第一节立体几何之空间几何体概念篇(含答案)

合集下载

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及参考答案考点梳理一、第一章《空间几何体》的知识结构本讲知识内容:柱、锥、台、球的结构特征;空间几何体三视图和直观图,能识别三视图所表示的空间几何体。

二、知识梳理1.空间几何体的结构特征(1)棱柱的结构特征(2)棱锥的结构特征定义:有一个面是多边形,其余各面都是有一个公共顶点....的三角形,由这些面所围成的几何体叫做棱锥。

(3)圆柱的结构特征定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱.(4)圆锥的结构特征定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫圆锥.(5)棱台的结构特征概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分(6)圆台的结构特征定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球的结构特征定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球.2.空间几何体的投影和三视图⎧⎪⎨⎪⎩正视图:光线从几何体的前面向后面正投影.三视图左视图:光线从几何体的左面向右面正投影.俯视图:光线从几何体的上面向下面正投影,规律:(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;(2)俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;(3)左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.金题精讲题一题面:下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④题二题面:如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )A.棱锥B.棱柱C.圆锥D.圆柱 题三题面:某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台 题四题面:用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.5 题五题面:将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )ABCD O EA 1B 1C 1D 1题六题面:下列有关棱柱的说法:①棱柱的所有的面都是平的;②棱柱的所有的棱长都相等;③棱柱的所有的侧面都是长方形或正方形;④棱柱的侧面的个数与底面的边数相等;⑤棱柱的上、下底面形状、大小相等. 正确的有__________. 题七题面:如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图的 (要求:把可能的图的序号都.填上).题八题面:如图所示,O 是正方体ABCD -A 1B 1C 1D 1对角线A 1C 与AC 1的交点,E 为棱BB 1的中点,则空间四边形OEC 1D 1在正方体各面上的正投影不可能...是( ) EF DIA H GBCEF DAB C侧视 图1 图2BEA .BEB .BEC .BED .题九题面:如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为______.课后练习注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测. 题一题面:一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 个面;②如果它是棱柱,那么它有 条棱 个面。

高中数学下册 第一章_ 空间几何体知识点及练习题(含答案)

高中数学下册   第一章_    空间几何体知识点及练习题(含答案)

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 3直观图:斜二测画法 4斜二测画法的步骤:(1).取XOY=45。

,XOZ=90。

(2).平行于坐标轴的线依然平行于坐标轴;(3).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (4).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π= (二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=综合型训练一、选择题1. 如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+B .221+ C . 222+ D . 21+ 2. 半径为R 的半圆卷成一个圆锥,则它的体积为()A .3R B . 3R C . 3R D . 3R 3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A. 28cm π B. 212cmπC. 216cmπD. 220cmπ4. 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 35. 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A . 1:7 B. 2:7 C. 7:19 D. 5:16 6. 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92 B. 5 C. 6 D. 152二、填空题1. 圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________.2. R t A B C ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为___.3. 等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成; 图(2)中的三视图表示的实物为_____________.6. 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. 三、解答题1. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ? 02. 已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和, 求该圆台的母线长.参考答案1. A恢复后的原图形为一直角梯形1(11)222S =+⨯=+一个水平放置的平面图形的斜二测直观图是一底角为 45度,腰与上底边长均为1的等腰梯形,则这个平面图形的面积是 答:()()222112212122,1,12,121222,22ADsin45AE ,ADE t 111111111111101111+=⨯++=+=∴====+==⊥+=+⨯=∴==∆D A D C B A S AD D A CD D C AB B A AB AD AB R D C B A 得平面图形为直角梯形根据斜二测画法的法则中在045DABCE1D 1C 1B 1A2. A2312,,,22324R r R r h V r h R πππ===== 3. B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ===4. A (3)84,7S r r l r ππ=+==侧面积 5. C 中截面的面积为4个单位,12124746919V V ++==++ 6. D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯=1. 6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面 2. 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥, 2211431633V r h πππ==⨯⨯= 3. <设334,3V R a a R π====2264S a S R π=====<正球4.从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5. (1)4 (2)圆锥 6.设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =, 而22S r r r a ππ=+⋅=圆锥表,即23,r a r π===1. 解:'1(),3V S S h h ==319000075360024001600h ⨯==++ 2.解:2229(25)(25),7l l ππ+=+=。

(完整版)空间几何体练习题含答案

(完整版)空间几何体练习题含答案

第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。

15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。

4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。

人教版必修二第一章-空间几何体(答案解析)

人教版必修二第一章-空间几何体(答案解析)

