动力学普遍方程及拉格朗日方程讲解

合集下载

第十七章 动力学普遍方程

第十七章 动力学普遍方程
(i 1, 2, , n)
系统的总虚功为 ( Fi FNi FIi ) δ ri 0 利用理想约束条件
得到
i Ii i i
F
i
Ni
δ ri 0
(i 1, 2, , n)
(F F )δ r 0
(i 1, 2, , n)
—— 达朗贝尔-拉格朗日方程
动力学普遍方程的直角坐标形式
(F
i
ix
mi xi ) δxi (Fiy mi yi ) δyi (Fiz mi zi ) δzi 0 i 1, 2, , n
动力学普遍方程的意义和应用
动力学普遍方程是将达朗伯原理和虚位移原理 而得到的,可用来求解质点系的动力学问题。
广义坐标和广义力
由n个质点所 组成的质点系 质点位置坐标 广义坐标 主 动 力
F1 , F2 , , Fn
x1 , y1 , z1 , x2 , y2 , z2 , q1 , q2 , , qN
N 3n S
, xn , yn , zn ,
第i个质点的位矢 虚位移
ri ri (q1 , q2 , , qN )
三、拉格朗日方程
d T T Qk= ( )- k dt q qk
对于主动力为有势力的情况,拉格朗日方程可改 写为:
d L L ( )- =0 k dt q qk
式中:
L=T-V
L称为拉格朗日函数,或动势。
本课件的部分动画来源于西工大的媒 体素材库,在此表示衷心的感谢。部分动 画与图片来源于互联网,版权不明,希望 版权所有人见到后与制作人员联系,我们 表示感谢。
第十七章 动力学普遍方程 和拉格朗日方程
一、动力学普遍方程 二、广义坐标和广义力 三、拉格朗日方程

动力学普遍方程及拉格朗日方程

动力学普遍方程及拉格朗日方程
C
O1
x1
δα
l α α l
A
− FIA ⋅ δxA + FIB ⋅ δxB + m1g ⋅ δyA + m1g ⋅ δyB + m2 g ⋅ δyC = 0
根据几何关系,有 根据几何关系,
ωB
δrC
δrB FIB
l m1g
xA = −lsinα yA = lcosα xB = lsinα yB = lcosα yC = 2lcosα
由动力学普遍方程, 由动力学普遍方程,得
∑F ⋅ δr −∑m a ⋅ δr
i =1 i i i =1 i i
n j j
N
N
i
=0
∑F ⋅ δr = ∑Q δ q
i =1 i i j =1
N
Q j ——广义力
n N ∂ri ∂r && ⋅ ∑ δ qj = ∑(∑mi && ⋅ i )δ qj ri ∑miai ⋅ δr i = ∑miri j=1 ∂qj ∂qj i =1 j =1 i =1 i =1
MI2 = J2 α2
J2 = 1 m2 R2 2
α
m2 g
B
x
m1g
ar = Rα2
m2 gsinα ⋅ Rδϕ + FI2ecosα ⋅ Rδϕ − FI2r ⋅ Rδϕ-J2α2 ⋅ δϕ = 0
1 3 sinα ⋅ + (a1cosα − ar ) = 0 g 2
解:4、应用动力学普遍方程 令: δ x ≠ 0,δ ϕ = 0
i i i i i
(i = 1,2, ⋅⋅⋅, N)
动力学普遍方程的直角坐标形式
∑[(F

理论力学-第13章 动力学普遍方程和第二类拉格朗日方程

理论力学-第13章 动力学普遍方程和第二类拉格朗日方程
需要指出的是,上述各式适用于任何理想、双侧约束系统, 不论约束是否完整、是否定常,也不论作用力是否有势。
*第13章 动力学普遍方程和第二类拉格朗日方程
第二类拉格朗日方程
返回
第二类拉格朗日方程
在动力学普遍方程中,由于系统存在约束,一般情形下,各 质点的虚位移并不完全独立,应用时须建立各虚位移与广义坐标 之间的关系。
第二类拉格朗日方程
N
(Qk Qk*) δ qk 0
k 1
其中Qk为对应于广义所标qk的广义力(generalized forces); Qk*为广义惯性力(generalized inertia forces)
Qk
n i 1
Fi
ri qk
Qk*
n i 1
miai
ri qk
由于在完整约束下,δq1, δq2,…, δqN 相互独立,
Qk*
n i 1
miri
ri qk
d dt
n
(
i 1
miri
ri qk
)
n i 1
miri
d dt
( ri qk
)
d dt
n i1
mi
ri
ri qk
n i1
mi
ri
ri qk
d dt
qk
n
(
i 1
1 2
miri2 )
qk
n
(
i 1
1 2
miri2 )
d dt
(
T qk
理论力学
第3篇 工程动力学基础
第3篇 工程动力学基础
*第13章 动力学普遍方程 和第二类拉格朗日方程
*第13章 动力学普遍方程和第二类拉格朗日方程

