第 三 章 气体分子热运动速率和能量的统计分布律汇总

合集下载

热学-第三章气体分子热运动速率和能量分布

热学-第三章气体分子热运动速率和能量分布

物理意义: 速率在 v 附近,单位速率区间的分子数占总分子数
的概率,或概率密度。
dN f (v)dv N
dN = f (v )dv N v1
v2
表示速率分布在v→v+dv内的 分子数占总分子数的概率 表示速率分布在v1→v2内的分 子数占总分子数的概率

N
0
dN f v dv 1 N 0
dω= 4πv2dv
麦克斯韦速率分布律
将dω=dvxdvydvz代入
dN m e N 2 kT
x y
3 2 2 2 m ( v v v 2 x y z) 2 2 kT
v dv dv dv x y z
麦克斯韦 速率分布 分布律
2 2 2 2 且: v v v v z
3 2
麦克斯韦 速率分布函数 f(v)
m 4 f v e kT 2
3 2 mv 2 2 kT 2
v
f(vP)
m——分子的质量 T——热力学温度 k——玻耳兹曼常量 面积= dN/N 曲线下面宽度为 dv 的小窄条面积等于 分布在此速率区间 内的分子数占总分 子数的概率dN/N 。. v
第三章 气体分子热运动速率和能量分布
§3.1气体分子的速率分布律
§3.2用分子射线实验验证麦克斯韦速度分布 §3.3珀尔兹曼分布率 重力场中微粒按高度的分 布 §3.4能量按自由度均分定理
3-1 麦克斯韦气体速率分布律
第一章我们引入了平衡态和温度的概念,但在热力学范围内不 能得到深刻的认识。第二章以分子运动论为基础,认识了压强 和温度的微观本质,对平衡态下分子热运动的规律有了初步认 识,我们有一个基本的统计公理(假设)。这个公理只解决了 分子热运动速度方向的几率问题,并没有涉及分子热运动速率 大小取值的概率,无法作进一步的定量分析。分子热运动情况 是分子物理的重要研究对象,我们必须讨论速率大小取值的概 率问题。由于分子数目如此巨大,速率的取值从0到∞,这个 取值区间非常大,分子在任何一个微小速率范围内的取值其概 率都不会大,但到底有多小却不易判断。所以,这是一个大数 量偶然微观运动的集体效应的问题,既统计的问题,对应的规 律就是一个统计规律。一般地研究这个问题比较复杂,我们以 理想气体为基础来开展讨论。

热学第三章气体分子速率和能量统计分布律

热学第三章气体分子速率和能量统计分布律

v0 2v0 3v0 4v0 5v0 v
i
1 9
v0 2
2 9
3v0 2
3 9
5v0 2
2 9
7v0 2
1 9v0 92
5v0 2
2021/4/24
15
例4:讨论下列各式的物理意义
1. f (v)dv
平衡态下,分子速率分布在v → v+dv区间内的分子数 占总分子数的比率。
2. Nf (v)dv
求:1) 速率在 vp ~ v 间的分子数;2)速率在 vp ~
间所有分子动能之和 . 3)速率在 1 ~ 2 区间的分子
平均速率。
解: 速率在 v v dv 间的分子数 dN Nf (v)dv
1)
v v Nf ( )dv
vp
2)
vp
1 2
mv2 Nf
(v)dv
3)
2 Nf ()d
1~2
f (v) 4π(
m
)3
2
mv 2
e 2kT
v2
2πkT
dN 4π(
m
)3
2
mv 2
e 2kT
v2dv
N
2πkT
反映理想气体在热动平衡
波尔兹曼常量
f (v) dN Ndv
f (v)
条件下,气体分子按速率
分布的规律 .
o
v
三 三种统计速率
1)最概然速率 v p
f (v)
f max
df (v) 0 dv vvp
v1
v1
平衡态下,分子速率分布在v1 → v2区间内的分子数。
例 5已知f v为 N 个(N 很大)分子组成的系统的速率分

第三章气体分子热运动速率和能量的统计分布律要点

第三章气体分子热运动速率和能量的统计分布律要点

第 三 章3-1 设有一群粒子按速率散布以下:粒子数 N 24682 i速率 V i ( m/s ) 1.00 2.00 3.00 4.005.00试求 (1) 均匀速率 V ;(2)方均根速率 V2Vp( )最可几速率3解:(1)均匀速率:2 1.00 4 2.006 3 .00 8 4.002 5.00V4 68 23 .18 (m/s)2(2) 方均根速率2N i V i 2V3 .37 (m/s)N i3-2 计算 300K 时,氧分子的最可几速率、均匀速率和方均根速率。

2 RT28 . 31 300 395 m / s解:V P3210 3V8 RT8 8 .31300 446 m / s3 .14 3210323 RT3 8 .31300483 m / sV321033-3计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和 10000K 。