人教版必修二第一章-空间几何体-A一、选择题(共10小题)1. (2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选 C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.2.(2013•上海)若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2B.1:4C.1:8D.1:16【分析】设两个球的半径分别为r1、r2,根据球的表面积公式算出它们的表面积之比为=,解之得=,由此结合球的体积公式即可算出这两个球的体积之比.【解答】解:设两个球的半径分别为r1、r2,根据球的表面积公式,可得它们的表面积分别为S1=4,S2=4∵两个球的表面积之比为1:4,∴===,解之得=(舍负)因此,这两个球的体积之比为==()3=即两个球的体积之比为1:8故选:C【点评】本题给出两个球的表面积之比,求它们的体积之比.着重考查了球的表面积公式和体积公式等知识,属于基础题.3.(2013•新课标Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A. B. C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.4. (2015•浙江)如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为()A. B. C. D.【考点】简单空间图形的三视图.【专题】计算题;数形结合;空间位置关系与距离.【分析】直接利用三视图判断俯视图即可.【解答】解:简单组合体由一个圆锥和一个圆柱组成,左侧是圆锥,右侧是圆柱,俯视图为:三角形与矩形组成,故选:D.【点评】本题考查空间几何体的三视图的判断,是基础题.5.(2015•徐汇区模拟)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A.20πB.25πC.50πD.200π【分析】设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.【解答】解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C【点评】本题考查球的表面积,球的内接体,考查计算能力,是基础题.6.(2013•甘肃模拟)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选 C.【点评】本题考查学生空间想象能力,四棱柱的体积,球的表面积,容易疏忽的地方是几何体的体对角线是外接球的直径,导致出错.7.(2013•广东)某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.C.D.6【分析】由题意直接利用三视图的数据求解棱台的体积即可.【解答】解:几何体是四棱台,下底面是边长为2的正方形,上底面是边长为1的正方形,棱台的高为2,并且棱台的两个侧面与底面垂直,四楼台的体积为V==.故选 B.【点评】本题考查三视图与几何体的关系,棱台体积公式的应用,考查计算能力与空间想象能力.8. (2016•松江区二模)如图,圆锥形容器的高为h,圆锥内水面的高为h1,且h,若将圆锥倒置,水面高为h2,则h2等于()A.hB.C.hD.h【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;等体积法;立体几何.【分析】根据水的体积不变列出方程解出h2.【解答】解:设圆锥形容器的底面积为S,则未倒置前液面的面积为.∴水的体积V=﹣=.设倒置后液面面积为S′,则,∴S′=.∴水的体积V==.∴,解得h2=.故选:D.【点评】本题考查了圆锥的结构特征,圆锥的体积计算,属于中档题.9.(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选: D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.二、填空题(共6小题)10. (2016•天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为2m3【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积S=2×1=2m2,棱锥的高h=3m,故体积V==2m3,故答案为:2【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.11.(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD 的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.12.(2013•新课标Ⅰ)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d=R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2=∴球的表面积S=4πR2=.故答案为:.【点评】若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d213.(2009•全国卷Ⅰ)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于16π.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S球=4πR2=16π.故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.14.(2013•湖北)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是3寸. (注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【分析】由题意得到盆中水面的半径,利用圆台的体积公式求出水的体积,用水的体积除以盆的上地面面积即可得到答案.【解答】解:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为寸.则盆中水的体积为(立方寸).所以则平地降雨量等于(寸).故答案为3.【点评】本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是基础题.15.(2014秋•扶余县校级期末)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题(共14小题)16. (2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.17. (2016春•重庆校级月考)画出图中两个几何体的三视图.【分析】利用三视图的画法,直接画出几何体的三视图.【解答】解:(1)如图(2)如图【点评】本题考查三视图的画法,考查作图能力,是基础题.18. (2015秋•安阳校级期末)已知一个空间组合体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,请说出该组合体由哪些几何体组成,并且求出该组合体的表面积和体积.【考点】由三视图求面积、体积.【专题】数形结合;数形结合法;立体几何.【分析】根据几何体的三视图,得出该几何体是上部为半球体,下部为圆柱体的组合体;结合图中数据求出它的表面积与体积.【解答】解:根据几何体的三视图,得;该几何体是上部为半球体,下部为圆柱体的组合体;…(2分)且半球体与圆柱体的直径都是2,圆柱体的高是1,;所以,该几何体的表面积是:S=2π×12+2π×1×1+π×12=5π;…(6分)体积是:V=×π×13+π×12×1=.…(10分)【点评】本题考查了利用空间几何体的三视图求体积与表面积的应用问题,是基础题目.19. (2016春•定州市校级月考)直角梯形的一个内角为45°,下底长为上底长的,这个梯形绕下底所在直线旋转一周所成的旋转体的全面积是(5+)π,求这个旋转体的体积.【分析】画出旋转前的图形,判断构成组合几何体的简单几何体的特征,求出相应的几何量,即可求解整体的体积. 【解答】解:如图,梯形ABCD,AB∥CD,∠A=90°,∠B=45°,绕AB边旋转一周后形成一圆柱和一圆锥的组合体.设CD=x,AB=AD=AB﹣CD=,BC=,S全面积=S圆柱底+S圆柱侧+S圆锥侧=πAD2+2πAD•CD+π•AD•BC==根据题设,∴x=2,∴旋转体体积==【点评】本题考查组合体的结构特征,几何体的体积的求法,考查空间想象能力以及计算能力.20. (2013秋•七里河区校级期末)如图是一个圆台形的纸篓(有底无盖),它的母线长为50cm,两底面直径分别为40cm 和30cm;现有制作这种纸篓的塑料制品50m2,问最多可以做这种纸篓多少个?.【分析】利用圆台的侧面积公式与圆面积公式,算出制作一个纸篓所用的塑料制品的面积,再用50m2除以这个面积,即可得到最多可以做这种纸篓的个数.【解答】解:设圆台两底半径分别为r、r',母线为l,可得它侧面积S侧=π(r+r')l=π(15+20)×50=1750πcm2,∵纸篓底的面积S底=πr2=225πcm2,∴纸篓的全面积为S=1750π+225π=1975πcm2═0.1975π(m2)因此,用制作这种纸篓的塑料制品50m2,最多可以做这种纸篓80(个)﹣﹣﹣﹣﹣﹣﹣(7分)答:用制作这种纸篓的塑料制品50m2,最多可以做这种纸篓约80个.【点评】本题给出实际应用问题,求制作纸篓的最多数目.着重考查了圆台的侧面积公式与圆面积,旋转体表面积公式的实际应用的知识,属于基础题.第11页(共11页)。

【三维设计】人教版高中数学必修2练习:第一章 空间几何体(含答案解析)

【三维设计】人教版高中数学必修2练习:第一章 空间几何体(含答案解析)

1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[导入新知]1.空间几何体1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分. 2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a 所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b 所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c 所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d 所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.[解析]①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.[答案]①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如右图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如右图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如右图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如右图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征旋转体 [导入新知]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪种平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)题图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)题图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)题图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如题图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图①~图③的3个几何体分别是由哪些简单几何体组成的.解:图①几何体由一个圆锥、一个圆柱和一个圆台拼接而成;图②几何体由一个六棱柱和一个圆柱拼接而成;图③几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如右图所示,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图①所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图②所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图③所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图④所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和图②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如右图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是_____________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①、图②、图③所示的图形分别是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体;图②是由一个圆锥和一个四棱柱拼接而成的简单组合体;图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如右图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如右图所示,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三 视 图 [导入新知]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线; ③两条相交直线的平行投影是两条相交直线. 其中正确的个数为( ) A .0 B .1 C .2 D .3[答案] B [类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质: ①直线或线段的投影仍是直线或线段; ②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如右图所示,在正方体ABCD -A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.答案:①③画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()答案:B由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台答案:C2.画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案] A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()答案:D一、选择题1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()答案:A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()答案:D3.若某几何体的三视图如下图所示,则这个几何体的直观图可以是()答案:B4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案:C5.将正方体(如图①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的侧视图为()答案:B二、填空题6.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.答案: 27.如图甲所示,在正方体ABCD -A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.答案:(1)(2)(3)8.两条平行线在一个平面内的正投影可能是________.①两条平行线;②两个点;③两条相交直线;④一条直线和直线外的一点;⑤一条直线.答案:①②⑤三、解答题9.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.10.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.1.2.3空间几何体的直观图斜二测画法[导入新知]1.用斜二测画法画平面图形的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.2.用斜二测画法画空间几何体的直观图的步骤(1)画底面,这时使用平面图形的斜二测画法即可.(2)画z′轴,z′轴过点O′,且与x′轴的夹角为90°,并画出高线(与原图高线相等,画正棱柱时只需要画侧棱即可),连线成图.(3)擦去辅助线,被遮线用虚线表示.[化解疑难]1.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.2.用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).水平放置的平面图形的直观图[例1]按右图所示的建系方法,画水平放置的正五边形ABCDE的直观图.[解]画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.。