第二十五章动力学普遍方程和拉格朗日方程

第二十五章动力学普遍方程和拉格朗日方程

例6:空心轮的质量为m1、半径R,绳子的一端悬挂一质量为m2的 物体A,另一端固结在弹簧上。试求:物体A的微振动周期。
解: 自由度1 取广义坐标 法一
T
1 2
J0 2
1 2
m2v2
1 2
(m1
m2 )R2 2
T
(m1
m2 )R2
d dt
(
T
)
(m1
m2
)R
2
d dt
T
T
Q
δ
m1
T 0
d dt
FIi
ri q j
(3)
——广义惯性力
k

(Qj QI j ) δ q j 0

Q j QI j 0
QI j
j 1
n miai
i 1
ri q j
i
n
mi
1
d( dt
d vi ri
d
n
i 1
t mi
vi qqjrij
)
n i 1
mivi
d dt
(
ri q j
)
(4) (5)
[
5 2
aA
RC
g]m δ
x
[aA
3 2
RC
g]mR δ
0
[
5 2
aA
RC
g]
0
[aA
3 2
RC
g]
0
aA
C
FAI A
mg
M BI B
FC
mg
I
M
C
I
FAI ma A
C
M BI J B B
mg
M C I JCC

动力学普遍方程和拉格朗日方程省公开课金奖全国赛课一等奖微课获奖课件

动力学普遍方程和拉格朗日方程省公开课金奖全国赛课一等奖微课获奖课件

d (
T
)
T
]
0
q q i1
dt
j
j
j
改写为
因为
q , 1
q .......q
2
n
相互独立性
得第二类拉格朗日方程
d T
dt q
T
q
Q j
j
j
若质点系所受全部主动力为有势力
Q
j
V
q
j
14/36
系统势能只是系统广义坐标函数
V
q 0 j
可得
d dt
[
(T
q
V
)
]
(T
q
V)
0
j
j
引进L=T-V,成为拉格朗日函数, 则上式为
24/36
L x
(
3 2
M
m)
x
1 2
ml
cos
d dt
L x
(3 2
M
m) x
1 2
ml cos
1 2
ml 2
sin
L x
k(x
l
)
0
L
1 ml 2
3
1 2
mlx cos
d dt
L
1 3
ml 2
1 2
mlxcos
1 2
mlx 2
sin
L 1 mlx sin mg l sin
2
2
且与水平地面平行弹簧一端相连,弹簧
另一端固定。质量为m,长为 均l 质杆
AB经过以光滑铰链A与圆盘中心相连。若圆
盘在水平地面上作纯滚动,试求系统运动
拉式方程。
x

拉格朗日方程

拉格朗日方程
统的自由度数目,选取合适的广义坐标。
2、分析系统的运动,写出用广义坐标及广义速 度表示的系统的动能。(速度及角速度均为绝对的)
d L L ( ) 0 (k 1,2, , N ) k dt q qk
1.2
拉 T T d T 或 L L d L ( ) ( ) 格 q q j k dt q k dt q k q k q k k 朗 5、写出拉格朗日方程并加以整理,得到N个二 日 阶常微分方程。由2 N个初始条件,解得运动方程。 方 程
1.2
d T T Q ,得 由 ( ) dt 1 2 M (2Q 9 P)(r R) 6g
拉 6Mg 即 格 (2Q 9 P)(r R) 2 朗 积分得曲柄的运动方程为 日 3Mg 2 0t 0 t 方 2 (2Q 9 P)(r R) 程 0分别为初始转角和初始角速度。 式中, 0 、
1.2
拉 格 朗 日 方 程
例4 如图轮A的质量为 m1,在水平面上只滚动不 滑动,定滑轮B的质量为 m2,两轮均为均质圆盘,半 m3 径均为R,重物C的质量为 ,弹簧的弹性系数为 , k 试求系统的运动微分方程。 k AR 解:以系统为研究对象, B R 系统具有一个自由度。取 x x C 为广义坐标,x 从重物的平衡 位置量起。系统的动能为 2 1 1 2 1 1 3 x x 2 2 2 T ( m1 R )( ) ( m2 R )( ) m3 x 2 2 2R 2 2 R 2 1 2 (3m1 4m2 8m3 ) x 16 设系统平衡时弹簧的静伸长为 st ,则有关系式