解:V P2 RT代入数据则分别为:T=100K 时 V P 2 .28 10 2 m / s T=1000K 时 V P 7 .21 10 2 m / s T=10000K 时V P2. 28 10 3 m / s3-4 某种气体分子在温度 T 1 时的方均根速率等于温度 T 2 时的均匀速率,求 T 2/T 1。

解:因23 RT8RT 2VV由题意得:3 RT 8RT 2∴T 2/T 1=383-5 求 0℃时 1.0cm 3 氮气中速率在 500m/s 到 501m/s 之间的分子数(在计算中可将 dv 近似地取为△ v=1m/s )解:设 1.0cm 3 氮气中分子数为 N ,速率在 500~501m/s 之间内的分子数为△ N ,由麦氏速率散布律:m 3m V2△N=N 4 () 2 e 2 KT V 2V2 KT2KT∵ V p2= m ,代入上式2V2V△N=4 NV 1V 2 e V p2V p因 500 到 501 相差很小,故在该速率区间取分子速率 V =500m/s ,2 8 .31 273402 m / s△V=1m/s又 V P28 103v( vp =1.24 )代入计算得:△ N=1.86×10-3N 个3-6设氮气的温度为300℃,求速率在3000m/s到3010m/s之间的分子数△N 1与速率在 1500m/s 到 1510m/s 之间的分子数△ N 2 之比。

第三章气体分子热运动速率和能量的统计分布律

第三章气体分子热运动速率和能量的统计分布律
麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、 力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、 磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科 学史上最伟大的综合之一。
麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第 关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着 真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望, 决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前 人成就的基础上,对整个电磁现象作了系统、全面的研究,
dNNf(v)dv
v
速率位于 v1v2 区间的分子数
N v2 Nf (v)dv v1
速率位于 v1v2 区间的分子数占总数的百分比
S N (v N 1 v2)v v 1 2f(v)dv
二、麦克斯韦速率分布函数
麦氏分布函数
f(v)4π(2πm kT)32em 2kvT 2v2
dN4π( m )32em 2kvT2v2dv N 2πkT
§1. 气体分子的速率分布律
一、速率分布函数
分子速率分布图
N/(Nv分)子速率分布图
N :分子总数
S
o
vvv v
N 为速率在 v vv 区间的分子数.
S NN
表示速率在 v vv区间的分
子数占总数的百分比 .
分布函数 f(v )li m N 1li m N 1d N v 0 N vN v 0 vN d v
麦克斯韦(James Clerk
Maxwell 1831-1879)
凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文: 《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》 (1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对 前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美 数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦 克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是 横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波 的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学 家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著 《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经 典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了 重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律— 麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。 1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分 析正向和反向碰撞为基础的。

气体分子热运动速率和能量的统计分布律课件

气体分子热运动速率和能量的统计分布律课件
理想气体的平均平动能为: 1 __ 3 2 (1) m v kT 2 2 在平衡状态下,大量气体分沿各个方向运动的 机会均等。所以有: __ __ __ __
1 1 1 1 2 2 2 因此: m vx m v y m vz kT 2 2 2 2
1 2 v v v v 3 __ __ __
vx ~ vx dvx; vy ~ vy dvy; vz 区间内的分子数为:
3/ 2
~ vz dvz
(1)
m ( k p ) / kT dN n0 dvx dv y dvz dxdydz e 2kT
根据麦克斯韦分布函数所应满足的归一化条件:
m 2kT
第三章 气体分子热运动速率和能量的 统计分布律
§3.3 玻耳兹曼分布律 重力场 中微粒按高度的分布
§3.4 能量按自由度均分定理
§3.3 玻耳兹曼分布律
重力场中微粒按高度的分布
一、玻耳兹曼分布律 玻耳兹曼分子按能量分布定律,简称玻耳 兹曼分布律:当气体在外力场中处于平衡态时, 其中位置坐标位于 ; ; z ~ z dz y ~ y x ~ x dx 区间,同时速度坐标位于 : dy
可得:

3/ 2
e
k / kT
dvx dvy dvz 1
(2)
m 3 / 2 ( k p ) / kT dN ' n0 e dv x dv y dv z dxdydz 2kT n0 e
p / kT
2
r s t kT , kT和 kT,而分子的平均总动 为 2 2 2 1 能即为 (t r s )kT 。 2
由振动学可知,谐振动在一个周期内的平均动能 和平均势能是相等的。

热学-统计物理3 第3章 气体分子热运动速率和能量的统计分布律

热学-统计物理3 第3章 气体分子热运动速率和能量的统计分布律
f v
v v pv v 2
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
例1 计算在 27 C 时,氢气和氧气分子的方均
M
3.方均根速率 v2
v2

