第三章溶剂萃取分离法.

合集下载

3__萃取分离法

3__萃取分离法

也有解释不好的时候。
• 十八羧酸与乙酸的互溶性不如十八羧酸
与胺的互溶性好——有时也可从溶质、溶
剂之间电荷转移或酸碱性方面考虑
30
分子间相互作用与溶剂特性
溶剂之间的相溶性
溶剂分类:
31
32
33
34
37
第三章 萃取分离法
3.3 分配平衡和分配平衡常数
分配常数
KD
[ A]org [ A]aq
又叫诱导偶极-诱导偶记力,由于非极性 非极性分子之间。
动态作用,异级相邻
分子的瞬间偶极作用引起的,广泛存在与极性、
主要取决于分子的变形性
分子半径、分子量大、色散力大
分子对称性:直链分子>支链分子
21
分子间相互作用与溶剂特性
氢键--本质属于静电作用
-OH、-NH2、FH等电负性强的原子和氢原

第三章 萃取分离法
中性萃取剂

中性萃取剂有两种主要基团:
一种是含有碳-氧键的萃取剂,又称含氧萃取剂,
如醚、酯、醇和酮等。
另一种是氧或硫与磷键合的萃取剂,又称中性磷
型萃取剂,如磷酸三丁酯(TBP),甲基膦酸二甲
庚酯(P350)等。
第三章 萃取分离法
酸性萃取剂

酸性萃取剂可分为三类:
(1)酸性磷型萃取剂;
另一方面,增加有机溶剂体积会使有机相中溶
质浓度降低,不利于后续分离和测定。
47
公式物理意义

E
D 1 D R
100%
对于分配比D较小的物质,可通过增加相比(即增 加有机相的体积)来提高萃取率。实际工作中,通 常采用多次萃取或连续萃取来提高总萃取率。 对于分配比D较大的物质,即使采用等体积萃取一 次也可达到很高的萃取率,如D=50,等体积单次 萃取率为98%,在D>10时,E>90%, D>100, E >99% 。

第三章 溶剂萃取法分离稀土元素 稀土金属冶金 教学课件

第三章 溶剂萃取法分离稀土元素  稀土金属冶金 教学课件
2020/6/16
1 中性络合萃取体系
• 特点:
➢ 萃取剂为中性萃取剂,如醇、脂、醚、中性磷萃取剂 ➢ 萃取剂与被萃组分依靠配位键组成中性络合物 ➢ 被萃组分以中性分子形态被萃取
• 举例:
(RO)3P=O:
NO3
TBP萃取硝酸稀土
NO3 RE :OP(OR)3
(RO)3P=O:
NO3
3TBP (org) + RE3+(aq) +3NO3- (aq) =RE(NO3)3 ·3TBP (org)
2020/6/16
1 错流萃取
• 定义:一份料液依次与多份有机相接触的萃取方式 • 萃取过程示意图:
S0
S0
S0
F0
1 F1
2 F2
3
S0
n
Fn(纯B)
S1
S2
S3
Sn
F0—萃取料液;S0—空白有机相
• 萃取计算:φA =[A]n/[A]F =1/(1+EA)n;
φB =[B]n/[B]F =1/(1+EB)n
喹啉,脂肪酸、异构酸、环烷酸等 – 胺类萃取剂:伯胺、仲胺、叔胺、季铵盐
• 常用萃取剂与稀释剂
2020/6/16
2020/6/16
2020/6/16
2020/6/16
二、 萃取体系
• 萃取体系:被萃组分(含被萃物质的水溶液
)+萃取有机相(萃取剂+稀释剂+改性剂)
• 萃取体系的分类
1、中性络合萃取体系 2、酸性络合萃取体系 3、离子缔合萃取体系 4、协同萃取体系
2020/6/16
2 酸性络合萃取体系 • 特点
➢ 萃取剂为酸性萃取剂:酸性磷萃取剂、羧酸萃取剂、螯 合萃取剂等

