机械制造基础-2.3热处理连续冷却过程组织转变
第二节 钢在热处理加热和冷却时的组织转变
第二节钢在热处理加热和冷却时的组织转变在热处理过程中,由于加热、保温和冷却方式的不同,可以使钢发生不同的组织转变,从而可根据实际需要获得不同的性能。
加热转变、冷却转变(等温冷却转变、连续冷却转变)一、钢在热处理加热与保温时的组织转变——钢热处理加热的目的是获得部分或全部奥氏体,组织向奥氏体转变的过程称奥氏体化。
加热至Ac1以上时:首先由珠光体转变成奥氏体(P→A);加热至Ac3以上时:亚共析钢中的铁素体将转变为奥体(F→A);加热至Ac cm以上时:过共析钢中的二次渗碳体将转变成奥氏体(Fe3C I→A)1、奥氏体的形成过程共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化,过程如下图。
工程材料及成形工艺基础共析钢奥氏体化过程亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac m以上时,Fe3C奥氏体化,组织全部奥氏体化2、奥氏体的晶粒大小奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密,其强度、塑性和韧性比较高。
[奥氏体的晶粒度]:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均直径、单位面积或单位体积内晶粒的数目来表示。
GB/T8493-1987将奥氏体晶粒分为8个等级,其中1~4级为粗晶粒;5~8级为细晶粒。
工程材料及成形工艺基础4级5级6级7级奥氏体的标准晶粒度×100倍[本质粗晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。
[本质细晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。
一般完全脱氧的镇静钢、含碳化物元素和氮化物元素的合金钢为本质细晶粒钢。
3、影响奥氏体晶粒大小的主要因素热处理工艺参数:加热速度、加热温度越、保温时间,其中加热温度对奥氏体晶粒大小的影响最为显著。
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变是一个非常重要的过程,它决定了钢的力学性
能和使用寿命。
这个过程可以被分为三个阶段:
第一阶段:初次冷却
在初次冷却阶段,钢的组织会发生初步的变化。
当温度降到钢的临界
温度以下时,钢中的所有组织都会开始转变。
这个过程是不可逆的,
一旦开始就不能停止。
第二阶段:持续冷却
在持续冷却阶段,钢的组织会进一步变化。
随着温度的降低,钢中的
残留奥氏体会逐渐转变为贝氏体。
这个过程会在几个小时内完成,然
后钢的组织就会保持不变,直到它被重新加热。
第三阶段:再次加热
在再次加热阶段,钢的组织会重新发生变化。
当温度达到一定程度时,钢中的组织开始再次转变,从贝氏体转变为奥氏体。
这个过程同样是
不可逆的。
以上就是钢在冷却时的组织转变的连续冷却转变过程。
需要注意的是,在这个过程中,钢的组织变化是不可逆的,因此加热和冷却的过程必
须严格控制。
如果温度过高或过低,会导致钢的力学性能和使用寿命
都受到影响。
钢在加热和冷却时的组织转变
A-P转变 终了线
图2.4 共析碳钢连续冷却转变曲线
马氏体临界 冷却速度
钢的热处理
1.2 钢在冷却时的组织转变
2. 过冷奥氏体的连续冷却转变
过共析碳钢的连续冷却转变C曲线与共析碳钢相比,除了多出一 条先共析渗碳体的析出线以外,其他基本相似
亚共析碳钢的连续冷却转变C曲线与共析碳钢却大不相同,它除 了多出一条先共析铁素体析出线以外,还出现了贝氏体转变区
机械制造基础
机械制造基础
钢的热处理
❖ 钢在加热和冷却时的组织转变
1.1 钢在加热时的组织转变 1.2 钢在冷却时的组织转变
钢的热处理
图2.1 钢加热和冷却时各临界点的实际位置
钢的热处理
1.1 钢在加热时的组织转变
钢加热到Accm点以上时会发生珠光体向奥氏体转变 热处理的主要目标就是为了得到奥氏体 严格控制奥氏体的晶粒度是热处理生产中一个重要的问题
钢的热处理
1.1 钢在加热时的组织转变
控制奥氏体晶粒大小的方法:
加热温度 保温时间 加热速度
钢的热处理
1.2 钢在冷却时的组织转变
冷却过程是热处理的关键工序,其冷却转变温度决定了冷却后 的组织和性能
实际生产中采用的冷却方法有:
连续冷却(如炉冷、空冷、水冷等)图b 等温冷却(如等温淬火)图a
图2.2 两种冷却方式示意图
钢的热处理 1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变
图2.3 共析碳钢过冷奥氏体等温转变曲线C曲线
钢的热处理
1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变珠体转变 贝氏体转变 马氏体转变
钢的热处理
1.2 钢在冷却时的组织转变
钢在加热冷却时的组织转变PPT课件
A1线以下,转变开始线的左边
为过冷奥氏体区,转变终了线
的右边是转变产物区,转变开
始线和终了线之间为过冷奥氏
体和转变产物共存区。
.