整理后得 3 1 1 2 2 1 2 2 2 2 T m1 x m2 ( x L Lx cos ) m2 L 4 2 4 24

4chap2动力学普遍方程和拉格朗日方程(II)解析

4chap2动力学普遍方程和拉格朗日方程(II)解析
3
4. 拉格朗日方程的初积分(首次积分)
求解二阶微分方程组的积分时常会遇到数学上的困难, 但对于保守系统,在某些条件下,却很容易求得其初积分,使方 程组的求解变得简单起来. 现在,我们在上一节阐明的动能的 广义坐标表达式的基础上,来讨论拉格朗日方程的初积分。 拉格朗日函数可表示为
L = T – V = T2 + T1 + T0 – V
N
H
再根据欧拉齐次式定理(P56)有:
N N N L0 L L2 L1 k k k k 2 L2 L1 q q q q k k k k k 1 q k 1 q k 1 q k 1 q N
带入上式得: (2L2+L1)-(L2+L1+L0)= E 即
d L k 1 dt q k
N N L k 0 q k q q k 1 k
其中
d L k dt q
d L L k k k q q q k q k dt q
由于势能函数 V 仅是广义坐标和时间的函数,因此它是广义速 度的零次函数。设 L2 = T2, L1 = T1, L0 = T0 - V
显然, L2 , L1 和 L0 分别是广义速度的二次齐次函数、一次齐 次函数和零次齐次函数,得 L=L2+L1+L0
1.广义能量积分—初积分之一
k ,并将这N个 将主动力为有势力时的拉格朗日方程式乘以 q 式子相加,得
3. 动能的广义速度表达式
拉格朗日方程是关于广义坐标的二阶微分方程组。应 用拉格朗日方程时,须先计算出以广义坐标和广义速度表示 的系统的动能。为便于应用拉格朗日方程,一般可将质点系 的动能表示为广义速度的代数齐次式结构的形式。

理论力学—拉格朗日方程PPT

理论力学—拉格朗日方程PPT
m2 cos
a1
3(m1
m2 gsin2 m2 )-2m2cos2
ar
2gsin (m1 m2 ) 3(m1 m2 )-2m2cos2
15
§18-2 拉格朗日(Lagrange)方程
由n个质点所 组成的质点系
主动力 虚位移
广义坐标 第i个质 点的位矢
F (F1, F2,, Fn )
r (r1,r2,,rn )
O1
x1
l
l
rA
rB
xA l cos yA l sin
FIA
A B FIB
m1g l
rC l m1g
xB l cos
C
yB l sin
m2g
yC 2l sin
y1
2m1lsin2lcos 2m1glsin 2m2glsin 0
2 (m1 m2 )g
m1lcos
10
例题3 质量为m1的三棱柱ABC
FIA
A B FIB
m1g l
rC l m1g
根据几何关系,有
C
m2g
xA lsin yA lcos
xA l cos
yA l sin
y1
xB lsin
xB l cos
yB lcos
yB l sin
yC 2lcos
yC 2l sin
9
3、应用动力学普遍方程
FIA δxA FIB δxB m1g δyA m1g δyB m2 g δyC 0
其次,要确定系统的自由度,选择合适的广义坐标。 按照所选择的广义坐标,写出系统的动能、势能或广 义力。
将动能或拉格朗日函数、广义力代入拉格朗日方程。
23

理力13(动力学-李卓球)-动力学普遍方程和拉格朗日方程

理力13(动力学-李卓球)-动力学普遍方程和拉格朗日方程

i
0
在理想约束的条件下,质点系在任一瞬时所受的主动 力系和虚加的惯性力系在虚位移上所作虚功的和等于零。 ——动力学普遍方程(达朗贝尔-拉格朗日原理)
解析表达式: x y z (( Fxi mi i ) xi ( Fyi mi i ) yi ( Fzi mi i ) zi ) 0
(a)
s1 2s2 R 0
s1 2s2 R
(b)
22
例题
第13章 动力学普遍方程和拉格朗日方程
例 题 13-5
(a)
s1 πR 2s2 2c 2πR a R l
s1 2s2 R 0
s1 2s2 R
例 题 13-3