第三章 溶剂萃取法

第三章  溶剂萃取法

[I2]O KD = D = ——— [I2]W 不符合分配定律的体系:KD≠D 分配比除与一些 常数有关以外,还与酸度、溶质的浓度等因素有 关,它并不是一个常数。
分离与富集方法介绍
例如:
醋酸在苯—水萃取体系中
• 在两相间的分配: [CH3COOH] W ====[CH3COOH] O • 在水相电离: CH3COOH ====CH3COO- + H+ • 在苯相中缔合: 2CH3COOH(O)====(CH3COOH)2(O)
分离与富集方法介绍
一、萃取分离法的基本原理
利用化合物在两种互不相溶(或微溶)
的溶剂中溶解度或分配系数的不同,使化
合物从一种溶剂内转移到另外一种溶剂中。
经过反复多次萃取,将绝大部分的化合物
提取出来。
分离与富集方法介绍
1.萃取过程的本质 就是将物质由亲水性转化为疏水性的过程。
2、萃取物 亲水性物质:离子型化合物,易溶于水而难溶于 有机溶剂的物质。如无机离子,含亲水基团OH,-SO3H,-NH2…的物质。 疏水性或亲油性物质:共价化合物,具有难溶于 水而易溶于有机溶剂的物质。如许多有机化合物, 酚酞,油脂等(含疏水基团-CH3,-C2H5,苯基等)
[OsO4]O + 4[(OsO4)4]O
分离与富集方法介绍
(3)分配系数与分配比关系
• 当溶质在两相中以相同的单一形式存在,且溶液较 稀,KD=D。否则KD≠D。 • 分配系数与萃取体系和温度有关,而分配比除与萃 取体系和温度有关外,还与酸度、溶质的浓度等因 素有关
分离与富集方法介绍
(4) 萃取百分率
分离与富集方法介绍
有机化合物在有机溶剂中一般比在水中溶解
度大。用有机溶剂提取溶解于水的化合物是萃

天然药物化学 第三章

天然药物化学 第三章

主要是利用混合物中各成分的酸碱性强 弱的不同,相应改变溶剂的PH值使之 成盐或游离,改变成分在溶剂系统中的 分配系数的不同而与其他成分分离。
例如:分离某有机溶剂中酸性强弱不同 的苷元,可依次用 PH由低到高的碱液 萃取,使成盐而分离。
第三节 其他分离方法
一、沉淀法: 在天然药物的提取液中加入某些试剂,使 产生沉淀或降低溶解性而从溶液中析出, 从而获得有效成分或去除杂质的方法。 酸碱沉淀法:利用某些成分能在酸(碱) 中溶解,继而又在碱(酸)中生成沉淀的 性质达到分离的方法。
溶剂中分配系数的不同而达到分离目的
的方法。
Cu 分配系数 K= CL CU 表示溶质在上相溶剂中的浓度
KA 分离因子 β= 表示分离的难易 KB
CL 表示溶质在下相溶剂中的浓度 β≥100
一次就可实现基本分离
100>β≥10 则需萃取10~12次
β≈1
则KA≈KB
意味着成分相近,难以分离
二、操作时注意 浸出液和萃取溶剂的比例要恰当,第 一次萃取时,溶剂一般为浸出液的1/3, 以后为1/4~1/6,一般萃取3~4次。
常用的溶剂有水、醋酸、甲醇、乙醇、丙酮、醋酸 乙酯、氯仿等。 可查阅文献或小量摸索实验来确定: 取约0.1克试样,若在1毫升的冷或温热的溶剂中已 全部溶解,则不适用。若加入溶剂4毫升,试样尚不 溶,则此溶剂也不适用。 也可用两种或两种以上的混合溶剂: 乙醇-水;醋酸-水;丙酮-水;乙醚-甲醇;乙醚-丙酮; 乙醚-石油醚等。
值,叫过饱和度。是形成结晶的推动力。 降温 蒸发溶剂
3、结晶溶剂的选择
选择合适的溶剂是结晶的关键。 1、不与结晶物质发生化学反应。 2、对结晶物质的溶解度随温度不同有显著的差异,热 时溶解度大,冷时溶解度小。