7
2.3.2 钢在冷却时的组织转变
转变开始线与纵坐标轴之间的 时间为孕育期。在C曲线拐弯的 “鼻尖处”(约550℃),孕育 期最短,过冷奥氏体最不稳定。 水平线MS为马氏体转变开始线 (约230℃),水平线Mf为马 氏体转变终了线(约-50℃)。 A′:残余奥氏体,即淬火冷却 到室温后残留的奥氏体。
.
2
2.3.1 钢在加热时的组织转变
1、奥氏体的形成
以共析钢为例,当加热到AC1以上时,发生珠光体向 奥氏体的转变(即奥氏体化)过程可分为三个阶段:
1)奥氏体晶核的形成和长大
2)剩余渗碳体的溶解
3)奥氏体均匀化 当加热到AC1线稍上时钢中的珠光体向奥氏体转变, 只有分别加热到AC3或ACCm温度以上,保温足够时间, 才能获得成分均匀的单相奥氏体。
2)采用快速加热和短时间保温 3)加入一定量合金元素(除锰、磷外)
.
4
2.3.2 钢在冷却时的组织转变
钢经加热奥氏体化后,可以采用不同方式冷却,获得 所需要的组织和性能。
成分相同的钢,奥氏体化后,采用不同方式冷却,将 获得不同的力学性能,见下表。
.
5
2.3.2 钢在冷却时的组织转变
实际生产中,必须过冷到A1温度以下才开始转变。 在相变温度A1以下还没有发生转变而处于不稳定状态的 奥氏体称过冷奥氏体。
状)高碳马氏体,性能硬而脆;3、当Wc在0.20%~l.0%时,
形成片状和板条状马氏体的混合组织。
强度、硬度随碳含量增加而增大,当碳含量超过0.6%,强
钢的加热冷却组织转变
(F和Fe3C),转变为另一种晶格形式的单相(A)的过程,在这样的相变过程中,必然伴随 着Fe、C原子的扩散和相应的晶格重构。研究证明,α-γ晶格重构过程实际上是固态下重结
晶的过程,因此,同样遵循结晶的基本规律,是一个形核、长大和均匀化的过程。
珠光体向奥氏体的转变可分为以下3个步骤,共析钢中奥氏体形成过程示意图如图6-3
亚共析钢室温下的平衡组织是铁素体和珠光体,因此亚共析钢的奥氏体转变由两个阶段 组成。① 是珠光体向奥氏体的转变(加热到略高Ac1 );② 是铁素体向奥氏体的转变(加热 到Ac1~Ac3之间)。珠光体向奥氏体的转变与共析钢相同。当珠光体向奥氏体转变结束时,在 铁素体晶界上开始形成新的奥氏体晶核,这些新的晶核依靠吸收由先形成的奥氏体中越过晶 界扩散过来的碳原子而不断向铁素体晶粒内部长大。当温度略高于Ac3时,铁素体全部转变成 奥氏体,之后碳原子的扩散还要维持一段时间才能使所有奥氏体的成分达到均匀一致。 2.2.2 过共析钢的奥氏体转变
指在规定加热条件下(把钢加热到930±10℃、保温3~8h)所测得的奥氏体晶粒度。本 质晶粒度的实质是表示钢加热时奥氏体晶粒长大的倾向。不同牌号的钢奥氏体晶粒长大的倾 向是不同的,在一定的温度下把随着温度的升高奥氏体晶粒迅速长大的钢称为本质粗晶粒钢, 而奥氏体的晶粒随温度的升高不易长大的钢称为本质细晶粒钢,钢的本质晶粒度示意图如图 6-8所示。一般需要进行热处理的零件大多采用的是本质细晶粒钢,因为本质细晶粒钢热处理 后易获得细小的实际晶粒度。
过冷或过热现象,在相图上实际的相变温度和平衡临界点就会产生偏移的现象,而且加热或
冷却速度越快,偏移量越大。为了便于区别,通常把实际加热时的各临界点用Ac1、Ac3、Accm 表示,冷却时的各临界点用Ar1、Ar3、Arcm表示。钢的各实际临界点的含义如下:
钢在热处理冷却时的组织转变
钢在热处理冷却时的组织转变相图只适用于缓慢冷却,而实际热处理则是以一定的冷却速度来进行的,所以出现C曲线。
一、A冷却C曲线转变温度与转变时间之间关系的曲线。