N
0
v2dN N


0
v2Nf N
(v)dv
o
v
v2 v2 f (v)dv 4 ( m )3 2 e mv2 2kT v4dv
0
2 kT
0
v4ev2 dv 3
0
8 5
v2 3kT m
v2 3kT 3RT
2kT
v
麦克斯韦速率分布函数的物理意义: f (v) dNv
Nd v
既反映理想气体在热动平衡条件下,分布在速率 v 附近单
位速率区间内的分子数占总分子数的百分比,又表示任意
一分子的速率出现在 v附近单位速率区间内的概率。
如果以速率为横坐标轴,速率分布函数为纵坐标轴,画 出的一条表示f(v) —v之间关系的曲线,称为气体分子的麦 克斯韦速率分布曲线。 ,它形象地描绘出气体分子按速率 分布的情况。
大量分子的速率的算术平均值叫做分子的平均速率.

v
vNf (v)dv
0


vf (v)dv

v 4 (
m
)3 e2 mv2 2kT v2dv
N
0
0

热力学-3.气体分子动理论速率与能量

热力学-3.气体分子动理论速率与能量

1.59 RT M
一般用于计算分子运动的平均距离;
同理,方均根速率

v2 v2 f (v)dv
3kT
3RT 1.73 RT
0
m
M
M
方均根速率用来计算分子平均动能。
最概然速率
2kT 2RT
RT
vp
m
1.41
M
M
最概然速率用在讨论分子速率分布。
f(v)
O
vp v v2
•在气体动理论方面,他提出气体分子按 速率分布的统计规律。
1。由于分子受到频繁的碰撞,每个分子热运动的速率是变化的, 要某一分子具有多大的运动速率没有意义,所以只能估计在某 个速率间隔内出现的概率;
2。哪怕是相同的速率间隔,但是不同的速率附近,其概率是不 等的。
速率接近为0的可能性很小,速率非常大的可能性也很小, 而居中速率的可能性则较大。
f (v) dN Ndv
速率分布函数
理解分布函数的几个要点: 1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的;
2.范围:(速率v附近的)单位速率间隔,所以要除以dv; 3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
f (v)dv dN N
N v1 v2
v2
f (v)dv
第三章 气体分子热运动 速率和能量的统计分布律
内容回顾
第一章 平衡态和温度 第二章 压强和温度的微观本质
平均效果
气体分子按速率分布的统计规律最早是由麦克斯韦于
1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统 计力学中导出,1920年斯特恩从实验中证实了麦克斯韦分子 按速率分布的统计规律。

工学气体分子热运动速率和能量的统计分布律

工学气体分子热运动速率和能量的统计分布律
事件也是如此。
第三章 气体分子热运动速率和能量的统计分布律
(2)概率相乘法则:
同时或依次发生的,互不相关(或相互统计独立) 的事件发生的概率等于各个事件概率之乘积,简称概 率相乘法则。
• 把一个骰子连续掷两次,掷第二次出现的概率与第一 次掷过否,第一次出现的哪一面向上都无关,则连续两 次掷骰子是统计独立的。
2. 等概率性
等概率性——在没有理由说明哪一事件出现概率更 大些(或更小些)情况下,每一事件出现的概率都 应相等。
3. 概率的基本性质 (1)概率相加法则:
n 个互相排斥事件发生的总概率是每个事件
发生概率之和,简称概率相加法则。
• 所谓n个互相排斥(简称互斥)的事件是指,出现事 件1,就不可能同时出现事件2,3…n,同样对2,3…n
N : N
表示速率在 v v v 区间的分
子数占总数的百分比 .
N : N V
表示单位速率区间的分子数占总数的 百分比 .
分布函数 f (v) lim N 1 lim N 1 dN v0 Nv N v0 v N dv
dN f (v)dv N
第三章 气体分子热运动速率和能量的统计分布律
第三章 气体分子热运动速率和能量的统计分布律
3-0 概率论的基本知识
第三章 气体分子热运动速率和能量的统计分布律
一 实验
小球在伽尔顿 板中的分布规律 .
每个小球落入哪个槽是 偶然的 少量小球按狭槽分布有 明显偶然性 大量小球按狭槽分布呈 现规律性
............ ........... ............ ........... ............ ........... ............
它仅是分子质量及气体温度的函数,

气体分子运动速率和能量的统计分布律a

气体分子运动速率和能量的统计分布律a

π m/(2kT)
mvz2
e 2kTdvz
g(vx)
于是有 g(vx)(2πm kT )12emv2 x2kT
0
vx g(vy)、 g(vz)与 g(vx)形式相同。
29
பைடு நூலகம்
单位时间、单位面积上的分子碰壁数
各种速度方向、大小的分子都有,怎么办?
按速度空间来看,应对速度空间积分。
vz
dvxdvydvz v
vy
0
x

