数学北师大版八年级下册《分式方程》第二课时教学设计

合集下载

北师大版八年级数学下册5.4 第2课时 分式方程的解法(优秀教学设计)

北师大版八年级数学下册5.4 第2课时 分式方程的解法(优秀教学设计)

第2课时 分式方程的解法1.在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;(重点)2.了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.(难点)一、情境导入 方程5x -2=3x 与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】 由分式方程的解确定字母的取值范围关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是____________. 解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】 求分式方程的增根若方程3x -2=a x +4x (x -2)有增根,则增根为( ) A .0 B .2 C .0或2 D .1解析:∵最简公分母是x (x -2),方程有增根,则x (x -2)=0,∴x =0或x =2.去分母得3x =a (x -2)+4,当x =0时,2a =4,a =2;当x =2时,6=4不成立,∴增根只能为x =0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解. 【类型二】 分式方程有增根,求字母的值如果关于x 的分式方程2x -3=1-m x -3有增根,则m 的值为( ) A .-3 B .-2C .-1D .3解析:方程两边同乘以x -3,得2=x -3-m ①.∵原方程有增根,∴x -3=0,即x =3.把x =3代入①,得m =-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】 分式方程无解,求字母的值若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x +2)(x -2),得2(x +2)+mx =3(x -2),即(m -1)x =-10.①当m -1=0时,此方程无解,此时m =1;②方程有增根,则x =2或x =-2,当x =2时,代入(m -1)x =-10得(m -1)×2=-10,m =-4;当x =-2时,代入(m -1)x =-10得(m -1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

数学北师大版八年级下册《分式方程》第二课时教学设计

数学北师大版八年级下册《分式方程》第二课时教学设计

《分式方程》第二课时教学设计千溪中学龙燕【教学分析】【教学设计】【教学反思】对于解分式方程,学生已经学过等式的基本性质,分式的通分,一元一次方程的解法,解分式方程的根本是在于去分母,将分式方程化为整式方程,而要去分母,方程的两边要同乘以最简公分母.因此,要在解分式方程之前先将最简公分母复习一遍,给学生铺好路,另外给学生讲解一个例题,就是方程两边都乘以最简公分母时,要求每一项都乘以最简公分母,让学生看到去分母的过程,这样,就可以避免出现很多的问题,也能让学生理解得更透彻。

在教学中,注意引导学生理解化归的思想,即将未知的知识转化成已知的知识,分式方程转化为整式方程。

1、留思考时间给学生。

在课堂中,问题由学生通过动手动脑去获得,发挥学生的主动性,我主要在做题的方法上进行指导,思维方式上进行点拨。

2、积极的引导和点拨。

先让学生进行展讲,由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,过程,如何检验等用多媒体的形式组学生展示出来。

在解分式方程过程容易出现的几个误区加以例题展示给学生们看,加强学生的记忆。

3、学生在做题时我在教室巡视,有时发现学生的错误,及时纠正,对于轻困难的学生做个别辅导。

4、给学生自我展示的时间。

在课堂中,我让学生做相关习题,小组交流讨论后,把他们认为正确的解题过程写在小黑板上,再让小组成员对全班同学进行讲解,其他小组的同学再质疑。

这样,学生的语言能力、思维能力都得到锻炼。

虽然在课堂上做了很多,但是也存在许多不足的地方,这也是我在今后教学中应该注意的地方。

第一,给学生的鼓励不是很多,鼓励可以让学生有充分的自信心,应尽可能分层教学,评价多样化。

第二,课堂纪律的保证,在学生进行展讲时,应该提醒其他同学放下自己还未完成的题,讨论结束,认真听。

第三,课堂安排不够合理,没有完成学习单上最后的课堂训练。

第四,检验的过程我只是口头强调,没有板书在黑板上,致使很多学生印象不深。

【板书设计】§5.4分式方程(二)1、分式2、分式方程3、解分式方程的一般步骤(1)去分母(2)解整式方程(3)检验(注意增根)(4)写结论4、例题分式方程的应用知识点1 列分式方程解应用题的步骤1.一辆汽车开往距离出发地180千米的目的地,按照计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度。

北师大版八年级下册数学《5.4 第2课时 分式方程的解法》教案

北师大版八年级下册数学《5.4 第2课时 分式方程的解法》教案

北师大版八年级下册数学《5.4 第2课时分式方程的解法》教案一. 教材分析北师大版八年级下册数学《5.4 第2课时分式方程的解法》这一节主要让学生掌握分式方程的解法。

分式方程是初中数学中的一个重要内容,也是学生学习高中数学的基础。

通过这一节的学习,让学生能够理解和掌握分式方程的解法,为后续的学习打下基础。

二. 学情分析学生在学习这一节之前,已经学习了分式的基本概念和性质,对分式有一定的理解。

但是,对于分式方程的解法,学生可能还比较陌生,需要通过实例来理解和掌握。

三. 教学目标1.让学生理解分式方程的概念,掌握分式方程的解法。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生对数学的兴趣和自信心。