1. 等温冷却C曲线将钢急冷到临界温度以下某一温度,在此温度等温转变,在冷却过程中测绘出过冷A 等温转变图。
2.连续冷却C曲线将钢在连续冷却的条件下转变,此时测绘出的冷却二、等温冷却C曲线过冷A等温转变图可综合反映过冷A在不同过冷度下的等温转变过程,转变开始和终了时间,转变产物类型以及转变量与温度和时间的关系等,由于等温转变图通常呈“C”形状,所以也称C曲线,另外还称TTT 图,现以共析钢为例来说明TTT图的建立.1.相图的建立① 把钢材制成Φ10×1.5mm的圆片试样,分成若干组② 取一组试样,在盐炉内加热使之A化.③ 将A化后的试样快速投入 A1 以下某一温度的浴炉中进行等温转变④ 每隔一定时间取出一个试样急速淬入水中,而后将各试样取出制样,进行组织观察.当在显微镜下观察发现某一试样刚出现灰黑色产物时,所对应的等温时间就是A开始转变时间,到某一试样未有M出现时,所对应的时间为转变终了时间。
共析碳钢等温转变图(C曲线)将其余各组试样,用上述方法,分别测出不同等温条件下A转变开始和终了时间,最后将所有转变开始时间点和终了时间点标在温度、时间(对数)坐标上,并分别连接起来,即得C曲线.2. 图形分析3. 等T转变特点① 过冷到A1以下的A处于不稳定状态,但不立即转变,而要经过一段时间才开始转变,称为孕育期。
孕育期越长,过冷A越稳定,反之,则越不稳定。
② 鼻点:550℃ 最不稳定,转变速度最快③ C形状原因过冷度和原子扩散为两个制约因素在A1~ 550℃区间,随过冷度增大,原子扩散较快,转变速度较快。
550℃以下,随过冷度增大,原子扩散速度越来越慢,因而转变速度减慢。
4. 相变特点① 高温转变-- P转变(Ar1~ 550)A→F+Fe3C(片层相间平行排列的机械混合物)温度A相变层片间距HRCAr1~600℃A→P0.4mm20650℃~600℃A→S0.4~0.230600℃~550℃A→T0.240② 中温转变—贝氏体转变( 550℃~240℃ )A→ B (F+Fe3C),其中F具有一定过饱和度A→ B上(550℃~350℃ )羽毛状Fe3C以较粗大片状分布在较宽的F片之间,易发生脆断 ,HRC=45 。
了解钢在加热和冷却时的组织转变讲课讲稿
了解钢在加热和冷却时的组织转变
江苏省技工院校
教案首页
课题:了解钢在加热和冷却时的组织转变
教学目的要求: 1.了解热处理的定义、目的、分类及作用;
2.掌握钢加热和保温的目的;
3.掌握钢在冷却转变时的产物及转变曲线。
教学重点、难点:1. 钢加热及保温的目的;2. 奥氏体晶粒度的概念及影响因素;3. 共析钢过冷奥氏体等温冷却曲线中各种温度区域内奥氏体的转变产物及组织形貌,性能特点。
4. 过冷奥氏体连续冷却转变曲线的特点,冷却速度对钢的组织变化和最终性能的影响
授课方法:面授(课堂教学)
教学参考及教具(含电教设备):《金属材料及热处理》
授课执行情况及分析:
板书设计或授课提纲。
08讲 钢在加热、冷却时组织的转变
《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。
重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。
2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。
3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。
钢的热处理过程包括加热、保温和冷却三个阶段。
其主要工艺参数是加热温度、保温时间和冷却速度。
1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。