柱n 器
体 壁 v dA
vx
2
解:(1)归一化条件 0f(v)dv1 0 f(v)dv0 v0av2dv1 3av0 3
3
a
v
3 0
15
(2)设总分子数为N, 则
v 0vNf(v)dv
N
0v f(v)dv
0v0vav2dv
a 4
v
4 0
14(v303)v04
43v0
(3) v0 v02vN N(vf)dv0 v02vf(v)dv对否?
vz
0 vx
dvxdvy dvz v
vy
速度空间中的一 点,代表一定的速度, 由矢径 表示 v( v x ,v y ,vz )
麦克斯韦最早得出的是下面分子速度分布规律 :
26
“在平衡态,理想气体分子的速度分量在
vx vx+dvx , vy vy+dvy, vz vz+dvz区间内
的分子数占总分子数的比率为”
f (v) 称速率分布函数
(function of distribution of speeds)
7
f v 的物理意义:
f v dNv

第三章 气体分子热运动速率和能量的统计分布规律

第三章 气体分子热运动速率和能量的统计分布规律
速率在p附近单位速率区间内的的分子数最多,或者说气体 分子中速率分布在p附近的概率最大。
(c)曲线下面积的物理意义
A.在 ~ +d区间内的分子数占总分子数的百分比:
f()
dN f d
N
o
+d

B.在1 ~ 2区间内的分子数占总分子数的百分比。
N 2 dN 2 f ( )d

0.865N
50 o
6
例:用麦克斯韦速度分布函数,求单位时间碰到单位面积容 器壁上的分子数N及碰壁分子的速率分布函数。
解:1)计算dt 时间时间内碰到dA面积容器壁上速 度在v 附近dvx dvy dvz区间的分子数。设z轴方 向垂直于dA 向外,则打到dA上的分子数为:
n • F(vx2 vy2 vz2 )dxdydz • vzdAdt
一般说来,某次测量值与统计平均值之间存在的偏离, 这种偏离就是涨落。
气体分子热运动的一个重要特征是分子间存在 频繁的碰撞,分子在各时刻分子速度的大小和方向 完全是偶然的,无规律的。
然而在平衡态下,就大量分子而言,分子的速 率分布却遵循一个确定的统计规律。即1859年提出 的麦克斯韦速率分布定律。
二、气体分子的速率分布律
(2)处在f()> C 的粒子数:
2
由C
sin
o

>
C 2
sin 1 o 2
o 5o
6
6
f()
所以f()>
C 2
的粒子数:
5 0
5 0
6 0
dN
6
0
Nf ( )d
6
6
C 2
o 0

热学-第三章气体分子热运动速率和能量分布

热学-第三章气体分子热运动速率和能量分布

等概率性
在平衡态下,系统从任意一个微观状态转移到另一个 微观状态的概率相等。
宏观态与微观态等概率性的意义
平衡态是系统内部最混乱的状态,即系统内部各个分 子运动状态的分布最均匀,没有明显的有序性。
热力学概率与宏观态的等概率性
热力学概率
宏观态等概率性与热力学概 率的关系
在平衡态下,系统处于各个宏观态的概率相等,即 热力学概率相等。
了解气体分子的能量分布和速度分布有助于深入理解热力学的基本原理,如温度 、内能、熵等概念。
03 气体分子的碰撞和动量传 递
气体分子间的碰撞频率
总结词
气体分子间的碰撞频率与气体分子的速度分布和分子间的距离有关,是气体分子热运动的重要参数。
详细描述
气体分子间的碰撞频率是指在单位时间内,两个分子相互碰撞的次数。由于气体分子的速度分布和分 子间的距离不同,碰撞频率也会有所差异。在理想气体中,碰撞频率可以用公式计算,它与气体分子 的平均自由程和分子速度有关。
定义
气体分子在热运动中具有的 平均能量是指所有气体分子 的总能量除以分子总数。
计算公式
平均能量 = (总能量) / (分子 总数)
影响因素
温度和物质的种类会影响气 体分子的平均能量。
气体分子的最可几能量
01
定义
气体分子在热运动中具有的最可 几能量是指一定温度下,占据一 定数量的分子的主要能量的值。
熵与自然过程的不可逆性
熵与自然过程的不可逆性密切相关,因为高熵状态对应于无序程度较高的状态,低熵状态对应于有序 程度较高的状态。
在自然过程中,由于熵增加原理的作用,系统总是向着高熵状态发展,即从有序向无序发展。因此,许 多自然过程都是不可逆的。
例如,物体受热会膨胀,但自发地收缩;化学反应会进行到底,但自发地逆向反应很困难;生物体衰老 和死亡后不能自发地恢复青春等。这些都是由于系统内部熵增加导致的不可逆过程。