第三章 溶剂萃取

第三章 溶剂萃取

杂质+少量 待萃物质
一、萃 取 体 系

萃取体系–由有机相和水相组成,在同一个体系中两相互不相溶 或基本不互溶。 有机相–由萃取剂和稀释剂组成。 萃取剂–能够与被萃金属相结合,并以萃合物形式转入有机相的 活性有机反应剂。 稀释剂–溶解萃取剂的一种低密度的有机溶剂。它是一种不与金 属发生作用的惰性溶剂,用来调节萃取剂的浓度,降低有机相的 粘度与密度,增加萃合物的溶解度。稀释剂通常是各种低芳烃的 烷烃混合物,如煤油。
四、饱和容量与操作容量
在一定萃取体系中,单位浓度的萃取剂对某种溶质 的最大萃取能力,称为这种萃取剂的饱和容量(也称 极限浓度)。以单位体积浓度(1V/O)萃取剂的有机 相含被萃溶质的浓度(g/l)表示。 在实际生产中,萃取剂的负荷能力往往低于其饱和 容量,萃取剂这种实际萃取的溶质容量称为操作容量。

萃取体系

络合剂:是指溶于水相且与金属离子生成各种络合物的配位体
可分为: ① 助萃剂(助萃络合剂) ② 抑萃络合剂 助萃剂(助萃络合剂)
水相中加入能促进被萃取物的分配比或萃取率增大的络合
剂,是萃取过程中不可缺少的辅助试剂。 例:二安替比林甲烷(DAPM)萃取钴,生成能溶于CHCl3的 (DAPM)· 2[Co(SCN)4]。 H 萃取剂:DAPM;萃取溶剂:CHCl3; 助萃剂: SCN抑萃络合剂 指溶于水且与被萃金属离子形成溶于水而不溶于有机相的


萃取剂 +稀释剂 萃残液 (杂质)

萃 产物(待萃物质)
杂质+少量 待萃物质
萃取、洗涤和反萃取操作示意图
洗涤:使杂质(含包藏水相)由有机相反萃到水相, 而被萃物 仍留在有机相。所以洗涤水相的条件选择应有利于杂质在水 中的分配, 如常在水中加入少量能与杂质元素络合的水溶性 络合剂。 反萃取:通过加入一种新的不含被萃物的水相,[ I 2 ]o KD [ I 2 ]w

第03章 萃取分离与逆流分配

第03章  萃取分离与逆流分配


pH值
• 不仅影响分配系数,而且影响蛋白质和酶的稳 定。因此在溶质是蛋白质和酶的双水相萃取中, pH值的选择以考虑溶质的稳定性为主。
⑤ 离子强度
增加离子强度有利于相分离。
(3)应用
① 适合于分离提取有生物活性的大分子; ② 直接从含菌体的发酵液和培养液中提取目标产品。
优点:使活性物质不失活,操作及设备简单,无 毒、分离规模大。 不足:理论和实用方面有待进一步研究。
溶剂:回流——冷凝——萃取——虹吸入 烧瓶——蒸发——回流……周而复始,被萃取的 物质浓集在烧瓶内。 优点:提取效率高(省溶剂)
(a)较轻溶剂萃取较 重溶液中物质
(b)较重溶剂萃取较轻 溶液中的物质
(c)兼具(a)和(b)
(d)脂肪提取器
图3-4 连续萃取装置
⑤ 超声波提取:
• 适宜于实验室和工业生产。小量提取可利用实 验室的超声波清洗器进行,一般物料比控制在 5∶1~9∶1之间,提取温度控制在30-40℃, 提取次数为2-3次。工业提取可采用专用的超 声波提取机进行,超声功率一般为16002000W,提取时间为30min。该法提取效率极 高,对于热敏性物质尤为合适。 ⑥ 超临界提取(后面讨论)
O OH
葡萄糖 (-)夫糖
O OH
葡萄糖 (-)夫糖
O
CH2OH 柴胡皂甙 a
O
CH2OH
柴胡皂甙 d
3.4 双水相萃取
(1)原理:
0.39%葡聚糖 0.65%甲基纤维素 98.96%水 1.58%葡聚糖 0.15%甲基纤维素 98.27%水
图3-10 等体积的2.2%葡聚糖与0.72% 甲基纤维素的水溶液所形成的双水相
② 聚合物浓度的影响 在一定浓度下(如在10-25%的聚乙二醇中), 蛋白质在聚合物相的分配随聚合物浓度的增大而 增大。达到一个最大值后,聚合物浓度再增大, 蛋白质在聚合物相的分配反而减小。