Hale Waihona Puke 1 g a 2 R 0 (a) 2 令 1 0, 2 0, 则 h R1。根据动力
学普遍方程
Ⅰ O
M I1
1

Ⅱ FI 2
mgh FI h M I 11 0 1 g a 1R 0 2
(b)
考虑到运动学关系
s 2
2
,
a2 a1 2
a 2 s 2 ) 0 2 2
( m2 g m2 a 2 )s2 ( m1 g m1
消去δs2 ,得
FI1
m1g
a2
4m2 2m1 g 4m2 m1
6
例题
第13章 动力学普遍方程和拉格朗日方程
例 题 13-2
两个半径皆为r的均质轮,中心用连杆相连,在倾角为θ的 斜面上作纯滚动,如图所示。设轮子质量皆为m1 ,对轮心的 转动惯量皆为J,连杆质量为m2,求连杆运动的加速度。

理论力学-拉格朗日方程

理论力学-拉格朗日方程

d dt
(
L qr
)
L qr
0
24
积分得:
L qr
C
(常数)
(rk)
循环积分
因L = T - U,而U中不显含 qr ,故上式可写成
L qr
qr
(T
U
)
T qr
Pr
C
(常数)
Pr称为广义动量,因此循环积分也可称为系统的广义动量积分。 保守系统对应于循环坐标的广义动量守恒。
能量积分和循环积分都是由保守系统拉格朗日方程积分一 次得到的,它们都是比拉格朗日方程低一阶的微分方程。
12 g
W ( ) M
Q
W (
)
M
T
1 6
2P
9Q g
(R r)2
;
d dt
T
1 6
2P
9Q g
(
R
r)
2
;
T
0
15
代入拉氏方程:
1 2P 9Q (R r)2 0 M
6g
6M
g
(2P 9Q)(R r)2
积分,得:
3M (2 P 9Q )(R r ) 2
gt
2
C1t
C2
代入初始条件,t =0 时, 0 0 , 0 0 得 C1 C2 0
故:
3M
gt 2
(2P9Q)( Rr)2
16
[例2] 与刚度为k 的弹簧相连的滑块A,质量为m1,可在光 滑水平面上滑动。滑块A上又连一单摆,摆长l , 摆锤质量为 m2 ,试列出该系统的运动微分方程。
解:将弹簧力计入主 动力,则系统成为具 有完整、理想约束的 二自由度系统。保守
系统。取x , 为广义

分析力学动力学普遍方程和拉格朗日方程实用课件

分析力学动力学普遍方程和拉格朗日方程实用课件

圆柱的角速度为 O (设圆柱o的半径为r)
m(l
R )2,
d dt
L
2mR (l
R) 2
m(l
R ) 2
L mR(l R) 2 mg (l R)sin
已求得
d dt
L
2mR (l
R) 2
m(l
R ) 2
L mR(l R) 2 mg (l R)sin
将式上式代入保守系统的拉氏方程
d dt
L
L
0
得摆的运动微分方程
(l R) R 2 g sin 0
M v
P
R'=-R=- ma
此力是摆锤被迫作非惯性运动时产生的“反作用力”, 称为惯性力。
结论:质点在作非惯性运动的任意瞬时,对于施力于它的物 体会作用一个惯性力,该力的大小等于其质量与加速度的乘 积,方向与其加速度方向相反。
若用Fg表示惯性力,则有 Fg =- ma
说明: 1.此力是不是真实的力! 2.此力作用于施力给质点的物体上! 3.此力又称为牛顿惯性力!
拉格朗日
1736 — 1813,法籍 意大利人,数学家、 力学家、天文学家, 十九岁成为数学教 授,与欧拉共同创 立变分法,是十八 世纪继欧拉后伟大 的数学家。
设质点系由n个质点组成,具有s个完整理想约束,则有 N=3n-s个自由度(广义坐标)。
用q1,q2,…qN表示系统的广义坐标,第i个质点质量为mi, 矢径为ri。则
i 1
n
或 (Fi miai ) δri 0 i 1
动力学普遍方程
表明:在理想约束条件下,在任意瞬时,作用于质点系上 的主动力和惯性力在质点系的任意虚位移上所做虚功之和 等于零。
若 Fi X ii Yi j Zik, ai xii yi j zik,