四. 教学重难点1.分式方程的概念和解法。

2.如何将实际问题转化为分式方程,并解决问题。

五. 教学方法采用讲解法、示例法、练习法、讨论法等,通过教师的讲解和学生的练习,让学生理解和掌握分式方程的解法。

六. 教学准备1.教案、PPT等教学材料。

2.练习题。

3.黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,让学生思考如何解决这个问题,从而引出分式方程的解法。

2.呈现(15分钟)讲解分式方程的概念,示例讲解分式方程的解法,让学生跟随教师的讲解,理解分式方程的解法。

3.操练(15分钟)让学生独立完成一些分式方程的练习题,通过练习,巩固对分式方程解法的理解。

4.巩固(10分钟)对学生的练习进行讲解和评价,解决学生在解题过程中遇到的问题,巩固分式方程解法的知识点。

5.拓展(10分钟)让学生思考如何将实际问题转化为分式方程,并解决问题。

通过讨论,让学生掌握将实际问题转化为分式方程的方法。

6.小结(5分钟)对本节课的内容进行小结,让学生总结分式方程的概念和解法,以及对实际问题的转化方法。

7.家庭作业(5分钟)布置一些分式方程的练习题,让学生回家巩固所学知识。

8.板书(5分钟)板书本节课的重点内容,让学生课后复习时有重点。

北师大版数学初二下册《分式方程(二)》教案

北师大版数学初二下册《分式方程(二)》教案

北师大版数学初二下册《分式方程(二)》教案一. 教材分析北师大版数学初二下册《分式方程(二)》主要讲述了分式方程的解法与应用。

通过本节课的学习,使学生掌握分式方程的解法,提高学生解决实际问题的能力。

教材以实例引入,引导学生探究分式方程的解法,并总结出解题规律。

此外,教材还提供了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析初二的学生已经学习了分式的相关知识,对分式有一定的理解。

但是,对于分式方程的解法,学生可能还存在一定的困难。

因此,在教学过程中,需要引导学生逐步理解分式方程的解法,并能够运用到实际问题中。

三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。

2.能够运用分式方程解决实际问题。

3.培养学生的数学思维能力,提高学生的解决问题的能力。

四. 教学重难点1.分式方程的概念。

2.分式方程的解法。

3.分式方程在实际问题中的应用。

五. 教学方法1.实例导入:以实际问题引入分式方程的概念,激发学生的学习兴趣。

2.自主探究:引导学生通过小组合作,探讨分式方程的解法。

3.讲解示范:教师对分式方程的解法进行讲解,让学生明确解题思路。

4.练习巩固:学生独立完成练习题,巩固所学知识。

5.拓展应用:引导学生运用分式方程解决实际问题。

六. 教学准备1.教学课件:制作课件,展示分式方程的解法。

2.练习题:准备适量的练习题,巩固学生的学习效果。

3.教学素材:准备一些实际问题,作为拓展应用的素材。

七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)展示分式方程的解法,引导学生自主探究。

3.操练(10分钟)学生独立完成练习题,巩固所学知识。

4.巩固(5分钟)教师对学生的练习情况进行讲评,解答学生的疑问。

5.拓展(5分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的概念和解法。

7.家庭作业(5分钟)布置适量的家庭作业,巩固学生的学习效果。

3.4分式方程 第2课时 教案(北师大版八年级下)

3.4分式方程 第2课时 教案(北师大版八年级下)

3.4 分式方程第二课时一、教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。

2.经历探索分式方程概念、分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系。

3.经历“实际问题——分式方程模型——求解——解释几解的合理性”的过程,发展学生分析问题的能力,培养学生的应用意识。

二、教学重难点教学重点:分式方程解法的过程,检验根的合理性。

教学难点:掌握“实际问题——分式方程模型——求解——解释几解的合理性”的过程。

三、教学过程设计1.创设情景,引出问题解方程:你能设法求出上节课中的分式方程的解吗2.探索交流,发现规律回顾:解方程时,我们一般是先去分母,两边同时乘以最小的公分母3×7,得,即7x=9x+21,这种形式相对就容易计算。

通过移项,合并同类项求得x=-10.5。

联系:对于分式方程,如果两边同时乘以分母最小的公因式,是不是也能像上面的方程一样的解决呢?请你试试看!(通过一元一次方程的解法的展示后让学生探索交流,发现解分式方程的一般步骤。

)解:方程的两边都乘以x(x+3000),得9000(x+3000)=15000x解这个方程,得x=0.5思考:如何检验x=0.5是方程的解?检验:将x=0.5代入原方程,如果得到的左边的值等于右边的值,则它就是原方程的解。

请你检验一下x=0.5是不是方程的解?(同过检验,体验方程解的意义,同时为分式方程的增根的研究作好准备。

)3.例题讲解,加深印象例1:解方程:解:方法一:方程两边都乘以2x,得960-600=90x解这个方程,得x=4检验:将x=4代入原方程,得左边=45=右边,所以,x=4是原方程的根。