第3章 气体分子热运动速率和能量的统计分布

第3章 气体分子热运动速率和能量的统计分布
每个分子的速度可用一个以坐标原点为起点的矢量表示
v vxi vy j vzk
速度空间体积元
速率分布是速度矢量大小被限制在一定区间
满足此条件的速度矢量其端点位于半径为 v,厚度为dv的球壳内
球壳体积为
17
用球壳体积
代替
并注意 v2 vx2 v2y vz2 得麦克斯韦速率分布
dN 4π(
n n 1 n
•分子数∆n 越大,涨落的百分数就越小,涨落现象越不显著。
• 麦克斯韦速率分布律只对大量分子组成的体系才成立。 9
三、用麦克斯韦速率分布函数求平均值
平均速率(算术平均值)
离散型
v v1N1 v2N2 viNi vnNn i viNi
N
N
连续型
N
v 0 vdN 0 vNf (v)dv
•当R 以一定的角速度转动,铋分子由S3到达G需用一段时间。 • 这段时间内R己转过一角度,铋分子不再沉积在板上P处。 • 不同速率的分子将沉积在不同的地方.速率大的分子由S3到G所需
的时间短,沉积在距P较近的地方,速率小的分子沉积在距P较远 的地方。
34
•设速率为 v的分子沉积在P’处以s 表示弧PP’的长度。 表示R的
N1, N2,…, Ni, …
小球在槽内的分配情况,称为一种分布。
总数足够大,槽内的小球的数目与小球总数之比
..........
.. . .
.......
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .
. . .
.
. . .
.
. . .

气体分子热运动速率和能量的统计分布律

气体分子热运动速率和能量的统计分布律

f (v)
dS
o v v dv
物理意义
表示在温度为 T 的平衡
状态下,速率在 v 附近单位
速率区间 的分子数占总数的
v 百分比 .
热学
3
dN f (v)dv dS N
表示速率在 v v dv
区间的分子数占总分子数的 百分比 .
归一化条件
N
0
dN N
0
f
(v)dv
1
f (v)
速率位于 v v dv 内分子数
热学
11
麦克斯韦(James Clerk
Maxwell 1831-1879)
1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统
地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著
《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立
的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,
麦克斯韦是19世纪伟大的英国物理学家、数 学家。1831年11月13日生于苏格兰的爱丁堡, 自幼聪颖,父亲是个知识渊博的律师,使麦克斯 韦从小受到良好的教育。10岁时进入爱丁堡中学 学习,14岁就在爱丁堡皇家学会会刊上发表了一 篇关于二次曲线作图问题的论文,已显露出出众 的才华。1847年进入爱丁堡大学学习数学和物 理。1850年转入剑桥大学三一学院数学系学习, 1854年以第二名的成绩获史密斯奖学金,毕业 留校任职两年。1856年在苏格兰阿伯丁的马里 沙耳任自然哲学教授。1860年到伦敦国王学院 任自然哲学和天文学教授。
vp
2kT m
2 RT M
v
8kT πm
v2 3kT m
热学
9
f (v)

热学第三章

热学第三章

3/ 2
1
1
1
1/ 2
1
1/ 2
1
1 y m −2v2 / kT f (vy ) = e 2πkT 1 m −2vz2 / kT f (vz ) = e 2πkT 1/ 2
1/ 2
f (v) = f (vx ) f (vy ) f (vz )
积分公式:
translation rotation
2
如果某种气体的分子有t个平动自由度,r个转 动由度,s个振动自由度,则分子的平均平动 s t kT , kT 能,平均转动能和平均振动能就分别为 2 2 r 1 kT 和 2 ,而分子的平均总动能即为 (t + r + s)kT
2
注意:能量均分定理是一种统计规律。对于个别分子,在任一瞬时 它的各种形式动能不具有上述关系。大量粒子通过碰撞,使各种形 式的动能发生传递和转换,从而实现能量均分的统计结果。
e
v dv
m = 4π 2πkT 3RT = M v =
__ 2
3/ 2

1 ∞ − mv2 / kT 4 2 0
e
v dv
3RT M
积分公式:


0
e
−λv2 3
1 v dv = 2 2λ
,


0
e
−λv2 4
v dv =
3 π 8 λ5
比较:
vp =
2RT M
, v=
8RT πM
§2 用分子射线实验验证麦克斯韦速度分布律(1)
一、分子射线
S 金属蒸气
S1
S2
准直器
§2 用分子射线实验验证麦克斯韦速度分布律(2)