即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。
通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。
如图6-1所示。
图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。
1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。
1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
2钢在加热及冷却时的组织转变
? 1.加热温度和加热速度的影响
提高加热 T,将加速 A的形成。随着加热 速度的增加 ,奥氏体形成温度升高 (Ac1越高),形成所需的时间缩短。
2.化学成分的影响
随着钢中含碳量增加,铁素体和渗碳体相界 面总量增多,有利于奥氏体的形成。
3. 原始组织的影响
由于奥氏体的晶核是在铁素体和渗碳体的相界 面上形成 ,所以原始组织越细,相界面越多,形 成奥氏体晶核的“基地”越多,奥氏体转变就越快。
§4-2 钢在加热及冷却时的组织转变
一、钢在加热时的组织转变 二、钢在冷却时的组织转变
一、钢在加热时的组织转变
1.钢在加热和冷却时的相变温度
在加热时钢的转变温 度要高于平衡状态下的临 界点;在冷却时要低于平 衡状态下的临界点。
加热时的各临界点: Ac1、Ac3和Accm
冷却时的各临界点: Ar1、Ar3和Arcm
总结 过冷奥氏体转变产物(共析钢)
转变 类型
转变产 物
形成温度, 转变
℃
机制
显微组织特征
HRC
获得 工艺
珠
P
A1~ 650
扩 粗片状, F、Fe 3C相间分布
光
散
体
S
650 ~ 600
型 细片状, F、Fe 3C相间分布
<25 退火 25-35 正火
T
600 ~ 550
极细片状, F、Fe 3C相间分布
过冷奥氏体有等 温转变和连续冷却 转变两种冷却转变 方式(见右图)。
1.奥氏体的等温转变
奥氏体在A1线以上是稳定相,当冷却到A1线以下而又
尚未转变的奥氏体称为过冷奥氏体。这是一种不稳定的过 冷组织,只要经过一段时间的等温保持,它就可以等温转 变为稳定的新相。这种转变就称为奥氏体的等温转变。
第二节 钢在冷却时的组织转变(1)
第二节 钢在冷却时 的组织转变
交流与讨论
热处理时加热的目的是什么? 亚共析钢、共析钢和过共析钢 奥氏体化分别时加热到什么临界温 度?请画出图示。
热处理中冷却是热处理最关
键的操作,冷却方式不同,得到的 组织也不同,请阅读表5-1 45钢 经840℃加热后在不同条件冷却后 的力学性能。
第二节 钢在冷却时 的组织转变
课堂练习与作业
作业
习题一(2) 习题二(1 )(2) (3) 课堂练习 习题三
谢谢指导
组织名称 符号 温度范围
组织特征 硬度(HRC)
上贝氏体 B上 550℃~350℃ 羽毛状
40~45
下贝氏体 B下 350℃~Ms
黑色针叶状 45~55
小结
学习内容:
热处理的冷却方式 1、等温冷却 2、连续冷却 一、过冷奥氏体等温转变 1、珠光体转变 2、贝氏体转变
学习重点
过冷奥氏体等温冷却的组织和 性能过冷奥氏体典型连续的产物
2.过冷奥氏体等温转变 产物的组织和性能
(1)珠光体转变 在A1~550℃温度范围
组织名称 符号 温度范围
组织特征
硬度(HRC)
珠光体 P A1~650℃
粗片状
<25
索氏体 S 650℃~600℃
细片状
25~35
托氏体 T 600℃~550℃ 极细片状