方法二:先化简得方程两边都乘以x,得32-20=3x解这个方程,得x=4检验:将x=4代入原方程,得左边=45=右边,所以,x=4是原方程的根。

北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)

北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)
(3)分式约分的步骤和方法:学在约分过程中可能会出现步骤混乱、方法不当的问题。教师需要通过具体的例子,明确约分的步骤,强调先分解再约分的重要性。
难点举例:对于分式$\frac{4x^2 + 4x}{2x^2 + 2x}$,学生应先分解为$\frac{4x(x + 1)}{2x(x + 1)}$,然后约去公因式$(x + 1)$和$2$,得到最简分式$\frac{2}{1}$。
2.教学难点
(1)分式基本性质的深度理解:学生需要理解为什么分式的分子、分母同乘(或除以)一个不等于0的整式,分式的值不变。这个性质背后的数学原理需要通过实例和图形进行直观演示,帮助学生深入理解。
难点举例:解释当分式$\frac{2x}{3y}$的分子分母同时乘以不同的整式(如2x和3y)时,分式的值仍然保持不变的原因。
(2)识别并约去复杂的公因式:在分式的约分过程中,学生可能会遇到难以识别的复杂公因式,尤其是当分子分母包含多项式时。教师需要指导学生如何分解多项式,找出公因式。
难点举例:面对分式$\frac{3x^3 - 6x^2}{9x^2 - 6x}$,学生需要学会先将分子和分母分解为$3x^2(x - 2)$和$3x(3x - 2)$,再约去公因式$3x$。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本性质、约分的技巧及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。

5.4 分式方程(第2课时)北师大版数学八年级下册教案

5.4 分式方程(第2课时)北师大版数学八年级下册教案

5.4分式方程(第2课时分式方程的解法)教学目标1.引导学生掌握解分式方程的基本思路和方法.2.了解分式方程增根产生的原因并能解决与增根有关的问题.教学重点难点重点:解分式方程的基本方法和步骤.难点:检验分式方程的解.教学过程复习巩固1.方程的解:使方程左右两边相等的未知数的值叫方程的解.2.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.导入新课【创设情境,课堂引入】有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.如果设第一块试验田每公顷的产量为x kg,那么第二块试验田的产量是(x+3 000)kg.根据题意,可得方程=.探究新知【实践探究,交流新知】【教师提问】这个方程是我们学过的分式方程,这类方程该如何解呢?【学生活动】先独立完成,再与同伴交流,踊跃回答.【示例展示】解方程=.解:方程两边都乘x(x-2),得x=3(x-2).解这个方程,得x=3.检验:将x=3代入原方程,得左边=1,右边=1,左边=右边.所以,x=3是原方程的根.【师生总结】解分式方程.关键:将分式方程转化为整式方程.步骤:(1)去分母;(2)解整式方程;(3)检验;(4)写出方程的解.简记为:“一化、二解、三检验”.检验有两种方法:一是代入原方程,二是代入去分母时乘的最简公分母.一般是代入最简公分母检验.去分母的方法:⑴把各分母分解因式;⑵找出各分母的最简公分母;⑶方程两边各项乘最简公分母.【巩固练习】解分式方程:-=45.解:方程的两边同乘2x,得960-600=90x.解这个方程,得x=4.经检验,x=4是原方程的根.【合作探究,解决问题】【小组讨论,师生互学】在解方程=-2时,小亮的解法如下:解:方程的两边同乘x-2,得1-x=-1-2(x-2).解这个方程,得x=2.【教师提问】x=2是原方程的根吗?为什么?【学生活动】先独立思考,再与同伴交流,踊跃回答.答:在上面的方程中,x=2不是原方程的根,因为它使得原分式方程的分母为零.【师生总结】产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!【示例展示】当m为何值时,分式方程+ =4会产生增根?解:方程两边都乘x-3,得1-m=4(x-3),解这个方程,得x=.∵x=是原方程的增根,且原方程的增根是x=3,∴=3,解得m=1.【拓展延伸】【例1】若关于x的方程=1的解是正数,则a的取值范围是.【解析】去分母,得2x+a=x-1,解得x=-a-1.∵关于x的方程=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2.【答案】a<-1且a≠-2方法总结:求出方程的解(用未知字母表示),然后根据解的正负,列关于未知字母的不等式求解,特别注意分母不能为0.【例2】若关于x的分式方程无解,求m的值.【思考】无解说明什么?两种情况:一是所化成的整式方程无解;二是解得整式方程的解使最简公分母为0.解:方程两边都乘(x+2)(x-2),得2(x+2)+m x=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②原方程的解使最简公分母为0,则x=2或x=-2,当x=2时,代入(m-1)x=-10,得(m-1)×2=-10,解得m=-4;当x=-2时,代入(m-1)x=-10,得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.【总结】分式方程无解与分式方程有增根所表达的意义不一样:分式方程有增根仅仅是指求得的整式方程的解使最简公分母为0;分式方程无解不但包括求得的整式方程的解使最简公分母为0,而且还包括分式方程化为整式方程后无解.课堂练习1.以下是方程去分母后的结果,其中正确的是( )A. 2―1―x=1B. 2―1+x=1C. 2―1―x=2xD. 2―1+x=2x2.若方程3x-2=+4x￿x-2￿有增根,则增根为( )A.0B.2C.0或2D.13.解方程:(1);(2);(3).参考答案1.D2.A3.解:(1)x=1. (2)x=-32. (3)原分式方程无解.课堂小结1.解分式方程的一般步骤:(1)在方程的两边都乘最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去.(4)写出原方程的根.2.方程的增根:若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.产生增根的原因:在方程的两边同乘了一个可能使分母为零的整式.注意:解分式方程一定要验根!布置作业请完成本课时对应练习!板书设计分式方程的解法1.解分式方程的基本思路2.解分式方程的一般步骤3.方程的增根若求出的解使得原分式方程的分母为零,我们称它为原方程的增根.。