第三章-天然药物化学成分一般分离方法

第三章-天然药物化学成分一般分离方法

主观题 10分
两相溶剂萃取法是根据什么原理进行的?在实际 工作中如何选择溶剂?
正常使用主观题需2.0以上版本雨课堂
作答
主观题 10分 实验室简单萃取操作时要注意哪些问题?
正常使用主观题需2.0以上版本雨课堂
作答
主观题 10分 萃取操作中若已发生乳化,应如何处理?
正常使用主观题需2.0以上版本雨课堂
但是一般情况下重结晶溶剂的选择,与“相似相溶” 有点背道而驰,大极性的物质,用中等极性的溶剂结晶; 小极性的东西,用大极性的溶剂。有一半以上的情况是适 合的。
了解上面的知识我们再根据杂质的物理性质确定合适 的溶剂。
• 物质的类别 •烃 • 卤代烃 • 腈酮 • 酚酰胺 • 羧酸磺酸盐
溶解度大的溶剂 烃、醚、卤代烃 醚, 胺,酯,酯硝基化合物 醇、二氧六烷 醇、水醇 水
可进行两相溶剂萃取的组合
必须是水和亲脂性有机溶剂 之间才可进行两相溶剂萃取
强亲脂性有机溶剂(石油醚、乙醚、氯仿):强亲脂性成分 氯仿-乙醇 :中等极性成分中较小极性 醋酸乙酯:中等极性成分中极性居中
正丁醇:中等极性成分中极性较大 丙酮、乙醇、甲醇:亲水性成分 水:强亲水性成分
成果:会选择合适的萃取液
用于结晶和重结晶的常用溶剂有:水、甲醇、乙醇、 异丙醇、丙酮、乙酸乙酯、氯仿、二氧六环、石油醚等。 此外四氯化碳、苯、甲苯、硝基甲烷、乙醚、二甲基甲酰 胺、二甲亚砜等也常使用。
(二)、溶剂的选择思路
在选择溶剂时必须了解欲纯化的化学物质的结构,因 为溶质往往易溶于与其结构相近的溶剂中―“相似相溶” 原理。极性物质易溶于极性溶剂,而难溶于非极性溶剂中; 相反,非极性物质易溶于非极性溶剂,而难溶于极性溶剂。
酸提(溶)碱沉法:碱性化合物如生物碱

第三章溶剂萃取分离法(2)

第三章溶剂萃取分离法(2)

§3-6 胺类萃取剂一、胺类萃取剂和萃取机理Smith 和Page 首先报道了长碳链脂肪胺能萃取酸的性质,并首先发现其萃取行为与阴离子交换树脂极为相似,因此有液体阴离子交换剂之称。