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

立体几何1(有详细答案)

立体几何1(有详细答案)

立体几何复习1.用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图则这个几何体的体积最大是 7 cm 3.图1(俯视图) 图2(主视图)2.一个多面体的直观图及三视图如图所示,则多面体A CDEF -的体积为 ▲ .383.如下左图所示是三棱锥D-ABC 的三视图,其中△DAC 、△DAB 、△BAC 都是直角三角形,点O 在三个视图中都是所在边的中点,则在三棱锥D-ABC 中DO 的长度为 ★ ; 34.右图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体共有▲ 个.5 5.如果一个几何体的三视图如图所示(单位长度: cm),2。

DABO 侧(左)视图主视图俯视图左视图俯视图左视图6.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为π61257.一个几何体的三视图中,正视图和侧视图都是矩形,俯视图是等腰直角三角形(如图),根据图中标注的长度,可以计算出该几何体的表面积是 12+48.已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.⑴求证:11B D AE ⊥;⑵求证://AC 平面1B DE ;⑶求三棱锥1B ADE -的体积证明:连结BD ,则BD //11B D , ∵ABCD 是正方形,∴AC BD ⊥.∵CE ⊥面ABCD ,∴CE BD ⊥. 又C = AC CE ,∴BD ⊥面ACE .∵AE ⊂面ACE ,∴BD AE ⊥, ∴11B D AE ⊥.⑵证明:作1BB 的中点F ,连结AF CF EF 、、. ∵E F 、是1BB 1CC、的中点,∴CE1B F ,∴四边形1B FCE 是平行四边形,∴ 1CF// B E . ∵,E F 是1BB 1CC 、的中点,∴//EF BC ,又//BC AD ,∴//EF AD .∴四边形ADEF 是平行四边形,AF ∴//ED , ∵AF CF C = ,1B E ED E = , ∴平面//ACF 面1B DE . 又AC ⊂平面ACF ,∴//AC 面1B DE9.如图,在三棱柱111ABC A B C -中,四边形11A ABB 为菱形,160AAB ∠=︒,四边形11BCC B 为矩形,若AB BC ⊥且4AB =,3BC =⑴求证:平面1ACB ⊥平面1ACB ; ⑵求三棱柱111ABC A B C -的体积.⑴略;⑵111ABC A B C V -=10.一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点). (I )求证:MN ∥平面CDEF ;C 1B 1(II )求多面体A —CDEF 的体积.解:由三视图可知,该多面体是底面为直 角三角形的直三棱住ADE —BCF , 且AB=BC=BF=2,DE=CF=2.2∴∠CBF=.2π(1) 取BF 中点G ,连MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF.∴MN ∥平面CDEF. (2)取DE 的中点H.∵AD=AE ,∴AH ⊥DE ,在直三棱柱ADE —BCF 中,平面ADE ⊥平面CDEF ,面ADE ∩面CDEF=DE.∴AH ⊥平面CDEF.∴多面体A —CDEF 是以AH 为高,以矩形CDEF 为底面的棱锥, 在△ADE 中,AH=24,2=⋅=EF DE S CD EF 矩形, ∴棱锥A—CDEF的体积为.382243131=⨯⨯=⋅⋅=AH S V CDEF 矩形 11. 多面体ABCDE 中,1====AE AC BC AB ,2=CD ,ABC AE 面⊥,CD AE //。