北师大版数学八下5.4.2《分式方程(二)》教学设计

北师大版数学八下5.4.2《分式方程(二)》教学设计

分式方程的解法(二)教学设计教学目标(一)教学知识点1.解分式方程的一般步骤.2.了解解分式方程验根的必要性.(二)能力训练要求1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.(三)情感与价值观要求1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.教学重点1.解分式方程的一般步骤,熟练掌握分式方程的解决.2.明确解分式方程验根的必要性.教学难点明确分式方程验根的必要性.教学方法探索发现法学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.教学过程Ⅰ.提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法.解方程213-x+325+x=2-624-x[师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得3(3x -1)+2(5x +2)=6×2-(4x -2).(2)去括号,得9x -3+10x +4=12-4x +2,(3)移项,得9x +10x +4x =12+2+3-4,(4)合并同类项,得23x =13,(5)使x 的系数化为1,两边同除以23,x =2313. Ⅱ.讲解新课,探索分式方程的解法[师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.[生]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?[师]同学们说他的想法可取吗?[生]可取.[师]同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢? [生]乘以分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘以x (x -2),得x (x -2)·21-x =x (x -2)·x 3, 化简,得x =3(x -2). (2) 我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程.[生]再往下解,我们就可以像解一元一次方程一样,解出x .即x =3x -6(去括号) 2x =6(移项,合并同类项).x =3(x 的系数化为1).[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论.(教师可参与到学生的讨论中,倾听学生的说法)[生]x =3是由一元一次方程x =3(x -2) (2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解. [师]同学们表现得都很棒!相信同学们也能用同样的方法解出例2.[例2]解方程:x 300-x2480=4 (由学生在练习本上试着完成,然后再共同解答)解:方程两边同乘以2x ,得600-480=8x解这个方程,得x =15检验:将x =15代入原方程,得左边=4,右边=4,左边=右边,所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯. 我这里还有一个题,我们再来一起解决一下(先隐藏小亮的解法) 3-x x-3(可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析)[师]我们来看小亮同学的解法:32--x x =x-31-2 解:方程两边同乘以x -3,得2-x =-1-2(x -3)解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解.[师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根.[师]它是去分母后得到的整式方程的根吗?[生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根.在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? [生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.[师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.Ⅲ.应用,升华1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. [分析]先总结解分式方程的几个步骤,然后解题. 解:(1)13-x =x 4 去分母,方程两边同乘以x (x -1),得3x =4(x -1)解这个方程,得x =4检验:把x =4代入x (x -1)=4×3=12≠0,所以原方程的根为x =4.(2)1210-x +x215-=2 去分母,方程两边同乘以(2x -1),得10-5=2(2x -1)解这个方程,得x =47 检验:把x =47代入原方程分母2x -1=2×47-1=25≠0. 所以原方程的根为x =47. 2.回顾,总结[师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.3.补充练习[分析]强调解分式方程的三个步骤:一去分母;二解整式方程;三验根. 解:(1)去分母,方程两边同时乘以x (x +3000),得9000(x +3000)=15000x 解这个整式方程,得x =4500检验:把x =4500代入x (x +3000)≠0.所以原方程的根为4500(2)x h 2=xa a -(a ,h 是常数且都大于零) 去分母,方程两边同乘以2x (a -x ),得h (a -x )=2ax解整式方程,得x =ha ah +2(2a +h ≠0)检验:把x =ha ah +2代入原方程中,最简公分母2x (a -x )≠0,所以原方程的根为 x =ha ah +2. Ⅳ.课时小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可. [生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.……Ⅴ.课后作业习题3.7Ⅵ.活动与探究若关于x 的方程31--x x =932-x m 有增根,则m 的值是____________. [过程]首先增根是分式方程转化为整式方程时整式方程的根,但却使最简公分母为零.[结果]关于x 的方程31--x x =932-x m 有增根,则此增根必使3x -9=3(x -3)=0,所以增根为x =3.去分母,方程两边同乘以3(x -3),得3(x -1)=m 2.根据题意,得x =3是上面整式方程的根,所以3(3-1)=m 2,则m =±6. 板书设计x 3000+x 二、探求分式方程解法[例1]解方程21-x =x3。