胺类萃取剂具有达到萃取平衡所需时间短,又具备阴离子交换分离选择性等优点。

与磷类萃取剂相比。

它的萃取容量高,耗损少,选择性较好。

因此在分析化学和放射化学中,他们常用于分离、提纯、富集各种金属离子。

但胺类萃取剂的缺点是,他们的胺盐在有机相中易于聚合,形成三相和乳化,使相分离困难。

此外,他们萃取金属离子的机理比较复杂,以致对其规律性不易掌握。

胺类萃取剂是指氨分子中三个氢原子部分或全部被烷基所取代,分别得到伯胺、仲胺、叔胺和季铵盐,其结构如下:N HH R N H R'R N R R''R'N R R''R'R'''A -伯胺仲胺叔胺季胺盐此处R 、R'、R''和R'''代表不同的或相同的烷基,A -代表无机酸根,如Cl -、NO 3-、SO 42-等。

按烷基的化学结构又可区分为直链胺、支链胺和芳香胺。

低碳链胺易溶于水,不适宜用作萃取剂,随着烷基取代物的增加和碳链的增长,他们在水中的溶解度减小。

通常作为萃取剂的是含有8-12个碳原子的高分子量的胺,他们难溶于水,易溶于有机溶剂。

伯、仲、叔胺的分子中都具有孤对电子的氮原子,能和无机酸的H +离子形成稳定的配位键而生成相应的胺盐。

这些胺盐和季胺盐中的阴离子与水溶液中的金属络阴离子发生交换,使被萃取物进入有机相,因此这种萃取机理主要是通过阴离子交换反应,下面以叔胺为例,进一步讨论胺类萃取剂对金属离子的萃取机理。

1.对酸的萃取萃取酸是胺类萃取剂的基本特性,其反应式为:R 3N 有+H ++A -R 3NH +. A -有R 3NH +.A -是一种极性离子对,在有机相中具有高的离子缔合常数。

第三章萃取分离法-2讲义

第三章萃取分离法-2讲义

第三章萃取分离法-2讲义第三章萃取分离法第⼆节双⽔相萃取⼀、双⽔相萃取简介常⽤的溶液萃取法能⽤来提取⽣物⼤分⼦如蛋⽩质吗?⼤部分萃取采⽤⼀个是⽔相,另⼀个是有机相,蛋⽩质遇到有机溶剂,易变性失活。

有些蛋⽩质有极强地亲⽔性,不能溶于有机溶剂。

通常的溶剂萃取法应⽤于提取⽣物⼤分⼦是有困难的;但双⽔相萃取法含⽔量⾼,接近⽣理的环境中进⾏萃取,不会引起⽣物活性物质失活或变性。

双⽔相系统:因两种⽔溶性聚合物的⽔溶液,或⼀种⽔溶性聚合物⽔溶液与盐溶液混合时的不相容性⽽形成有明显界⾯的两相系统。

双⽔相萃取(Aqueous two-phase extraction)是利⽤物质在互不相溶的两个⽔相之间分配系数的差异实现分离的⽅法。

葡聚糖(Dextran)与聚⼄⼆醇(PEG)按⼀定⽐例与⽔混合,溶液混浊,静置平衡后,分成互不相溶的两相,上相富含PEG,下相富含葡聚糖,见下图:⼆、双⽔相萃取的发展历史1. 1896年荷兰微⽣物学家Berjerinck发现琼脂⽔溶液与可溶性淀粉或明胶⽔溶液混合时形成双⽔相现象。

2. 1956年瑞典Lund⼤学的Albertsson教授及其同事开始对双⽔相系统进⾏⽐较系统研究。

测定了许多双⽔相系统的相图,考察了蛋⽩质、核酸、病毒、细胞及细胞颗粒在双⽔相中的分配⾏为,为双⽔相萃取系统的发展奠定了基础。

只局限于实验室内的测定和理论研究。

3. Kula教授研究⼩组对双⽔相的应⽤、⼯艺流程、操作参数、⼯程设备、成本分析等进⾏了⼤量研究,在应⽤上获得成功。

1978年⾸先将双⽔相萃取技术⽤于酶的⼤规模分离纯化,建成了⼀套⼯业装置,达到20kg/h的处理能⼒,分离纯化了⼏⼗种酶,也应⽤于基因⼯程产品的分离。

双⽔相萃取可分离多肽、蛋⽩质、酶、核酸、病毒、细胞、细胞器、细胞组织,以及重⾦属离⼦等,近年来,还应⽤于⼀些⼩分⼦,如抗⽣素、氨基酸和植物的有效成分等的分离纯化。