新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书

新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书

第一节 空间几何体考试要求:1.认识柱、锥、台及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形(长方体、球、圆锥、棱柱及其简易组合)的直观图.3.知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.一、教材概念·结论·性质重现1.多面体的结构特征互相平行且全等多边形互相平行平行且相等相交于一点但不一定相等延长线交于一点平行四边形三角形梯形相互平行且相等并垂直于底相交于一点延长线交于一圆空间几何体的直观图常用斜二测画法来画,其规则是:(1)“斜”:在直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线,在直观图中长度为原来的一半.画直观图要注意平行,还要注意长度及角度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl S圆锥侧=πrl圆台侧=π(r1+.空间几何体的表面积与体积公式名称表面积体积几何体柱体(棱柱和圆柱)S表面积=S侧+2S底V=S 底·h锥体(棱锥和圆锥)S表面积=S侧+S底V=S底·h台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解6.常用结论几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R.①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.解决与球“外接”问题的关键:二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 2.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱 D.简单组合体C 解析:由几何体的结构特征知,剩下的几何体为五棱柱.3.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cmB 解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,所以r2=4,所以r=2 cm.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.C.8π D.4πA 解析:由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π.故选A.5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为__________,面积为________cm2.矩形 8 解析:由斜二测画法的规则可知,在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.考点1 空间几何体的结构特征与直观图——基础性1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球体的组合体C 解析:截面是任意的,且都是圆面,则该几何体为球体.2.下列命题正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台C 解析:由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.3.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C ′D′=2 cm,则原图形是( )A.正方形 B.矩形C.菱形 D.一般的平行四边形C 解析:如图,在原图形OABC中,应有OD=2O′D′=2×2=4(cm),CD=C′D′=2 cm.所以OC===6(cm),所以OA=OC,所以四边形OABC是菱形.4.(多选题)下列命题中正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC 解析:A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1 ABC,四个面都是直角三角形;D不正确棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.1.解决空间几何体的结构特征的判断问题主要方法是定义法,即紧考点2 空间几何体的表面积与体积——综合性考向1 空间几何体的表面积问题(1)(2021·新高考全国Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 C.4 D.4B 解析:由题意知圆锥的底面周长为2π.设圆锥的母线长为l,则πl=2π,即l=2.故选B.(2)如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为()A .4+4B .4+4C .12D .8+4A 解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =2,所以BC =.又AB ⊥BC ,则AB =,则该三棱柱的侧面积为2×2+2×2=4+4.(3)在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S = cm 2.2 600π 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =×(50+80)×(π×40)=2 600π(cm 2).求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积1.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.12 解析:设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,所以h=1,所以斜高h′==2,所以S侧=6××2×2=12.2.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知一个堑堵的底面积为6,体积为的球与其各面均相切,则该堑堵的表面积为________.36 解析:设球的半径为r,底面三角形的周长为l,由已知得r=1,所以堑堵的高为2.则lr=6,l=12,所以表面积S=12×2+6×2=36.考向2 空间几何体的体积问题(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )A. B.C. D.A 解析:易知三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,又三棱锥AB1BC1的高为,底面积为,故其体积为××=.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π 解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′===3.据此可得圆台的体积V=π×3×(52+5×4+42)=61π.求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.通过选择合适的底面来求几何体体积,主要用来解决有关锥体的体积,特别是三棱锥的体积1.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.39π 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =×π×62×h =30π,解得h =.所以l ===,故圆锥的侧面积S =πrl =π×6×=39π.2.如图,已知体积为V 的三棱柱ABCA 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥PAA 1C 1C 的体积_________. 解析:如图,把三棱柱ABCA 1B 1C 1补成平行六面体A 1D 1B 1C 1ADBC .设点P 到平面AA 1C 1C 的距离为h ,则V =S ·h =V =·2V=.考点3 与球有关的切、接问题——综合性考向1 “相切”问题已知正四面体PABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则=________. 解析:设正四面体的棱长为a,则正四面体的表面积为S1=4××a2=a2,其内切球半径r为正四面体高的,即r=×a=a,因此内切球表面积为S2=4πr2=,则==.考向2 “相接”问题已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B. 2C. D.3C 解析:如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.1.已知三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,则三棱锥PABC的外接球的体积为( )A.π B.π C.27π D.27πB 解析:因为三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,所以△PAB≌△PBC≌△PAC.因为PA⊥PB,所以PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.因为正方体的体对角线长为=3,所以其外接球半径R=.因此三棱锥PABC的外接球的体积V=×=π.2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.π 解析:方法一:如图,在圆锥的轴截面ABC中,CD⊥AB,BD=1,BC=3,圆O内切于△ABC,E为切点,连接OE,则OE⊥BC.在Rt△BCD中,CD==2.易知BE =BD=1,则CE=2.设圆锥的内切球半径为R,则OC=2-R,在Rt△COE中,OC2-OE2=CE2,即(2-R)2-R2=4,所以R=,圆锥内半径最大的球的体积为πR3=π.方法二:如图,记圆锥的轴截面为△ABC,其中AC=BC=3,AB=2,CD⊥AB,在Rt△BCD中,CD==2,则S△ABC=2.设△ABC的内切圆O的半径为R,则R==,所以圆锥内半径最大的球的体积为πR3=π.。

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

新课标人教版高考数学立体几何1空间几何体知识点及题型精选总结(有答案)37

新课标人教版高考数学立体几何1空间几何体知识点及题型精选总结(有答案)37

立体几何初步本章知识结构与体系立体几何体知识点:(1)空间几何体(2)点、直线、面的位置关系(3)空间直角坐标系(1)空间几何体的知识点:(2)点、直线、面的位置关系:(3)空间直角坐标系:一、空间几何体知识点梳理:一、常见空间几何体定义:1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,(1) 侧棱垂直于底面的棱柱称为直棱柱,直棱柱的侧棱即为棱柱的高.(2) 底面为正多边形的直棱柱称为正棱柱,两底面中心的连线即为棱柱的高.2 .棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高.(2) 底边长和侧棱长都相等的三棱锥叫做正四面体.(3) 依次连结不共面的四点构成的四边形叫做空间四边形.3 .棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.4 .圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.5 .圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥.6 .圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.7 .球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球.二、空间几何体的三视图和直观图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.注:1、球的三视图都是圆,长方体的三视图都是矩形.2、圆柱的正视图、侧视图都是全等矩形,俯视图是圆.3、圆锥的正视图、侧视图都是全等的等腰三角形,俯视图是圆及圆心.4、圆台的正视图、侧视图都是全等的等腰体性,俯视图是两个同心圆。

人教版高中数学第一章空间几何体练习题及答案(全)

人教版高中数学第一章空间几何体练习题及答案(全)

第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。

图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。

高中数学必修2第一章空间几何讲义与习题与答案

高中数学必修2第一章空间几何讲义与习题与答案

数学必修2第一章讲义与习题一、学习目标:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。

二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。

难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。

三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。

在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。

这部分知识主要考查学生的空间想象能力与计算求解能力。

1. 多面体棱柱、棱锥、棱台2. 旋转体圆柱、圆锥、圆台、球3. 三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4. 直观图水平放置的平面图形的直观图的斜二测画法4. 多面体的面积和体积公式名称侧面积(S 侧)全面积(S 全)体积(V )棱柱棱柱直截面周长×l S底·h=S 直截面·hS 侧+2S底直棱柱ch S 底·h棱锥棱锥各侧面面积之和12ch′正棱锥S 侧+S底13S 底·h棱台棱台各侧面面积之和12正棱台(c+c ′)h ′S 侧+S 上底+S1下底 3h(S上底+S下底+S上底S )下底表中S 表示面积,c′、c 分别表示上、下底面的周长,h 表示高度,h′表示斜高,l 表示13.旋转体的面积和体积公式名称圆柱圆锥圆台球S 侧2πrl πrl π(1r+r 2)lS 2 全2πr(l+r) πr(l+r) π(1r+r2)l+ π(1r+r 2 2 2) 4πR2 2V πr h(即πr l )132hπr132 2πh(r1+r1r2+r 2)433πR表中l、h 分别表示母线长、高,r 表示圆柱、圆锥与球冠的底面半径,r1、r2 分别表示圆台上、下底面的半径,R 表示半径。