35~40
(2)贝氏体转变 在550℃~Ms温度范围
热处理的冷却方式
Байду номын сангаас1、等温冷却 2、连续冷却
一、过冷奥氏体等温转变
1.过冷奥氏体等温转变图
共析钢过冷奥氏体等温转变图
1.过冷奥氏体等温转变图
共析钢过冷奥氏体等温转变图:
钢在冷却时的转变
1/1钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。
冷却方式不同转变的组织也不同,性能差异较大。
奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。
钢的冷却方式分为等温冷却和连续冷却。
等温冷却的组织转变形式1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变的奥氏体)经过一段时间的等温保持后转变为稳定的新相。
这种转变过程就称为奥氏体的等温转变。
2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转变。
等温冷却的组织转变产物与性能1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高1)A1~650℃获粗片状珠光体金相组织2)650~600℃获细片状索氏体金相组织3)600~550℃获极其细片状的托氏体金相组织2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之分。
)1)550~350℃获羽毛状上贝氏体金相组织2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高)3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。
连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。
连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形;一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。
机械制造基础-2.2热处理等温冷却过程组织转变
第二章钢的热处理及表面工程技术2.1 钢的热处理2.2 表面工程技术第二章 钢的热处理及表面工程技术第一节 钢的热处理 热处理概述钢在加热和冷却时的组织转变(热处理原理)钢的退火和正火、淬火和回火(常用热处理工艺)钢的表面热处理和化学热处理其他热处理技术及热处理常见缺陷有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)第一节钢的热处理热处理冷却方式钢在等温冷却时的组织转变(C曲线、转变产物)冷却方式热处理冷却方式1. 等温冷却(等温退火、等温淬火)2. 连续冷却(生产中常用)图2-5 热处理冷却方式钢在等温冷却时的组织转变切削运动过冷奥氏体等温冷却转变图又称TTT图或C曲线过冷奥氏体C曲线的建立,如右图所示。
C曲线的建立切削运动过冷奥氏体等温冷却转变图钢在等温冷却时的组织转变过冷奥氏体等温转变产物010203 贝氏体型组织珠光体型组织马氏体型组织图2-6 共析钢C曲线有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育珠光体型(高温转变产物)转变温度:Ar1~550℃转变组织:铁素体和渗碳体的片层状机械混合物,F+Fe3C转变类型:扩散型转变,Fe、C原子扩散转变产物特点:转变温度越低,过冷度越大,珠光体的片层间距越小,强、硬度随之提高,塑性韧性改善。