第三章气体分子热运动速率和能量的统计分布律

第三章气体分子热运动速率和能量的统计分布律
麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精 神财富。
热学
14
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
N
N
v
v f (v)dv
8kT
0
πm
v 1.60 kT 1.60 RT
f (v)
m
M
3)方均根速率 v2
o
v
v2
N
0
v2dN N
0
v2
Nf
N
(v)dv
v2 3kT m
热学
8
vp v v2
vrms
v2
3kT m
3RT M
v 1.60 kT 1.60 RT
m
M
vp
2kT m
为清楚起见 , 从正面来
观察。
铁钉
隔板
热学
28
统计规律和方法
伽尔顿板 再投入小球: 经一定段时间后 , 大量小
球落入狭槽。
分布情况:中间多,两边少。
重复几次 ,结果相似。
单个小球运动是随机的 , 大量小球运动分布是确定的。
大量偶然事件整体所遵 循的规律 —— 统计规律。
热学
小球数按空间 位置 分布曲线
v2
dN 4π(
m
)3
2
e
mv2 2 kT
v2
dv
N
2πkT
热学
5
反映理想气体在热动 平衡条件下,各速率区间 分子数占总分子数的百分

第三章 气体分子热运动速率和分布函数_电子教案白

第三章 气体分子热运动速率和分布函数_电子教案白
第三章 气体分子热运动速率和能量的 统计分布律
第 一 节 气体分子的速率分布律
一、 速率分布函数 1.分子速率分布 平衡态下,分布在各速率区间内的分子数占总 分子数的百分率。令 N 为分子数,平衡态下在速率 v : v + dv 内
dN dN = f (v) dv ⇒ f (v) = Ndv N 2、物理意义:在速率 v 附近,单位速率间隔内出现的分子数占总
2
N = 2.6875 ×1019 个 ∆N = 2.484 ×1017
(2) v = vp=
2 kT m0
3
∆v =
− m0 v 2 2 kT
vp 100 4 −1 11 = 4π ( 2 ) 2 e N vp
例:理想气体,求 v = 的分子数的比值。
v 2 ∆v =
解: (1) f (v) =
dN 4πA 2 = v = kv 2 Ndv N
vF
(2)


0
f (v)dv = ∫
∞ 2
0
4π Av 2 vF 3 dv = 1 = 4π A N 3N
vF 2
A=
3N 4π vF 3
(3) v =
2

0
v f (v)dv = ∫
0
2 vF 4π Av2 3 2 3v v dv = ∫ v 3 dv = vF 2 0 N vF 5
2 2 =1:2:4 ,则 p : p : p =? : v 2 2 : vC C B A B
1
解:
pA : pB : pC = nkTA : nkTB : nkTC
∵ (v ) : (v ) : (v ) =
1 2 2 A
1 2 2 B

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)
或概率密度。
f ()d dN
N
dN
2

f
( )d
N 1
表示速率分布在→+d内的
分子数占总分子数的概率
表示速率分布在1→2内的分
子数占总分子数的概率
N
0
dN N


0
f
d
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
1、作速率分布曲线。 2、由N和vo求常数C。 3、求粒子的平均速率。 4、求粒子的方均根速率。
f (v)
C ( vo> v > 0) 0 ( v > vo )
f (v)
解:

f (v)dv
0
vo 0
Cdv

Cvo
1
C
C 1 vo
o
vo v
o f ()d o Cd C o2
3. 方均根速率
2


2
f
d
0
3
2

4

m
2 kT
2


e
m 2 2kT

4
d

3kT

3RT
0
mM
2 3kT 3RT
m
M
4. 三种速率的比较
最概然速率
p
2kT m
2RT M
平均速率
8kT 8RT m M
方均根速率
一、速率分布函数
气体分子处于无规则的热运动之中,由于碰撞,每个分子的速度都

第三章 气体分子热运动速率和能量的统计分布

第三章 气体分子热运动速率和能量的统计分布
第三章
气体分子热运动速率 和能量的统计分布
1
第三章 气体分子热运动速率和能量的 统计分布
§1 气体分子的速率分布律 §2 用分子射线实验验证麦克斯韦速度分布律 §3 玻尔兹曼分布律 重力场中微粒按高度的分布 §4 能量按自由度均分定理
2
§1 气体分子的速率分布律
一、速率分布函数
设总分子数N,速率区间v ~ v+dv内分子数 dN占总 分子数的比率为: dN f (v)dv ,其中:
1mol理想气体内能为:
Um
1 2
(r
t
2s)RT
,因此:
CV ,m
1 2
(r
t
2s)R
只与自由度有关
单原子分子气体:
CV ,m
3 2
R
双原子分子气体:
7 CV ,m 2 R
35
五、经典理论的缺陷
CV ,m
根据经典理论:
7R 2
一切双原子分子CV,m相同
5R 2
CV,m与温度无关
3R 2
T/K
理论与实验的不符,根本在于它是建立在经典概念,即能量 连续分布的基础上的。只有用量子理论才能进行较完满的解释。
单位时间内碰到单位面积器壁上速度在vx~vx+dv之间的分子数为:
nvx
f
(vx )dvx
nvx
m
2kT
1/ 2
e dv mvx2 / 2kT x
单位时间内碰到单位面积器壁的总分子数为:
0 nvx f (vx )dvx
n
m
1/ 2
2kT
e v dv mvx2 / 2kT
0
xx
n
kT
气体分子在空间位 置不再呈均匀分布