高中数学必修2--第一章《空间几何体》知识点总结与练习

高中数学必修2--第一章《空间几何体》知识点总结与练习

高中数学必修2__第一章《空间几何体》知识点总结与练习第一节空间几何体的结构特征及三视图和直观图[知识能否忆起]一、多面体的结构特征多面体棱柱棱锥棱台结构特征有两个面互相平行,其余各面都是四边形,并且每相邻两个面的交线都平行且相等有一个面是多边形,而其余各面都是有一个公共顶点的三角形棱锥被平行于底面的平面所截,截面和底面之间的部分二、旋转体的形成几何体圆柱圆锥圆台球旋转图形矩形直角三角形直角梯形半圆旋转轴任一边所在的直线一条直角边所在的直线垂直于底边的腰所在的直线直径所在的直线三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于 x 轴的线段平行性不变,长度不变;平行于 y 轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图= 2 4S 原图形,S 原图形=2 2S 直观图.空间几何体的结构特征典题导入[例 1] (2012· 哈师大附中月考)下列结论正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答] A 错误,如图 1 是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图△2,若ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案]D由题悟法解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2](2012·湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案]C由题悟法三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1)(2012·莆田模拟)如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.= ,所以 OC ′=sin 120° a = 6a ,(2)(2012· 济南模拟)如图,正三棱柱 ABC -A 1B 1C 1 的各棱长均为 2,其正视图如图所示,则此三棱柱侧视图的面积为()A .2 2C. 3B .4D .2 3解析:选 D 依题意,得此三棱柱的左视图是边长分别为 2, 3的矩形,故其面积是2 3.几何体的直观图典题导入[例 3] 已知△ABC 的直观图 A ′B ′C ′是边长为 a 的正三角形,求原△ABC 的面积.[自主解答]建立如图所示的坐标系 xOy ′, △A ′B ′C ′的顶点 C ′在 y ′轴上,A ′B ′边在 x 轴上,OC 为△ABC 的高.把 y ′轴绕原点逆时针旋转 45°得 y 轴,则点 C ′变为点 C ,且 OC =2OC ′,A ,B 点即为 A ′,B ′点,长度不变.已知 A ′B ′=A ′C ′=△a ,在 OA ′C ′中,由正弦定理得OC ′ A ′C ′sin ∠OA ′C ′ sin 45°sin 45° 2所以原三角形 ABC 的高 OC = 6a.2 2 2S = (1+ 2+1)×2=2+ 2.V = Sh = πr 2h = πr 2 l 2-r 2所以 △S ABC =1×a ×6a = 26a 2.由题悟法用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”.⎧⎪坐标轴的夹角改变,“三变”⎨与y 轴平行线段的长度改变,⎪⎩图形改变;⎧⎪平行性不变,“三不变”⎨与x 轴平行的线段长度不变,⎪⎩相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为 45°,腰和上底均为 1 的等腰梯形,那么原平面图形的面积是()A .2+ 22+ 2 C. 1+ 2 B.D .1+ 2解析:选 A 恢复后的原图形为一直角梯形1 2第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积体积圆柱圆锥S 侧=2πrlS 侧=πrlV =Sh =πr 2h1 1 13 3 31 V = ShV = πR 3圆台S 侧=π(r 1+r 2)l1V =3(S 上+S 下+ S 上· S 下)h1=3π(r 2+r 2+r 1r 2)h直棱柱正棱锥 正棱台球S 侧=Ch1S 侧=2Ch ′1S 侧=2(C +C ′)h ′S 球面=4πR 2V =Sh1 31V =3(S 上+S 下+ S 上· S 下)h431.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例 1] (2012· 安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱 (如图所示).所以其表面积为2×1×(2+5)×4+2×4+4×5+4×5+4×4=92. 视图、侧视图都是面积为 3,且一个内角为 60°的菱形,俯视图为正方面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为 8×⎝2×1×1⎭=4.在四边形 ABCD 中,作 DE ⊥AB ,垂足为 E ,则 DE =4,AE =3,则 AD =5.2[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012· 河南模拟)如图是某宝石饰物的三视图,已知该饰物的正2形,那么该饰物的表面积为()A. 3B .2 3C .4 3D .4解析:选 D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底⎛1 ⎫几何体的体积典题导入[例 2](1)(2012·广东高考)某几何体的三视图如图所示,它的体积为()V =V 半球+V 圆锥= · π·33+ ·π·32·4=30π. [答案](1)C (2)=π×32×4-1π×32×4=24π.3A .72πB .48πC .30πD .24π(2)(2012· 山东高考)如图,正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,E为线段 B 1C 上的一点,则三棱锥 A -DED 1 的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为 3,高为 4,半球的半径为 3.14 1 23 31 1 1 1(2)V A -DED 1=VE -ADD 1=3×△S ADD 1×CD =3×2×1=6.16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V圆锥答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.3 32 2 32 1 = .33和 2 个直角边分别为 3,1 的直角三角形,其底面积 S =9+2× ×3×1=12,以题试法2.(1)(2012·长春调研)四棱锥 P -ABCD 的底面 ABCD 为正方形,且 PD 垂直于底面ABCD ,N 为 PB 中点,则三棱锥 P -ANC 与四棱锥 P -ABCD 的体积比为()A .1∶2C .1∶4B .1∶3D .1∶8解析:选 C 设正方形 ABCD 面积为 S ,PD =h ,则体积比为1 11 1 11Sh - · S · h - · Sh1 4Sh(2012· 浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是()A .32C .8B .2432 D.解析:选 B 此几何体是高为 2 的棱柱,底面四边形可切割成为一个边长为 3 的正方形12所以几何体体积 V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例 3] (2012·新课标全国卷)已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A.C. 2 62 3B.D. 3 62 2×AB 2=4 41 3 6=2 =2V O -ABC =2× ×34 3 6 × . b c A .2 3π8πB.[自主解答 ] 由于三棱锥 S -ABC 与三棱锥 O -ABC 底面都是△ABC ,O 是 SC 的中点,因此三棱锥 S -ABC 的高是三棱锥 O -ABC 高的 2 倍,所以三棱锥 S -ABC 的体积也是三棱锥 O -ABC 体积的 2 倍.在三棱锥 O -ABC 中,其棱长都是 1,如图所示,△S ABC = 3 3,高 OD =12-⎛ 3⎫2= 6,⎝ 3 ⎭ 3∴V S -ABC[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为 a ,球的半径为 R ,①正方体的外接球,则 2R = 3a ;②正方体的内切球,则 2R =a ;③球与正方体的各棱相切,则 2R = 2a.(2)长方体的同一顶点的三条棱长分别为 a ,,,外接球的半径为 R ,则 2R = a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为 1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()3C .4 316πD. B 2=16π.2 故球 O 的体积 V = = 6π.3(2)(2012· 潍坊模拟)如图所示,已知球 O 的面上有四点 A 、 、C 、D ,DA ⊥平面 ABC ,AB ⊥BC ,DA =AB =BC = 2,则球 O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面 DBC ⊥底面 ABC ,取 BC 的中点 O 1,连接 AO 1,DO 1 知 DO 1⊥底面 ABC 且 DO 1= 3,AO 1=1,BO 1=O 1C =1.在 △Rt ABO 1 和 Rt △ACO 1 中,AB =AC = 2,又∵BC =2,∴∠BAC =90°.∴BC 为底面 ABC 外接圆的直径,O 1 为圆心, 又∵DO 1⊥底面 ABC ,∴球心在 DO 1 上,即△BCD 的外接圆为球大圆,设球半径为 R ,则( 3-R)2+12=R 2,∴R = 2 3.⎛ 2 ⎫∴S 球=4πR 2=4π×⎝ 3⎭3(2)如图,以 DA ,AB ,BC 为棱长构造正方体,设正方体的外接球 球 O 的半径为 R ,则正方体的体对角线长即为球 O 的直径,所以|CD|= ( 2)2+( 2)2+( 2)2=2R ,所以 R =6 .4πR 33答案:(1)D (2) 6π某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.33=3×π×12×4=3π.1.对称补形[典例 1] (2012· 湖北高考)已知某几何体的三视图如图所示,则该几何体的体积为( )8π A.10π C.B .3πD .6π[解析]由三视图可知,此几何体是底面半径为 1,高为 4 的圆柱被从母线的中点处截去了圆柱的1,根据对称性,可补全此圆柱如图,故体积 V44[答案] B[题后悟道] “对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.2.联系补形(2012· 辽宁高考)已知点 P ,A ,B ,C ,D 是球 O 表面上的点,PA ⊥平面 ABCD ,四边形ABCD 是边长为 2 3的正方形.若 P A =2 △6,则 OAB 的面积为________.