数学初二下北师大版3.4分式方程(二)教学设计

数学初二下北师大版3.4分式方程(二)教学设计

数学初二下北师大版3.4分式方程(二)教学设计总体说明本节是分式的第4小节,这是第二课时,本课时要紧研究分式方程的解法,只要求会解可化为一元一次方程的分式方程〔方程中的分式不超过两个〕、解分式方程的关键是把分式方程转化为整式方程,在引导学生探究分式方程的解法时,要注意表达这种转化的思想、【一】学生知识状况分析学生的技能基础:在上一节课的基础上,学生差不多了解分式方程的概念,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的依照是什么,从而能通过观看类比的方法,探究分式方程的解法并能理解解题步骤的依照.学生活动经验基础:本节课要紧采纳观看、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想、【二】教学任务分析在上一节课中,学生通过对实际问题的分析,差不多感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时,旨在学会解分式方程,能从中体会数学转化思想的深刻含义,为此,本课时的教学目标是:知识与技能:(1)体会分式方程到整式方程的转化思想、(2)掌握分式方程的解法、数学能力:(1)培养学生的数学转化思想、(2)培养学生的观看、类比、探究的能力、情感与态度:鼓舞学生独立思考,认真观看,大胆猜想,积极动手,提高分析问题与解决问题能力、【三】教学过程分析本节课设计了七个教学环节:回忆——想一想——试一试——议一议——练一练——学生小结——反馈练习、活动目的:回忆等式性质,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母、本卷须知学生能特别快回忆起依照等式性质,找出各分母的最小公分母,两边同时乘以相同的因式,达到去分母的目的,并能熟练解出方程、然而,部分学生容易出现去分母时漏乘某一项,特别是不含分母的项.另外,学生还容易出现的错误是:去分母后,假如分子是多项式,漏去括号,导致计算错误,这些错误在解分式方程时也容易出现,在复习一元一次方程时老师对这一点要重点强调.在复习解一元一次方程时,老师还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.第二环节:想一想活动内容:解以下分式方程:xx 321=-活动目的:引导学生认真观看,采纳类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程、本卷须知通过观看类比,学生容易发明只要方程两边同时乘以相同的因式,能够去分母,使方程变为学过的一元一次方程,从而解快了问题、另外,学生还能依照比例的性质:内项积等于外项积.解出那个方程,关于这部分学生应该鼓舞,确信数学一题多解.第三环节:试一试活动内容:解以下分式方程452600480=-x x 活动目的:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解、本卷须知通过前面的探究体验,学生都特别有兴趣并能差不多掌握分式方程的解法,并在老师的指导下,规范书写过程、在解题过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.第四环节:议一议活动内容: 解分式方程22121--=--xx x 时,小明的解为2=x ,他的答案正确吗? 活动目的:让学生通过解那个方程,并思考问题,从而产生疑惑,展开讨论,了解分式方程会产生增根、 本卷须知在解那个方程的过程中,学生容易忽视两个分母互为相反数,因此在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.另外那个方程把学生易犯的错误集中在一起,例如-2这一项没乘公分母.通过认真观看,积极讨论,学生都发明2=x 使原方程无意义,了解增根的概念,及产生的缘故,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否那么不是)第五环节:练一练活动内容:解以下分程〔1〕xx 413=- 〔2〕4235323=-+--xx x 活动目的:让学生认真完成从审题到最后检验的完整过程,熟练掌握解题方法、本卷须知学生解第一小题时,从比例式的性质动身,利用外项积等于内项积的性质,交叉相乘,和利用等式性质去分母一样,都能把分式方程转化为整式方程、解第二题时,有的学生因为审题不认真,把)32(-x 和)23(x -当成两个不同的整式,给计算带来不必要的麻烦、反应出有些学生处理问题的能力的欠缺、第六环节:学生小结活动内容:在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?活动目的:鼓舞学生独立思考,并用自己的语言描述,然后再与同伴讨论、交流自己的结果、通过学生的回忆小结,加深分式方程解法和数学转化思想的理解、本卷须知学生在解方程过程中易犯的错误:1、解方程时不记得检验;2、去分母时不记得加括号;3、去分母时漏乘不含分母的项.第七环节:反馈练习活动内容:1.方程1112-=x x 的解为〔〕 A 、1B.-1C.1± D.02、方程xx -=7043的解为___________、 3、解方程134543=-+-x x x 4、假设关于x 的方程0111=--+x ax 有增根,那么a 的值为_______、活动目的:通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺.本卷须知从学生的反馈练习中来看,学生能熟练解出分式方程,但对增根的理解及灵活处理还不够,在今后的练习中还要巩固渗透,要让学生弄清增根产生的缘故,因此要正确验根从而排除增根、 课后练习:请完成课后作业解以下方程1、xx 416=- 2、14143=-+--x x x【四】教学反思数学教学活动必须建立在学生的认知进展水平和已有的知识经验基础之上、教师应激发学生的学习积极性,本节课中,让学生自己通过观看、类比的方法找到分式方程的解法,向学生提供充分从事数学活动的机会,关心他们在自主探究和合作交流的过程中真正理解和掌握差不多的数学知识与技能、数学思想和方法,获得广泛的数学活动经验、学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者、数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同进展的过程、数学教学应从学生实际动身,创设有助于学生自主学习的问题情境,在本节课中,关于分式方程的增根的教学,通过创设议一议的问题,引导学生通过实践、思考、探究、交流,获得知识,形成技能,进展思维,学会学习,促使学生在教师指导下生动活泼地、主动地、富有个性地学习,使学生的学习能力得到最大限度的提升、。