珠光体型组织珠光体(P):粗片层珠光体,光学显微镜下可分辨片层。
索氏体(S):细片层珠光体,高倍光学显微镜下可分辨片层。
托氏体(T):极细片层珠光体,电子显微镜下可分辨片层。
珠光体(3800X)索氏体(8000X)托氏体(8000X)贝氏体型(中温转变产物)转变温度:550~230℃(M s)转变组织:铁素体和碳化物的混合组织转变类型:半扩散型转变,Fe原子不扩散而C原子扩散转变产物:根据转变温度高低,分为上贝氏体和下贝氏体贝氏体型组织(B)上贝氏体(B上):羽毛状。
强度低,塑性韧性差,生产上很少使用。
下贝氏体(B下):针片状,具有良好的综合力学性能。
钢在加热与冷却时的组织转变
图3-1 热处理工艺曲线示意图钢在加热与冷却时的组织转变热处理是指采用适当方式对金属材料或工件进行加热、保温和冷却,获得所需组织结构与性能的一种工艺方法。
热处理是强化金属材料、提高产品质量和寿命主要途径之一,在机械制造中绝大多数的零件都要进行热处理。
如机床工业中60%~70%的零件要进行热处理,汽车、拖拉机工业中70%~80%的零件要经过热处理,各种量具、刃具。
模具和滚动轴承几乎100%要进行热处理。
因此热处理在机械制造工业中占有十分重要的地位。
热处理按照加热和冷却方式的不同,可分为以下三类:(1)整体热处理:指对工件整体进行穿透加热的热处理,常用的方法有退火、正火、淬火和回火。
(2)表面热处理:指对工件表层进行热处理,以改变表层组织和性能的热处理,常用的方法有火焰淬火、感应淬火。
(3)化学热处理:指改变工件表层的化学成分、组织和性能的热处理,常用的方法有滲碳、滲氮、碳氮共滲、滲金属等。
热处理的种类和方法很多,但其基本过程都由加热、保温和冷却三个阶段组成,通常用“温度—时间”为坐标的热处理工艺曲线来表示(如图3-1所示)。
改变加热温度、保温时间和冷却速度等参数,都会在一定程度上发生相应的组织转变,进而影响材料的性能。
所以,要了解各种热处理工艺方法,必须首先研究钢在加热(包括保温)和冷却过程中组织变化的规律。
由Fe —Fe3C 相图可知,A1、A3、Acm 线是碳钢在极其缓慢加热和冷却时的相变温度线。
因而这些线上的点都是平衡条件下的相变点。
但在实际生产中,加热或冷却速度都比较快,实际发生组织转变的温度与A1、A3、Acm 都有不同程度的过热度或过冷度(如图3-2)。
通常将加热时的各相变点用Ac1、Ac3、Accm 表示,冷却时的各相变点用Ar1、Ar3、Arcm 表示。
钢的相变点是制定热处理工艺参数的重要依据,可通过查热处理手册或有关手册得到。
图3-2 钢的相变点在Fe-Fe 3C相图上的位置一、钢在加热时的组织转变将钢加热到Ac3或Ac1温度以上,以获得全部或部分奥氏体组织为目的的操作,称为奥氏体化。
钢在热处理冷却时的组织转变
钢在热处理冷却时的组织转变相图只适用于缓慢冷却,而实际热处理则是以一定的冷却速度来进行的,所以出现C曲线。
一、A冷却C曲线转变温度与转变时间之间关系的曲线。
1. 等温冷却C曲线将钢急冷到临界温度以下某一温度,在此温度等温转变,在冷却过程中测绘出过冷A 等温转变图。