动力学普遍方程

动力学普遍方程

ai
xi , yi , zi ,
δ
ri
δ
xi ,δ
yi ,δ
zi
动力学普遍方程的直角坐标形式
(Fix mi xi ) δ xi (Fiy mi yi ) δ yi (Fiz mi zi ) δ zi 0
i
i 1,2, ,n
动力学普遍方程的意义和应用
动力学普遍方程是将达朗伯原理和虚位移原 理而得到的,可用来求解质点系的动力学问题。
Qk 称为与第j个广义坐标 qk 对应的广义主动力
特别地:有势力的广义力
Qk=-
V qk
在势力场中,对应于第 j个广义坐标 qk 的广义力等
于系统势能对于这一广义坐标的偏导数的负数。
三、拉格朗日方程
Qk=
d dt
T ( qk
)-
T qk
对于主动力为有势力的情况,拉格朗日方程可改写为:
d ( L )- L =0 dt qk qk
利用理想约束条件
i
FNi δ ri 0 (i 1,2, , n)
i
得到
(Fi FIi ) δ ri 0 (i 1,2,, n)
i
(Fi FIi ) δ ri 0 (i 1,2,, n)
i
注意到:
FIi mai
动力学普遍方程
(Fi mi ai ) δ ri 0 (i 1,2, , n)
由n个质点所 组成的质点系
主 动 力 F1, F2 , , Fn
质点位置坐标 x1, y1, z1, x2 , y2 , z2 , , xn , yn , zn ,
广义坐标
q1, q2 , , qN
第i个质 点的位矢
虚位移
N 3n S

第18章分析力学基础动力学普遍方程拉格朗日方程.ppt

第18章分析力学基础动力学普遍方程拉格朗日方程.ppt

Q2

3 i 1

Xi
xi
2
Yi
yi
2

Zi
zi
2


(P cos2
W2 2
sin 2 )l2
5
解2:(几何法)选1、2为广义坐标,对应虚位移为1、2。
① 先令1≠0、2=0,如图(a)。所
有力在此虚位移上的虚功为
ΣWF


mO (W1)1
注:由于使用动力学普遍方程较麻烦,通常不用其直接求
解动力学问题。其意义在于导出拉格朗日方程。
作业:选做18-5(试用动力学普遍方程求。注意为2自由度问题) 11
§18-3 拉格朗日方程(简介)
简称拉氏方程。拉格朗日推导出两种形式的拉氏方程,即第一类拉格朗日 方程和第二类拉格朗日方程。第一类方程使用直角坐标及约束方程(用待 定乘子法),因而方程组中的方程很多;第二类方程使用广义坐标、广义 力及动能的概念,使方程组中的方程数大大减少(为广义坐标数或自由度 数)。一般(此处亦如此)的拉格朗日方程均指第二类方程。
Q g
vC2

1 2
1 2
Q g
r 2 2
s
P 2Q v2 P 2Q s2
2g
2g
A C
设系统起始位置为0势能位置,系统 势能为:
vC aC
Q
V Ps Q s sin
OB
Q va
P
s
则拉格朗日函数: 拉格朗日方程:
L T V P 2Q s2 Ps Qssin
WF

n
Wi
i 1

n i 1
(

第二十五章 动力学普遍方程

第二十五章  动力学普遍方程

∂L
∂ q& j

∂L
∂q j
=
0
应用动力学普遍方程解题时的注意事项:
(1)系统中各质点的加速度与各刚体 的角速度都必须是绝对加速度于绝对角 速度。
(2)计算主动力与惯性力的虚功时所 涉及到的虚位移必须是绝对虚位移。
拉格朗日方程得解题步骤 (1)以整个系统为研究对象,分析系统的 约束性质,确定系统的自由度数,并恰当选 取同样数目的广义坐标
∂r
0
∂L
∂θ&
=
m r2θ&
d dt
∂L
∂θ&
=
2mrr&θ&
+
m r 2θ&&
∂L = −mgr sinθ ∂θ
(6)由保守系统的第二类拉格朗日方程
d dt
∂L ∂r&

∂L ∂r
=
0
d dt
∂L
∂θ&

∂L
∂θ
=
0

m&r&− mrθ&2 + mg(1− cosθ ) + k(r −1) = 0 rθ&&+ 2r&θ& + g sinθ = 0

F j=1 i=1 i
∂ rri ∂q
n
∑ r + (− m a j=1
)•
ii
∂ rri ∂q

q j
=
0
j
j
r n
Q ∑ r r =
F q j i=1
∂ •i i∂
广义达朗伯惯性力:
G

理论力学第十八章 拉格朗日方程 教学PPT

理论力学第十八章 拉格朗日方程 教学PPT
q t
h
h
j
h
(2)
ri ri (q1, q2 ,...qk ; t) 对任 qh求偏导,再对时间t求导得
d
dt
( ri ) qh
k j1 q j
(
ri qh
)qj