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教案

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教案

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教案一. 教材分析《分式方程的解法》是北师大版数学八年级下册第5.4节的内容,本节课的主要内容是让学生掌握分式方程的解法,并能够运用解法解决实际问题。

分式方程是初中数学中的重要内容,也是学生学习高中数学的基础。

通过本节课的学习,让学生能够理解分式方程的概念,掌握解分式方程的基本方法,提高学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和分式的运算,对分式有一定的了解。

但学生对分式方程的理解和掌握程度参差不齐,部分学生对分式方程的概念理解不清晰,解分式方程的方法不熟悉。

因此,在教学过程中,要注重引导学生理解分式方程的概念,巩固分式的性质和运算,逐步引导学生掌握解分式方程的方法。

三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。

2.能够运用解分式方程的方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.分式方程的概念和解法。

2.运用分式方程解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,运用案例讲解分式方程的解法,小组合作学习,提高学生的参与度和积极性。

六. 教学准备1.教学PPT。

2.相关案例和练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分式的概念、性质和运算,为新课的学习做好铺垫。

2.呈现(10分钟)呈现分式方程的定义和例题,让学生观察和分析分式方程的特点,引导学生理解分式方程的意义。

3.操练(10分钟)让学生分组讨论,每组选取一个分式方程进行解答,引导学生运用所学知识解决问题。

4.巩固(10分钟)对每组的解答进行评价和讲解,指出解题过程中的优点和不足,巩固学生对分式方程解法的掌握。

5.拓展(10分钟)给出一些实际问题,让学生运用分式方程解决,提高学生解决问题的能力。

6.小结(5分钟)对本节课的主要内容进行总结,强调分式方程的概念和解法。

北师大版数学初二下册《分式方程(二)》教学设计

北师大版数学初二下册《分式方程(二)》教学设计

北师大版数学初二下册《分式方程(二)》教学设计一. 教材分析北师大版数学初二下册《分式方程(二)》的内容主要包括分式方程的解法、检验解的方法以及分式方程的应用。

这部分内容是学生在学习了分式方程的基础上进一步深化和应用,旨在培养学生的逻辑思维能力和解决实际问题的能力。

二. 学情分析初二的学生已经掌握了分式的基本知识,对分式方程有一定的了解,具备了一定的数学思维能力。

但在解决实际问题时,部分学生可能会对如何建立方程和求解方程感到困惑。

因此,在教学过程中,需要关注学生的个体差异,有针对性地进行教学。

三. 教学目标1.理解分式方程的解法及其应用;2.学会检验分式方程的解是否正确;3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.分式方程的解法;2.检验分式方程的解是否正确;3.将实际问题转化为分式方程,并求解。

五. 教学方法1.讲授法:讲解分式方程的解法、检验解的方法及应用;2.案例分析法:分析实际问题,引导学生建立方程并求解;3.小组讨论法:分组讨论,分享解题心得和方法。

六. 教学准备1.PPT课件:展示分式方程的解法、检验解的方法及应用;2.实际问题案例:提供给学生进行分析和练习;3.练习题:巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件,简要回顾分式方程的基本知识,引导学生思考分式方程在实际问题中的应用。

2.呈现(15分钟)展示实际问题案例,引导学生分析问题,建立分式方程。

同时,讲解分式方程的解法,让学生初步掌握解题方法。

3.操练(15分钟)学生分组讨论,分享解题心得和方法。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示练习题,让学生独立完成。

教师选取部分学生的作业进行点评,指出解题中的优点和不足。

5.拓展(10分钟)出示一些具有挑战性的问题,引导学生运用所学知识进行解决。

同时,鼓励学生发挥创新精神,探索解决问题的新方法。

6.小结(5分钟)教师总结本节课的主要内容,强调分式方程的解法、检验解的方法及应用。

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教学设计

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教学设计

北师大版数学八年级下册5.4《分式方程的解法》(第2课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的解法》(第2课时)的教学内容主要包括分式方程的解法和应用。