第三章气体分子热运动速率

第三章气体分子热运动速率
第三章 气体分子热运动速率 和能量的统计分布
3.1 气体分子的速率分布律 3.2 用分子射线实验验证麦克斯韦速度分布律 3.3 玻尔兹曼分布律 重力场中微粒按高度的分布 3.4 能量按自由度均分定理
1
3.1 气体分子的速率分布律
统计规律性: 统计规律性: 分子运动论从物质微观结构出发, 分子运动论从物质微观结构出发,研究大量分子组成的 系统的热性质。其中个别分子的运动(在动力学支配下) 系统的热性质。其中个别分子的运动(在动力学支配下)是 无规则的 存在着极大的偶然性。但是, 无规则的,存在着极大的偶然性。但是,总体上却存在着确 定的规律性。(例 理想气体压强) 规律性。( 定的规律性。(例:理想气体压强) 人们把这种支配大量粒子综合性质和集体行为的规律性 称为统计规律性 统计规律性。 称为统计规律性。 气体中个别分子的速度具有怎样的数值和方向完全是偶 然的,但就大量分子的整体来看,在一定的条件下,气体分 然的,但就大量分子的整体来看,在一定的条件下, 子的速度分布也遵从一定的统计规律。 子的速度分布也遵从一定的统计规律。为研究气体分子速度 分布的定量规律,有必要介绍分布函数的概念。 分布函数的概念 分布的定量规律,有必要介绍分布函数的概念。
dNv m mv 2 2kT 2 v dv = 4π e N 2πkT
dNv = f (v)dv N
3 2
麦克斯韦速率分布函数
3 2
m mv 2 2kT 2 f (v) = 4π v e 2πkT
9
麦克斯韦速率分布曲线
f (v)
f (v)
O
v vp
v
10
麦克斯韦速率分布曲线
f (v)
N N N = ∴n f (v)dv= v1 V N V 表示分布在单位体积内, 表示分布在单位体积内,速率区间 v1 →v2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

解: 取分子速率为V 1=3000m/s V 2=1500m/s, △V 1=△V 2=10m/s由5题计算过程可得: △V 1=1212214V V V p ppe V V VN∆--⋅⋅π△N 2=22222214V V V pppe V V VN∆--⋅⋅π∴ △N/△N 2=2121)(21)(21)()(ppp V V V V p e V V e V V --⋅其中V P =331018.210257331.82⨯=⨯⨯⨯-m/s v 1v p =1.375,v 2v p=0.687∴ 969.0687.0375.122687.02375.1221≅⨯⨯=∆∆--ee N N 解法2:若考虑△V 1=△V 2=10m/s 比较大,可不用近似法,用积分法求△N 1,△N 2dN=dVV V V p PeV N2234--⋅π△N 1=⎰⎰⎰-=1221V V V V dN dN dN△N 2=⎰⎰⎰-=3443V V V V dN dN dN令X i =v iv pi=1、2、3、4利用16题结果:22)([0i ix i i V e x x erf N dN --=⎰π∴ △N 1=]2)([]2)([2122112x x i e x x erf N e x x erf N -----ππ(1)△N 2=]2)([]2)([23243344x x e x x erf N e x x erf N -----ππ(2)其中V P =s m RT/10182.223⨯=μ375.111==P V V x 379.122==P V Vx 687.033==P V V x 6722.044==PV Vx 查误差函数表得:erf(x 1)=0.9482 erf(x 2)=0.9489 erf(x 3)=0.6687 erf(x 4)=0.6722将数字代入(1)、(2)计算,再求得:703.021=∆∆N N3-7 试就下列几种情况,求气体分子数占总分子数的比率: (1) 速率在区间v p ~1.0v p 1内 (2) 速度分量v x 在区间v p ~1.0v p 1内(3) 速度分量v p 、v p 、v p 同时在区间v p ~1.0v p 1内解:设气体分子总数为N ,在三种情况下的分子数分别为△N 1、△N 2、△N 3 (1) 由麦氏速率分布律: △ N=⎰⎰⎰-=1221V V V V dN dN dN令v 2=1.01v p ,v i =v p ,p i i v v x =,则111==pv vx ,01.122==p v v x ,利用16题结果可得;2122112212)(2)(x x e x x erf e x x erf N N --+--=∆ππ 查误差函数表:erf (x 1)=0.8427 erf (x 2)=0.8468 ∴008.01=∆NN (2) 由麦氏速率分布律:x v v px dv ev NdN px221--=π∴x v v v p x v v v p dv ev Ndv ev NN px px 2122)(1)(012----⎰⎰-=∆ππ)(])(exp[1)(])(exp[12020212px p x v v p x p x v v v v d v v v v d v v N N p p ⎰⎰---=∆ππ令p x v v x =, 111==pv vx ,01.122==p v v x ∴dx edx eN N x x x x ⋅-=∆--⎰⎰2122211ππ利用误差函数:dx x xp e x erf x)(2)(20-=⎰π%21.0]8427.08468.0[21)()([21122=-=-=∆x erf x erf N N (3)令pxv v x =,由麦氏速度分布律得: z y x v v v v p dv dv dv e v N dN pzy x ⋅=++--2222331ππ833230033108.0)002.0()(][)1(211222---⨯==∆=-=∆⎰⎰NN dx e dx e N N x x x x π3-8根据麦克斯韦速率分布函数,计算足够多的点,以dN/dv 为纵坐标,v 为横坐标,作1摩尔氧气在100K 和400K 时的分子速率分布曲线。