2.连续冷却C曲线将钢在连续冷却的条件下转变,此时测绘出的冷却二、等温冷却C曲线过冷A等温转变图可综合反映过冷A在不同过冷度下的等温转变过程,转变开始和终了时间,转变产物类型以及转变量与温度和时间的关系等,由于等温转变图通常呈“C”形状,所以也称C曲线,另外还称TT T图,现以共析钢为例来说明TTT图的建立.1.相图的建立①把钢材制成Φ10×1.5mm的圆片试样,分成若干组②取一组试样,在盐炉内加热使之A化.③将A化后的试样快速投入 A1 以下某一温度的浴炉中进行等温转变④每隔一定时间取出一个试样急速淬入水中,而后将各试样取出制样,进行组织观察.当在显微镜下观察发现某一试样刚出现灰黑色产物时,所对应的等温时间就是A开始转变时间,到某一试样未有M出现时,所对应的时间为转变终了时间。
共析碳钢等温转变图(C曲线)将其余各组试样,用上述方法,分别测出不同等温条件下A转变开始和终了时间,最后将所有转变开始时间点和终了时间点标在温度、时间(对数)坐标上,并分别连接起来,即得C曲线.2. 图形分析3. 等T转变特点①过冷到A1以下的A处于不稳定状态,但不立即转变,而要经过一段时间才开始转变,称为孕育期。
孕育期越长,过冷A越稳定,反之,则越不稳定。
②鼻点:550℃最不稳定,转变速度最快③ C形状原因过冷度和原子扩散为两个制约因素在A1~ 550℃区间,随过冷度增大,原子扩散较快,转变速度较快。
550℃以下,随过冷度增大,原子扩散速度越来越慢,因而转变速度减慢。
4. 相变特点①高温转变-- P转变(Ar1~ 550)A→F+Fe3C(片层相间平行排列的机械混合物)温度A相变层片间距HRCAr1~600℃A→P0.4mm20650℃~600℃A→S0.4~0.230600℃~550℃A→T0.240②中温转变—贝氏体转变( 550℃~240℃ )A→ B (F+Fe3C),其中F具有一定过饱和度A→ B上(550℃~350℃)羽毛状Fe3C以较粗大片状分布在较宽的F片之间,易发生脆断 ,HRC=45 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章钢的热处理及表面工程技术
2.1 钢的热处理
2.2 表面工程技术
第二章钢的热处理及表面工程技术
第一节钢的热处理
热处理概述
钢在加热和冷却时的组织转变(热处理原理)
钢的退火和正火、淬火和回火(常用热处理工艺)钢的表面热处理和化学热处理
其他热处理技术及热处理常见缺陷
第一节钢的热处理
过冷奥氏体连续冷却转变图C曲线在连续冷却中的应用
连续冷却
将奥氏体化的钢以一定的速度冷至室温,使奥氏体在温度连续下降的
过程中发生组织转变,这种冷却方
式称为连续冷却。
实际生产中多采用此种冷却方式,
如水冷、油冷、空冷、炉冷等。
过冷奥氏体连续冷却转变图
又称CCT图
位于C曲线右下方
存在转变中止线
(过)共析钢连续冷却过程中没有贝氏体
转变
马氏体临界冷却速度νk(全部发生马氏体
转变的最小冷却速度)
共析钢CCT图
共析钢过冷奥氏体连续冷却转变产物 01 马氏体和珠光体型混合组织(ν ?) 马氏体+残余奥氏体(ν ?)
珠光体型组织(ν ?)
02 03
切削运动
C曲线在连续冷却中的应用
水冷油冷空冷
炉冷
根据冷却曲线与C曲线相交的位置,
ν1表示在缓慢冷却时,相当于退火随炉冷却,
可获得珠光体组织
ν2表示在较缓慢冷却时,相当于正火在空气中
冷却,可获得索氏体组织
ν3表示在较快速冷却时,相当于在油中淬火,
可获得托氏体+马氏体+残余奥氏体的混合组织
ν4表示在快速冷却时,相当于在水中淬火,它
不与C曲线相交,因此可获得马氏体+少量残余
奥氏体
C曲线在连续冷却中的应用
钢在连续冷却时的组织转变
思考题?
1.奥氏体连续冷却能否得到100%的马氏体?
2.奥氏体、过冷奥氏体、残余奥氏体的区别?
本讲小结
1.过冷奥氏体连续冷却转变曲线(C C T图)
2.C曲线在连续冷却中的应用
下讲预告
1.常用热处理工艺
2.退火工艺及应用
3.正火工艺及应用。