本节课是在学生已经掌握了分式方程的基本概念和性质的基础上进行教学的,通过本节课的学习,使学生掌握分式方程的解法,提高学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了分式方程的基本概念和性质,具备了一定的数学思维能力。

但部分学生在解分式方程时,容易出现漏解、误解等错误,对于分式方程的实际应用,部分学生还存在着一定的困难。

三. 教学目标1.知识与技能:使学生掌握分式方程的解法,并能运用所学知识解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决分式方程的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:分式方程的解法。

2.难点:分式方程的实际应用。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,使学生主动探索分式方程的解法。

2.合作学习:学生分组讨论,共同解决问题,培养学生的团队合作能力。

3.案例教学:教师通过列举实际问题,引导学生运用所学知识解决实际问题。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,内容包括分式方程的解法和实际应用案例。

2.练习题:教师准备适量的练习题,用于巩固所学知识。

3.教学素材:教师准备一些实际问题,用于案例教学。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾分式方程的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT呈现分式方程的解法,讲解解法的过程和步骤,让学生初步掌握解分式方程的方法。

3.操练(10分钟)教师让学生独立完成PPT上的练习题,检查学生对分式方程解法的掌握情况。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师学生进行小组讨论,共同解决一些分式方程的实际应用问题。

北师大版数学八年级下册5.4 分式方程(第2课时) 教学设计(含教学反思)

北师大版数学八年级下册5.4 分式方程(第2课时) 教学设计(含教学反思)

北师大版数学八年级下册
《5.4 分式方程(第2课时)》教学设计
1400 x −1400
2.8x
=9的解吗?
化成一元一次方程来求解.
解分式方程和解整式方程有什么区别?解分式方程的思路是:
典例精析
例1 解方程1
x−2=3
x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
检验:将x=3代人原方程,得
左边=1,右边=1,左边=右边.
所以,x=3是原方程的根.
你能否从中总结出分式方程的解法呢?
归纳总结:
解分式方程的一般步骤:
1、在方程的两边都乘以最简公分母,约去分母,化成整式方程. (转化思想)
2、解这个整式方程.
3、检验 .
4、写出原方程的根.
议一议:。

北师大版数学八年级下册5.4《分式方程》教学设计2

北师大版数学八年级下册5.4《分式方程》教学设计2

北师大版数学八年级下册5.4《分式方程》教学设计2一. 教材分析《分式方程》是北师大版数学八年级下册第5章第4节的内容。

本节课的主要任务是让学生掌握分式方程的解法,理解分式方程的解法在实际问题中的应用。

教材通过引入实际问题,让学生感受分式方程的重要性,进而学习分式方程的解法。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和运算。

他们具备了一定的数学基础,能够理解和掌握分式方程的基本概念和解法。

但是,学生对分式方程在实际问题中的应用可能还不够清晰,需要通过实例让学生感受和理解。

三. 教学目标1.知识与技能:学生会解分式方程,理解解分式方程的思路和方法。

2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,提高学习数学的兴趣。

四. 教学重难点1.重点:分式方程的解法。

2.难点:理解分式方程的解法在实际问题中的应用。

五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考,培养学生的解决问题的能力。

2.案例教学:通过实际问题的引入,让学生感受分式方程的重要性,提高学生的学习兴趣。

3.合作学习:学生分组讨论,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教学课件:制作课件,展示分式方程的解法及实际问题。