[解析] 由 P A ⊥底面 ABCD ,且 ABCD 为正方形,故可补形为长方体如图,知球心 O 为 PC 的中点,又 PA =2 6,AB =BC =2 3,∴AC =2 6,∴PC =4 3,∴OA =OB =2 △3,即 AOB 为正三角形,∴S =3 3.[答案] 3 3[题后悟道] 三条侧棱两两互相垂直,或一侧棱垂直于底面,底面为正方形或长方形,则此几何体可补形为正方体或长方体,使所解决的问题更直观易求.练习题1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱C.球体B.圆锥D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个C.2个B.1个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③1.(2012·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④C.①③④B.①②③D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.(其中真命题的个数是() A .1C .3B .2D .4解析:选 A 命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形 非正方形),底面边长与侧棱长相等的直 四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选 C C 选项不符合三视图中“宽相等”的要求,故选 C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选 B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面 P AD ,且 EC投影在面 P AD 上,故 B 正确.△5.如图 A ′B ′C ′是△ABC 的直观图,那么△ABC 是()A .等腰三角形B .直角三角形解析:选 D 依题意得,该几何体的侧视图的面积等于 22+ ×2× 3=4+ 3.为 ,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)角形;如图 2 所示,直三棱柱ABC -AB C 符合题设要求,此时俯视图△ABC 是直角三角形;-A B C D 符合题设要求,此时俯视图(四边形 ABCD)是正方形;若俯视图是扇形或圆,体C .等腰直角三角形D .钝角三角形解析:选 B 由斜二测画法知 B 正确.6.(2012· 东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3C .2+2 3B .1+ 3D .4+ 3127.(2012· 昆明一中二模)一个几何体的正视图和侧视图都是边长为 1 的正方形,且体积12①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图 1 所示,直三棱柱 ABE -A 1B 1E 1 符合题设要求,此时俯视图△ABE 是锐角三1 1 1如图 3 所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱 ABCD1 1 1 1积中会含有 π,故排除④⑤.答案:①②③8.(2013· 安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.何体的体积为1×2×2sin 60°×2-1×1×2×2sin 60°×1=5 3.3解析:结合三视图可知,该几何体为底面边长为 2、高为 2 的正三棱柱除去上面的一个高为 1 的三棱锥后剩下的部分,其直观图如图所示,故该几2 3 2 35 3答案:9.正四棱锥的底面边长为 2,侧棱长均为 3,其正视图(主视图)和侧视图(左视图)是全 等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中 E 、F分别是 AD 、BC 的中点,连接 AO ,易得 AO = 2,而 P A = 3,于是解得 PO =1,所以 PE = 2,故其正视图的周长为 2+2 2.答案:2+2 210.已知:图 1 是截去一个角的长方体,试按图示的方向画出其三视图;图2 是某几何体的三视图,试说明该几何体的构成.解:图 1 几何体的三视图为:图 2 所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11.(2012· 银川调研)正四棱锥的高为 3,侧棱长为 7,求棱锥的斜高(棱锥侧面三角形在△Rt SOE 中,∵OE =1BC = 2,SO = 3,42-⎝ × ×2 3⎭2 2的高).解:如图所示,正四棱锥 S -ABCD 中,高 OS = 3,侧棱 SA =SB =SC =SD = 7,在 △Rt SOA 中,OA = SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作 OE ⊥AB 于 E ,则 E 为 AB 中点.连接 SE ,则 SE 即为斜高,2∴SE = 5,即棱锥的斜高为 5.12.(2012· 四平模拟)已知正三棱锥 V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得 BC =2 3, ∴侧视图中V A =⎛2 3 3 2⎫= 12=2 3,∴△S VBC =1×2 3×2 3=6. 1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的全 面积是()A. a 242 4 a 2+3× ×⎝ 2 a ⎭2= a 2.(3 2)2-⎝2×6⎭2=3,因此底面中心到各顶点的距离均等于 3,所以该四棱锥的外接球的棱锥的高是 5,可由锥体的体积公式得 V = ×8×6×5=80.3+ 3 3 B. a 2 43+ 36+ 3 C.a 2D.a 2解析:选 A ∵侧面都是直角三角形,故侧棱长等于31 ⎛2 ⎫ 3+ 3∴S 全=42422a ,2.已知正四棱锥的侧棱与底面的边长都为 3 2,则这个四棱锥的外接球的表面积为()A .12πC .72π B .36πD .108π解析: 选 B 依题意得,该正四棱锥的底面对角线长为 3 2 × 2 = 6 ,高为⎛1⎫球心为底面正方形的中心,其外接球的半径为 3,所以其外接球的表面积等于 4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为 5 的等腰三角形,侧视图是一个底边长为 6,高为 5 的等腰三角形,则该几何体的体积为()A .24C .64 B .80D .240解析:选 B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为 8 和 6 的矩形,1 34.(教材习题改编)表面积为 3π 的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,则 πrl +πr 2=3π,πl =2πr.解得 r =1,即直径为 2.答案:25.某几何体的三视图如图所示,其中正视图是腰长为 2 的等20/2733××2×2×2=.形42-⎝232+22⎭2=,所以棱锥O-A BCD的体积等于×(3×2)×51=51.________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是()A.8 C.48 B.4 D.解析:选D将三视图还原,直观图如图所示,可以看出,这是一个底11面为正方形(对角线长为2),高为2的四棱锥,其体积V=3S正方ABCD×P A=314232.(2012·山西模拟)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2,则棱锥O-ABCD的体积为()A.51 C.251B.351 D.651解析:选A依题意得,球心O在底面ABCD上的射影是矩形ABCD的中心,因此棱锥O-A BCD的高等于⎛1⎫5112323.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为()4 4 解析:选 D 由三视图可知该几何体是半径为 1 的球被挖出了 部分得到的几何体,故·4π·12+3· ·π·12= π.22只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2× ×2×1=4,所以该A .4πC .5π15 B. π17 D. π18表面积为7 1 178 44 4.(2012· 济南模拟)用若干个大小相同,棱长为 1 的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为()A .24C .22B .23D .21解析:选 C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为 22.5. (2012· 江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为()11 A.9 C.B .5D .4解析:选 D 由三视图可知,所求几何体是一个底面为六边形,高为1 的直棱柱,因此12几何体的体积为 4×1=4.6.如图,正方体 ABCD -A ′B ′C ′D ′的棱长为 4,动点 E ,F 在棱 AB 上,且 EF =2,动点 Q 在棱 D ′C ′上,则三棱锥 A ′-EFQ 的体积()解析:选 D 因为 V A ′-EFQ =V Q -A ′EF = ×⎝2×2×4⎭×4= ,故三棱锥 A ′-EFQ 的高为 3,连接顶点和底面中心即为高,可求得高为 2,所以体积 V =1×1×1× 2= 2.3答案: 3π⎧⎪a +b =6 ,A .与点 E ,F 位置有关B .与点 Q 位置有关C .与点 E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值1 ⎛1 ⎫ 163 3体积与点 E ,F ,Q 的位置均无关,是定值.7.(2012· 湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为 1 的正方形和 4 个边长为 1 的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为 1,侧棱长为 1,斜2 23 2 6答案:2 68.(2012· 上海高考)若一个圆锥的侧面展开图是面积为 2π 的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为 2π,所以半圆的半径为 2,圆锥的母线长为 2.底面圆的周长为2π,所以底面圆的半径为 1,所以圆锥的高为 3,体积为 3π.39.(2013· 郑州模拟)在三棱锥 A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,2 2 2 设该长方体的长、宽、高分别为 a 、b 、c ,且其外接球的半径为 R ,则⎨b 2+c 2=52,⎪⎩c 2+a 2=52,得 a 2+b 2+c 2=43,即(2R)2=a 2+b 2+c 2=43,易知 R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为 4πR 2=43π.答案:43π10.(2012· 江西八校模拟)如图,把边长为 2 的正六边形 ABCDEF 沿对角线 BE 折起,使 AC = 6.。