解:由麦氏速率分布律得:22232)2(4v e KTmN dv dN v KT m-=ππ将π=3.14,N=N A =6.02×1023T=100K m=32×10-3代入上式得到常数:A=e KTmN A 23)2(4ππ KT m B 2=∴22V Ae dvdNBV ⋅=- (1) 为了避免麻烦和突出分析问题方法,我们只做如下讨论:由麦氏速率分布律我们知道,单位速率区间分布的分子数随速率的变化,必然在最可几速率处取极大值,极大值为: 令22V Ae dvdNy BV ⋅==-则 0)]2(2[222=-⋅+⋅=--BV e V V e A dvdyBV BV 得BV V P 1== 又在V=0时,y=0,V →∞时,y →0 又mKT B V P 11121==mKT B V P 22221== ∵T 1=100K <T 2=400K ∴1P V <2P V 由此作出草图3-9根据麦克斯韦速率分布律,求速率倒数的平均值v1。

解:VKT m e mKTKT m V KTmd Ve m KT KT m VdVeKTmdv V f Vv KTmV KT mKTmv ππππππππ42)()2(4)2()()2(4)2(4)(110223220223223022==⋅-⋅=-⋅⋅-===∞-∞-∞-∞⎰⎰⎰3-10一容器的器壁上开有一直径为0.20mm 的小圆孔,容器贮有100℃的水银,容器外被抽成真空,已知水银在此温度下的蒸汽压为0.28mmHg 。

(1) 求容器内水银蒸汽分子的平均速率。

(2) 每小时有多少克水银从小孔逸出?解:(1))/(1098.11020114.337331.88823s m RTV ⨯=⨯⨯⨯⨯==-πμ(2)逸出分子数就是与小孔处应相碰的分子数,所以每小时从小孔逸出的分子数为:t s V n N ⋅⋅=41其中KTVP V n ⋅=4141是每秒和器壁单位面积碰撞的分子数,2)2(d s π=是小孔面积,t=3600s ,故t s V KTPN ⋅⋅⋅=41,代入数据得: N=4.05×1019(个) ∴)(1035.11005.41002.610201219233g N N m N M A--⨯=⨯⨯⨯⨯===μ3-11如图3-11,一容器被一隔板分成两部分,其中气体的压强,分子数密度分别为p 1、n 1、p 2、n 2。

两部分气体的温度相同,都等于T 。

摩尔质量也相同,均为μ。

试证明:如隔板上有一面积为A 的小孔,则每秒通过小孔的气体质量为:)(221P P A RTM -=πμ证明:设p 1>p 2,通过小孔的分子数相当于和面积为A 的器壁碰撞的分子数。

从1跑到2的分子数:t A V n N ⋅⋅=11141从2跑到1的分子数:t A V n N ⋅⋅=22241实际通过小孔的分子数:(从1转移到2))221121(41V n V n At N N N -=-=∆因t=1秒,KTPn =,πμRTV 8=T 1=T 2=T∴)(2)(841)(841212121P P A RTP P RTRTA KT P KT PRT Am n m M -=-=-==∆=πμπμμπμ若P 2>P 1,则M <0,表示分子实际是从2向1转移。

3-12 有N 个粒子,其速率分布函数为)0()(0〉〉==v v C NdvdNv f)(0)(0v v v f 〈=(1)作速率分布曲线。

(2)由N 和v 0求常数C 。

(3)求粒子的平均速率。

解:(1) )0()(0〉〉=v v C v f )(0)(0v v v f 〈= 得速率分布曲线如图示(2)∵1)(0=⎰∞dv v f∴10)(0==⎰⎰∞v cdv dv v f即10=cv 01v c =(3)02002121)(v cv dv v vf v ===⎰∞3-13 N 个假想的气体分子,其速率分布如图3-13所示(当v >v 0时,粒子数为零)。

相关文档
最新文档