简单随机抽样确定起始的个体编号;④按事先指定的规则抽取样本,通常将编号为起始号码+k×分段间隔的个体抽出(k=0,1,…,n-1).【做一做2】某工厂有工人1 003名,从中抽取100人参加某项目的体检,试用系统抽样的方法写出抽样过程.解:(1)将每名工人依次编号,由0001到1003;(2)利用随机数表法抽取3个号码,将这3个号码对应的3名工人剔除;(3)将剩余的1 000名工人重新编号,由1到1000;(4)分段:取间隔k =1 000100=10,将总体均分为100段,每段10个个体; (5)从第一段即1号到10号中用抽签法抽取一个号码l ;(6)按编号将l ,l +10,l +20,…,l +990共100个号码选出.这100个号码所对应的工人就组成一个样本.。

人教版数学高一课时作业系统抽样 (2)

人教版数学高一课时作业系统抽样 (2)

2.1.2系统抽样1.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150 家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3 C.4 D.53.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15 的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数表法C.系统抽样D.有放回抽样4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是() A.抽签法B.有放回抽样C.随机数法D.系统抽样6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()A.3 B.4 C.5 D.67.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.9.采用系统抽样从含有8 000个个体的总体(编号为0 000,0 001,…,7 999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7 894,则开头5个入样编号是__________________.10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.参考答案1.【解析】A中总体容量较小,样本容量也较小,可采用抽签法;B中总体中的个体有明显的差异,也不适宜采用系统抽样;D 中总体容量较大,样本容量较小也不适用系统抽样.【答案】C2.【解析】由1 252=50×25+2知,应随机剔除2个个体.【答案】A3.【解析】从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.【答案】C4.【解析】由题意知分段间隔为10.只有选项B 中相邻编号的差为10,选B.【答案】B5.【答案】D6.【解析】由于只有524÷4没有余数,故选B.【答案】B7.【解析】用系统抽样的方法是等距离的.42-29=13,故3+13=16.【答案】168.【解析】因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.【答案】3 209.【解析】因8 000÷50=160,所以最后一段的编号为编号的最后160个编号.从7 840到7 999共160个编号,从7 840到7 894共55个数,所以从0 000到第55个编号 应为0 054,然后逐个加上160得,0 214,0 374,0 534,0 694.【答案】7 840~7 999 0 054,0 214,0 374,0 534,0 69410.解 该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤: 可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l (如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.11.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k (即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2系统抽样
一、选择题
1.下列抽样问题中最适合用系统抽样法抽样的是()
A.从全班48名学生中随机抽取8人参加一项活动
B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本
C.从参加模拟考试的1200名高中生中随机抽取100人分析试题作答情况
D.从参加模拟考试的1200名高中生中随机抽取10人了解某些情况
答案C
解析A中总体容量较小,样本容量也较小,可采用抽签法;B中总体中的个体有明显的差异,也不适宜采用系统抽样;D中总体容量较大,样本容量较小也不适用系统抽样.2.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()
A.2B.3
C.4D.5
答案A
解析由1252=50×25+2知,应随机剔除2个个体.
3.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()
A.抽签法B.随机数表法
C.系统抽样D.有放回抽样
答案C
解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()
A.5,10,15,20,25B.3,13,23,33,43
C.1,2,3,4,5D.2,4,8,16,32
答案B
解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.
5.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是() A.抽签法B.有放回抽样
C.随机数法D.系统抽样
答案D
6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()
A.3B.4
C.5D.6
答案B
解析由于只有524÷4没有余数,故选B.
二、填空题
7.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.
答案16
解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.
8.采用系统抽样的方法,从个体数为1003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.
答案 3 20
解析 因为1003=50×20+3,所以应剔除的个体数为3,间隔为20.
9.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.
答案 7840~7999 0054,0214,0374,0534,0694
解析 因8000÷50=160,所以最后一段的编号为编号的最后160个编号.
从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.
三、解答题
10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤). 解 该校共有1500名学生,需抽取容量为1500×10%=150的样本.抽样的实施步骤: 可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l(如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.
11.某学校有8000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.
解 总体中个体个数达8000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:
(1)将总体中的个体编号为1,2,3, (8000)
(2)把整个总体分成100段,每段长度为k =8000100
=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;
(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k (即25,105,185,…,7945)的个体抽出,得到样本容量为100的样本.
能力提升
12.某种体育彩票五等奖的中奖率为10%,已售出1000000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖.
答案 100000 40 9
13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1200人,户数300,每户平均人口数4人;
应抽户数:30户;抽样间隔:120030
=40; 确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码的后两位数为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改.
(3)何处是用简单随机抽样.
解 (1)系统抽样.
(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030
=10, 其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….
(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.。

相关文档
最新文档