高中数学必修2(人教a版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教a版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征组合体展开图截面分析三、知识讲解1.典型空间几何体描述:空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.例题:用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.2.空间几何体的结构特征描述:多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF − A′ B′ C ′ D′ E′ F ′或棱柱A′ D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥S−ABCD或者棱锥S−AC.棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母O表示.例题:下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱ABCD − A1 B1 C1 D1,令四边形ABCD 是梯形,可知面ABB1A1∥面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥解:D ABCDEF OA = OB =⋯= AB S − ABCDEF如下图,正六边形中,,那么正六棱锥中,SA>OA=AB,即侧棱长大于底面边长.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除如图所示的几何体中,是台体的是()A.①②B.①③C.③D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有()A.1个B.2个C.3个D.4个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.3.组合体描述:简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.----完整版学习资料分享----。

必修二立体几何知识点+例题+练习+答案

必修二立体几何知识点+例题+练习+答案

学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除立体几何知识点一、空间几何体1.多面体:由若干个多边形围成的几何体,叫做多面体。

围成多面体的各个多边形叫做多面体的面 , 相邻两个面的公共边叫做多面体的棱 , 棱与棱的公共点叫做多面体的顶点 .2.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都平行,由这些面所围成的多面体叫做棱柱。

两个互相平行的面叫做底面, 其余各面叫做侧面 .3.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

底面是正多边形,且各侧面是全等的等腰三角形的棱锥叫做正棱锥。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形;顶点在底面上的射影是底面正多边形的中心。

4.棱台:用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

由正棱锥截得的棱台叫做正棱台。

正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的正多边形5.旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫做旋转体的轴,6.圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。

圆柱、圆锥、圆台的性质:平行于底面的截面都是圆;过轴的截面 ( 轴截面 ) 分别是全等的矩形、等腰三角形、等腰梯形。

注:在处理圆锥、圆台的侧面展开图问题时,经常用到弧长公式 l R7.球: 以半圆的直径为旋转轴,旋转一周所成的曲面叫做球面 . 球面所围成的几何体叫做球体 ( 简称球 )8.简单空间图形的三视图:一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫做俯视图。

一个投影面放置在正前方,这个投影面叫做直立投影面,投影到这个平面内的图形叫做主视图 ( 正视图 ) 。

和直立、水平两个投影面都垂直的投影面叫做侧立投影面,通常把这个平面放在直立投影面的右面,投影到这个平面内的图形叫做左视图( 侧视图) 。

空间几何体(答案)

空间几何体(答案)