2.教学素材:准备一些实际问题,用于引导学生学习分式方程的解法。

3.黑板:用于板书 key points 和解题步骤。

七. 教学过程1.导入(5分钟)教师通过提问,回顾分式的概念和性质,为学生学习分式方程做好铺垫。

2.呈现(10分钟)教师展示一些实际问题,引导学生思考如何用数学方法解决这些问题。

学生通过讨论,发现这些问题可以用分式方程来表示。

3.操练(10分钟)教师引导学生学习分式方程的解法,让学生通过自主学习、合作交流,掌握解分式方程的方法。

教师在这个过程中给予学生适当的指导,帮助学生克服解题过程中的困难。

《分式方程第2课时》 示范公开课教学设计【部编北师大版八年级数学下册】

《分式方程第2课时》 示范公开课教学设计【部编北师大版八年级数学下册】

5.4《分式方程》教学设计第2课时一、教学目标1.会解可化为一元一次方程的分式方程,会检验根的合理性2.理解分式方程可能产生无解的原因.二、教学重点及难点重点:解分式方程的基本思路和解法.难点:1.能够正确求解分式方程并判断出解的存在性.2.理解分式方程可能产生无解的原因.三、教学用具多媒体课件四、教学过程【问题导入】1.什么是分式方程?2.解整式方程的一般步骤是什么?设计意图:问题引导学生回忆分式方程的概念,解整式方程的一般步骤,自然引入新课.【探究新知】你能设法求出分式方程1400140092.8x x-=的解吗?1.试一试解方程:132x x=-.解:方程两边都乘x(x-2),得x=3(x-2).解这个方程,得x=3.检验:将x=3代入原方程,得左边=1,右边=1,左边=右边.所以x=3是原方程的根.设计意图:引导学生仔细观察,采用类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程.2.议一议解分式方程22121--=--xx x 时,小亮的解法如下: 方程两边都乘x -2,得1-x =-1-2(x -2).解这个方程,得x =2.他的答案正确吗?答:x =2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根. 在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0,只有在最简公分母的值不等于0时,所得新方程与原方程同解,否则就会产生增根.所以解分式方程必须检验,通常只需检验所得的根是否使原方程中分式的分母的值等于零即可. 设计意图:了解去分母解分式方程过程中会产生增根,必须验根.3.想一想问题:解分式方程一般需要哪几个步骤?放手让学生讨论总结,引导学生归纳列方程的基本思维步骤:答:(1)去分母;(2)解整式方程;(3)检验;(4)写出方程的根.【典例精讲】例1 解方程480600452x x-=. 解:方法一:方程两边都乘2x ,得960-600=90x .解这个方程,得x =4.经检验x =4是原方程的根.方法二: 4806004524803004518045451804x xx xxx x x -=-====,化简:,合并:,两边乘:,.经检验x =4是原方程的根.设计意图:让学生认真完成从审题到最后检验的完整过程,寻求各种解题方法.【课堂练习】1.解方程(1)341x x=-;(2)542332xx x+=--.2.解125页做一做所列的分式方程48005000+20x x=.答案:1.解:(1)方程两边都乘x(x-1),得3x=4(x-1).解这个方程,得x=4.经检验x=4是原方程的根.(2)方程两边都乘2x-3,得x-5=4(2x-3).解这个方程,得x=1.经检验x=1是原方程的根.2.解:48005000+20x x=,方程两边都乘x(x+20),得4800(x+20)=5000x.解这个方程,得x=480.经检验x=480是原方程的根.【课堂小结】在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?1.解分式方程的基本思路:将分式方程化为整式方程.2.解分式方程的一般步骤:(1)去分母变形;(2)解整式方程;(3)检验;(4)得出结论.【板书设计】1.解分式方程的基本思路:将分式方程化为整式方程.2.解分式方程的一般步骤:(1)去分母变形;(2)解整式方程;(3)检验;(4)得出结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式方程》第二课时教学设计
千溪中学龙燕
【教学分析】
【教学设计】
【教学反思】
对于解分式方程,学生已经学过等式的基本性质,分式的通分,一元一次方程的解法,解分式方程的根本是在于去分母,将分式方程化为整式方程,而要去分母,方程的两边要同乘以最简公分母.因此,要在解分式方程之前先将最简公分母复习一遍,给学生铺好路,另外给学生讲解一个例题,就是方程两边都乘以最简公分母时,要求每一项都乘以最简公分母,让学生看到去分母的过程,这样,就可以避免出现很多的问题,也能让学生理解得更透彻。

在教学中,注意引导学生理解化归的思想,即将未知的知识转化成已知的知识,分式方程转化为整式方程。

1、留思考时间给学生。

在课堂中,问题由学生通过动手动脑去获得,发挥学生的主动性,我主要在做题的方法上进行指导,思维方式上进行点拨。

2、积极的引导和点拨。

先让学生进行展讲,由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,过程,如何检验等用多媒体
的形式组学生展示出来。

在解分式方程过程容易出现的几个误区加以例题展示给学生们看,加强学生的记忆。

3、学生在做题时我在教室巡视,有时发现学生的错误,及时纠正,对于轻困难的学生做个别辅导。

4、给学生自我展示的时间。

在课堂中,我让学生做相关习题,小组交流讨论后,把他们认为正确的解题过程写在小黑板上,再让小组成员对全班同学进行讲解,其他小组的同学再质疑。

这样,学生的语言能力、思维能力都得到锻炼。

虽然在课堂上做了很多,但是也存在许多不足的地方,这也是我在今后教学中应该注意的地方。

第一,给学生的鼓励不是很多,鼓励可以让学生有充分的自信心,应尽可能分层教学,评价多样化。

第二,课堂纪律的保证,在学生进行展讲时,应该提醒其他同学放下自己还未完成的题,讨论结束,认真听。

第三,课堂安排不够合理,没有完成学习单上最后的课堂训练。

第四,检验的过程我只是口头强调,没有板书在黑板上,致使很多学生印象不深。

【板书设计】
§5.4分式方程(二)
1、分式
2、分式方程
3、解分式方程的一般步骤
(1)去分母
(2)解整式方程
(3)检验(注意增根)
(4)写结论
4、例题。

相关文档
最新文档