2 ri tqh

k 2r

i
j1 q q
q j
2r i
tq
j
h
h
(3)
式(3)右边与式(2)右边比较可得关系式
i 1
以上二式称为动力学普遍方程 或 达朗贝尔——拉格朗日方程。
n
Fi miai δ ri 0
i 1
n
Fix mi xi δ xi Fiy mi yi δ yi Fiz mizi δ zi 0
i 1
动力学普遍方程
但是,如果改用广义坐标,来描述系统的运动,将动力 学普遍方程表达成广义坐标的形式,就可得到与广义坐标 数目相同的一组独立的运动微分方程,这就是著名的拉格 朗日方程,用它求解较复杂的非自由质点系的动力学问题 常很方便。
拉格朗日方程的推导
设由 n 个质点组成的质点系,受到 s 个理想、完整约束,因此该系统 具有k= 3m- s个自由度,可用 k 个广义坐标 q1 , q2 , … , qk 来确定该系统的 位形。
动力学普遍方程-例题1

动力学普遍方程-例题1
δrB F*B B
m1g δrC
解: 球简化为质点,除主动力外,图上画出了
d
O α δ x
ω dα
δrA A F*A
m1g
飞球的惯性力F*A和F*B,两力大小相等,方 向相反。

动力学普遍方程和拉格朗日方程

动力学普遍方程和拉格朗日方程

由动力学普遍方程(达朗贝尔—拉格朗日原理):
n
(Fi miai ) δ ri 0
i1
n
i1
( Fi
miai )
k j1
ri q j
δqj
0
(23.7)
10
交换求和顺序
k j1
n i1
( Fi
miai )
ri q j
δqj
0
k
j1
n i1
( Fi
miai )
9
推导广义坐标的动力学普遍方程
设完整约束质点系由n个质点组成,系统的自由度为k,其
广义坐标为q1,q2,……,qk,
则各质点相对于定点O的矢径为
ri
ri
(q1,
q2
,,
qk
,t)
(i=1,2,…,n)
(23.5)
各质点的虚位移为
ri
k
ri
j1 q j
δqj
(i=1,2,…,n)
(23.6)
那么能否建立一种不含约束力的非自由质点系的动力学方 程呢?
将达朗贝尔原理和虚位移原理结合起来可以达到这一目的, 因为达朗贝尔原理给出了通过列写形式上的静力学平衡方程求 解质点系的动力学问题的方法,而虚位移原理又建立了不含约 束力的非自由质点系的平衡方程。
3
动力学普遍方程 (general equations of dynamics)
4
第23章 动力学普遍方程和 拉格朗日方程
(general equations of dynamics and lagrange equations)
§23.1 动力学普遍方程 (general equations of dynamics)

动力学普遍方程和拉格朗日方程

动力学普遍方程和拉格朗日方程

第十四章 动力学普遍方程和拉格朗日方程一、目的要求1.掌握动力学普遍方程的推导过程及式中各项的含义,会对具体问题分析、画受力图后代入动力学普遍方程求解。

2.熟记拉格朗日方程的各种形式,清楚拉格朗日方程与动力学普遍方程的关系。

熟练应用拉格朗日方程求解动力学问题(主要是列运动微分方程、求出加速度或角加速度)。

3.知道在多自由度情况下,用拉格朗日方程求解动力学问题方法简单、步骤规范、容易掌握。

二、基本内容1.基本概念动力学普遍方程、拉格朗日方程的推导及表达式2.主要公式(1)动力学普遍方程∑==⋅-ni i i i i r δa m F 10)( []∑==⋅-+⋅-+⋅-n i i i i iz i i i iy i i i ix z z m F y y m F x x m F10)()()(δδδ (2)拉格朗日方程K k k Q q L q L dt d '=∂∂-∂∂)( N k ,,2,1 = V T L -=,叫拉格朗日函数或动势,T 为质点系的功能,是广义速度k q 和广义坐标k q 的函数V 是势能,是广义坐标的函数。

N 是质点系的自由度数。

k kk q W Q δδ∑'=' 是质点系的非保守力对应于第k 个广义坐标的广义力。

三、重点和难点1.重点(1)质点系自由度的判断;(2)应用拉格朗日方程解题的步骤,拉格朗日方程中各项的计算;(3)不同形式拉格朗日方程的用途。

2.难点(1)正确地选取广义坐标;(2)有保守力时,势能零点的选择及势能的计算;(3)将动能写成广义速度和广义坐标的函数。

四、学习提示1.建议(1)强调用动力学普遍方程和拉氏方程解题均以整体为研究对象。

(2)广义坐标、广义速度的个数均与质点系自由度相同。

(3)强调拉氏方程和动力学普遍方程适用于求多自由度系统的运动量,如加速度、角加速度,建立系统的运动微分方程。

2.例题:P317~P325例14-1,14-2,14-4,14-5,14-6。

拉格朗日方程

拉格朗日方程

对i求和并移项得
∂ri d ∂ 1 ∂ 1 2 2 mi v i • = ∑[ ( mi vi ) − ( mi vi )] ∑ • ∂qs dt ∂ q 2 ∂qs 2 i i s