俯视图侧视图正视图空间几何体一、知识点:1.柱体、椎体、台体的定义。

2.柱体、椎体、台体、球体的表面积体积公式。

3.三视图4.球内接长方体、正方体的外接球、球内接正四面体、长方体内接四面体之间的关系。

5. 斜二测画法 二、练习题:1.如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( A)①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④2..若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为(B )A.B. C.2 D. 63. 如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的表面积为 ( A ) A .233+B .3C .61 D .23 4.如果一个几何体的三视图如图2所示(单位长度:cm), A 则此几何体的表面积是A. 2(80cm +B. 296cmC. 2(96cm + 主视图 左视图D. 2112cm侧视图正视图俯视图俯视图11A 5. 如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是(B ).A .324 B . 334 C. 63D . 386.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为 ( C ) A .π34B .π38C .π316D .π3327. 已知高为3的直棱柱C B A ABC '''-的底面是边长为1的正三角形 (如图1所示),则三棱锥ABC B -'的体积为 ( D )A .41B .21解:∵ ,ABC B B 平面⊥'∴43343313131=⋅⋅='⋅=⋅=∆∆-'B B S h S ABC ABC ABC B V . 故选D.8.将棱长为1的正方体木块加工成一个体积最大的球,则这个球的体积为6π, 球的表面积为π (不计损耗)一个四面体的某一顶点上的三条棱两两互相垂直,其长均为6=x ,且四面体的四个顶点在同一球面上,则此球的表面积的 ( A ) A 18π B 24π C 36π D48π 10.如图,已知几何体的三视图(单位:cm). (1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积;.(1)这个几何体的直观图如图2-4所示.(2)这个几何体可看成是由正方体1AC 及直三棱柱1111BC Q A D P-的组合体.由11PA PD ==112A D AD ==,可得11PA PD ⊥. 故所求几何体的全面积22152222222S =⨯+⨯⨯⨯=+2(cm ) 所求几何体的体积23122102V =+⨯⨯=3(cm )A'C'AC图1三、高考对接:1(2010年高考广东卷理科6)如图1,△ ABC为三角形,AA'//BB' //CC' , CC'⊥平面ABC 且3AA'=32BB'=CC' =AB,则多面体△ABC -A B C'''的正视图(也称主视图)是【答案】D2(2009福建卷文)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1---空间几何体的结构(概念篇)
一、基本知识点
1、多面体:由若干个平面多边形所围成的几何体叫做多面体。

2、常见的几何体:
1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

其中互相平行的面叫做底面。

它的几何特征包括1)有两个面互相平行,2)其余各面每相邻两个面的公共边都互相平行。

棱柱的分类
(1)按底面多边形的边数分类:三棱柱、四棱柱、……、n棱柱;
(2)按侧棱与底面的关系分类。

2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,有这些面所围成的几何体叫棱锥。

正棱锥:如果一个棱锥的底面为正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫正棱锥。

正棱锥性质:
(Ⅰ)各侧棱相等;各侧面都是全等的等腰三角形;各等腰三角形底边上的高(正棱锥的斜高)相等。

(Ⅱ)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
正棱锥的高、侧棱和侧棱在底面内的射影组成一个直角三角形;
3)棱台、圆柱、圆锥、圆台、球的结构特征
二、基础练习
1判断下列结论是否正确,为什么?
(1)有一个面是多边形,其余各面是三角形的几何体是棱锥,()×
(2)正四面体是四棱锥,()×
(3)侧棱与底面所成的角相等的棱锥是正棱锥,()×
(4)侧棱长相等,各侧面与底面所成的角相等的棱锥是正棱锥()×
2.由平面六边形沿某一方向平移形成的空间几何体是()
A.六棱锥 B.六棱台 C.六棱柱 D.非棱柱、棱锥、棱台的一个几何体3.下列说法中,正确的是()
A.棱柱的侧面可以是三角形 B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等 D.棱柱的各条棱都相等
4.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是()
A. 6 B. 3 C. 1 D. 2
5.有两个面互相平行, 其余各面都是梯形的多面体是( )
A .棱柱
B . 棱锥
C . 棱台
D .可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥
6.构成多面体的面最少是( )
A .三个
B . 四个
C . 五个
D . 六个
7. 用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是( )
A . 一个几何体是棱锥, 另一个几何体是棱台
B . 一个几何体是棱锥, 另一个几何体不一定是棱台
C . 一个几何体不一定是棱锥, 另一个几何体是棱台
D . 一个几何体不一定是棱锥, 另一个几何体不一定是棱台
8. 甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法( )
A .甲正确乙不正确
B .甲不正确乙正确
C .甲正确乙正确
D .不正确乙不正确
9.圆锥的侧面展开图是( )
A .三角形
B . 长方形
C . 扇形
D .四边形
10.将直角三角形绕它的一边旋转一周, 形成的几何体一定是( )
A .圆锥
B .圆柱
C .圆台
D .以上均不正确
三、典型例题
例1.设有四个命题:
1)底面是矩形的平行六面体是长方体2)棱长相等的直棱柱是正方体3)有两条侧棱都垂直于底面一边的平行六面体是直平行六面4)对角线相等的平行六面体是直平行六面体。

以上四个命题中,真命题的个数是( ) A .1 B.2 C.3 D.4
2)下列命题中正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是矩形的几何体叫正棱柱
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
D .有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥
3)下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六面体锥
D .圆锥的顶点与底面圆周上的任意一点的连线都是母线
例4.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )
A.214h h h >> B.123h h h >> C.324h h h >> D.241h h h >>
四、课堂练习:
1.下列说法中正确的是()
A.半圆可以分割成若干个扇形B.底面是八边形的棱柱共有8个面
C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台
D.截面是圆的几何体,不是圆柱,就是圆锥
2.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()
A.圆锥B.圆柱 C.球体 D.以上都可能3.A、B为球面上相异两点, 则通过A、B可作球的大圆有()
A.一个 B.无穷多个 C.零个D.一个或无穷多个4.一个正方体内接于一个球,过球心作一个截面,下面的几个截面图中,必定错误的是()
A. B. C. D.
5.若正棱锥的底面边长与侧棱长都相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥
6.用一个平行于棱锥底面的平面去截棱锥, 得到两个几何体, 一个是________,另一个是________.(棱台,棱锥)
7. 如图, 四面体P-ABC中, PA=PB=PC=2, ∠APB=∠BPC=∠APC=30°. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A点, 问蚂蚁经过的最短路程是_________。

8.如图将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由简单几何体___________________构成.圆柱和圆锥。

相关文档
最新文档