引入系统动能
T =

i
1 2 m i vi 2
s = 1, 2, • • •, n
dvi ∂ri Qs − ∑ mi • =0 dt ∂qs i
若全部主动力均为有势力,设势能函数为 V(xi,yi,zi),则有
∂V ∂V ∂V ∂V = −( Fi = − i+ j+ k) ∂ri ∂xi ∂ yi ∂zi
∂ri Qs = ∑ Fi • ∂qs i =1
N
s=1,2, …,n 上式即为主动力有势时的广义力表达式。
∂V ∂ri • = −∑ ∂qs i =1 ∂r i
ri = ri(q1, q2, …, qn,t)
i=1,2, … ,N
于是用广义坐标的独立变分表示的虚位移为
δ ri =

s =1
n
∂ ri δqs ∂qs
i
i=1,2, …,N
δW = ∑ Fi • δri
n N ∂ri ∂ri δW = ∑ Fi • ( ∑ δqs ) = ∑ ( ∑ Fi • )δqs ∂qs i =1 s =1 ∂qs s =1 i =1
m φ1 φ2
m
ϕ1 + ϕ 2 2 mr 2 • 2 • 2 cr 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
mr 2 • 2 • 2 cr 2 ϕ1 + ϕ 2 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将虚位移原理和达朗贝尔原理综合应用于动力学
★ 建立分析力学的新体系 拉格朗日力学
动力学普遍方程
考察由N个质点的、具有理想约束的系统。根据 达朗贝尔原理,有
Fi FRi mi ai 0
主动力
(i 1, 2, , N )
惯性力
令系统有任意一组虚位移
δri
系统的总虚功为
(i 1,2, , N )
2 aC g sin 3
0
mgsin x - FIR x M IC
x
R
例 题 2
离心调速器
已知: m1-球A、B 的质量; m2-重锤C 的质量; l-杆件的长度; - O1 y1轴的旋转角速度。 求: - 的关系。
O1 l l FIA m1g l
C
如果将位矢对任意一个广义坐标 qj 求偏导数,再对时间求 导数,则得到
d ri dt q j
2 N 2 ri ri k q q t k 1 q j qk j
ri q j

d ri dt q j

第二个拉格朗日关系式
N
ri d T mi ri q j dt i 1 q j
N
T q j
Q j mi ri
i 1
N
ri 0 ( j 1, 2, q j
, n)
ri d T mi ri q j dt i 1 q j
a1
C1
x
解:2、施加惯性力
y
A x OC a1
FI 2 r
MI2
D C2
m2 g FI 2 e
FI1 m1a1
FI2e m2 a1
ae C1
FI1
FI2r m2 ar
M I2 J 2 α 2 1 J 2 m2 R 2 2

ar B
x
m1g
解:3、确定虚位移
考察三棱柱和圆盘组成的 系统,系统具有两个自由度。 二自由度系统具有两组虚 位移:
F δr m a δr
i 1 i i i 1 i i
N
N
i
0
F δr Q q
i 1 i i j 1 j
j
Q j ——广义力
n N ri ri q j ( mi ri ) q j mi ai δr i mi ri q j i 1 j 1 q j j 1 i 1 i 1
V=V (q1 ,q2 , , qn ,t ) V 0, (j 1, 2, , n) q j
N
N
n
ri ri qj j 1 q j
n
ri Fi δr i mi ai δr i (Q j mi ri ) q j 0 q j i 1 i 1 j 1 i 1
N N n N
ri Q j mi ri 0 ( j 1, 2, q j i 1
动力学普遍方程 和拉格朗日方程
※ ※ ※ 引 言
动力学普遍方程 拉格朗日方程
※ 拉格朗日方程的初积分 ※ 结论与讨论
经典动力学的两个发展方面
拓宽研究领域
牛顿运动定律由单个自由质点
★ 受约束质点和质点系(以达朗贝尔原理为基础)
欧拉将牛顿运动定律
★ 刚体和理想流体 矢量动力学又称为牛顿-欧拉动力学 寻求新的表达形式
x A y A x B y B yC
l cos l sin l cos l sin 2l sin
m2g
y1
3、应用动力学普遍方程
FIA δx A FIB δxB m1 g δy A m1 g δy B m2 g δyC 0
拉格朗日(Lagrange)方程
主 动 力
F1 , F2 , , FN
由N个质点所 组成的质点系
虚 位 移
广义坐标 第i个质 点的位矢
r1 , r2 ,
, rN
q1 , q2 , , qn
ri ri (q1 , q2 , , qn , t )
由动力学普遍方程,得
N n
y
A x OC
FI 2 r
MI2
D
C2
FI 2 e
FI1 m1a1
FI2e m2 a1
C1
FI1
m2 g
FI2r m2 ar
M I2 J 2 α 2
J2 1 m2 R 2 2

B
x
m1g
ar R 2
( FI1 FI 2e )x FI 2 r cos x 0
rA FIA m1g l
C
O1
x1

l l
A
x A y A x B y B yC
l cos l sin l cos l sin 2l sin
2
B
rC
rB FIB
ቤተ መጻሕፍቲ ባይዱ
l m1g
m2g
y1
2m1lsin lcos 2m1 glsin 2m2 glsin 0
N N ri ri d d ri mi ri mi (ri ) mi ri ( ) q j i 1 dt q j dt q j i 1 i 1 N
N r ri d i r r ( ) mi ri d ri i mi i ri dt q q i 1 i 1 j j dt q q q N
动力学普遍方程的直角坐标形式
[(F
i
ix
mi xi ) δxi (Fiy mi yi ) δyi (Fiz mi zi ) δzi ] 0 i 1, 2, , N
动力学普遍方程 适用于具有理想约束或双面约束的系统。 动力学普遍方程 既适用于具有定常约束的系统,也适用于 具有非定常约束的系统。 动力学普遍方程 既适用于具有完整约束的系统,也适用于 具有非完整约束的系统。 动力学普遍方程 既适用于具有有势力的系统,也适用于具有 无势力的系统。
3、应用动力学普遍方程 rA FIA m1g l
C
O1
x1

l l
A
FIA δx A FIB δxB m1 g δy A m1 g δy B m2 g δyC 0
根据几何关系,有
B
rC
rB FIB
l m1g
x A lsin y A lcos xB lsin y B lcos yC 2lcos
r d N mri i dt q j i 1
N
j
j
N ri m r i i q j i 1

j
ri q j
ri 1 N 1 N T 2 mri (mi ri ri ) (mi vi ) q j 2 i 1 q j 2 i 1 q j q j i 1 ri T m r i q j q j i 1
动力学普遍方程的应用
动力学普遍方程 主要应用于求解动力学第二类问 题,即:已知主动力求系统的运动规律。 应用 动力学普遍方程 求解系统运动规律时,重 要的是正确分析运动,并在系统上施加惯性力。 应用 动力学普遍方程 ,需要正确分析主动力和 惯性力作用点的虚位移,并正确计算相应的虚功。 由于 动力学普遍方程 中不包含约束力,因此, 不需要解除约束,也不需要将系统拆开。
( m1 m2 ) a1 ar m2 cos
解:5、求解联立方程
1 3 sin (a1cos a r ) 0 g 2
( m1 m2 ) a1 ar m2 cos
m2 gsin2 a1 2 3(m1 m2 )-2m2 cos 2 gsin (m1 m2 ) ar 2 3(m1 m2 )-2m2 cos
(F m a ) δr 0
i i i i
(i 1, 2, , N )
—— 动力学普遍方程
任意瞬时作用于具有理想、双面约束的系统上的 主动力与惯性力在系统的任意虚位移上的元功之和 等于零。
(F m a ) δr 0
i i i i i
(i 1, 2, , N )
(m1 m2 ) g m1lcos
2
例题3 质量为m 的三棱柱ABC 1
通过滚轮搁置在光滑的水平面上。 质量为m2、半径为R的均质圆轮沿 三棱柱的斜面AB无滑动地滚下。
y
A ae C2
D
2 ar B
求:1、三棱柱后退的加速度a1; OC 2、圆轮质心C2相对于三棱 柱加速度ar。 解:1、分析运动 三棱柱作平动,加速度为 a1。 圆轮作平面运动,质心的牵连 加速度为ae= a1 ;质心的相对加 速度为ar;圆轮的角加速度为2。
ri ri 和 仅为时间和广义坐标的 函数, t q j
j无关 与广义速度 q
ri ri 第一个Lagrange经典关系(消点) q j q j
n ri ri ri qk t k 1 qk
对任意一个广义坐标 qj 求偏导数
n ri 2 ri 2 ri qk q j q j t k 1 q j qk
J2 1 m2 R 2 2

B
x
m1g
ar R 2
m2 gsin Rδ FI 2ecos Rδ FI 2r Rδ-J 2 2 δ 0
1 3 sin (a1cos a r ) 0 g 2
解:4、应用动力学普遍方程 令: δ x 0,δ 0
相关文档
最新文档