作为反应系统⽤于酶反应,⽣物转化,发酵的产物⽣产与分离的集成三、双⽔相系统及成相机理1. 双聚合物双⽔相体系两种⽔溶性聚合物溶液混合,形成单⼀相还是两相,主要取决于两种因素:系统熵的增加,熵的增加与分⼦数⽬有关,⽽与分⼦⼤⼩⽆关;分⼦间的作⽤⼒,分⼦之间的相互作⽤⼒可看作分⼦中各基团相互作⽤⼒之和,随分⼦量的增加⽽增加。

第三章 萃取分离法

第三章 萃取分离法

c( HL)o n D K ( ) c( H )w
*
1、配位萃取体系
萃取条件的选择
c( HL)o n 由 D K ( ) 可知: c( H )w
*
① 分配比与被萃取组分的浓度无关,与萃取剂 和萃取溶剂性质有关; ② 若有机相中萃取剂的浓度一定时,分配比由 溶液酸度决定;
萃取条件的选择
1、配位萃取体系
配位萃取平衡
C Ao c( MLn )o D C Aw c( M n )w c( MLn )w
忽略c(Mn+)w,代入上述平衡常数:
n K D n Ka c( HL)o n D ( ) 'n KD c( H )w
对于确定的萃取体系,同KD、n、Ka、KD'为常数。
三、萃取分离方法
萃取过程
选择适当的萃取剂改变样品的溶解性使其更容 易溶于萃取溶剂,然后进行萃取;
萃取体系分类
① 配位萃取体系:将样品转化为配合物而改变其
溶解性; ② 缔合物萃取体系:将样品转化为离子缔合物而 改变其溶解性;
1、配位萃ห้องสมุดไป่ตู้体系
常用配位萃取剂
① 8-羟基喹啉:萃取绝大部分二价、三价,少量
D1 1 E E 0.84 D 5.25 1 E 1 0.84
( 2)
E
D
Vw D 1 ( )n DVo Vw
n 1.9
二、萃取分离的基本原理
分离因数β——表征样品分离程度
同一萃取体系中相同萃取条件下两种组分分配 比的比值,即; DA DB β =1,DA=DB,表明两种组分不能萃取分离; β >1,DA>DB,表明两种组分可用油相萃取分离; β <1,DA<DB,表明两种组分可用水相萃取分离;

第三章、萃取分离法(一)

第三章、萃取分离法(一)

配位键O→M越强,则G3P=O的萃取能力越强。由于烷氧基RO 吸引电子的能力比烷基R强,其配位能力就较弱,所以中性磷类萃 取剂的萃取能力按下列次序递增
R
OR
(RO)3P O < (RO)2P O < R2P O < R3P O
中性磷类萃取剂萃取金属离子的特点是:被萃取物在萃取 过程中以中性分子形式存在与萃取剂结合,生成中性络合物而 进入有机相 。
中性磷类萃取剂是指磷酸
HO
OH PO OH
分子中三个羟基全部为烷基酯化或取代的化合物,按其酯 化或取代的不同可分为四个类别
类别 磷酸三烷基酯(磷 酸酯)
烷基膦酸二烷基酯 (膦酸酯)
二烷基膦酸烷基酯 (次膦酸酯)
通式
(RO) 3P O
R (RO)2P O
OR R2P O
三烷基氧化膦 (膦氧化物)
R3P O
[ A]O,总 [[ A]O,总 VW ]100% [ A]W ,总 [ A]W ,总 VO
D 100 % D VW VO
设R=VO / VW(相比)
E

D D
1
100%
R
萃取率E与分配比D及相比R有关
R一定,D越大,E越大; D一定,R越大,E越大,萃取越完全
当R=1,即用等体积有机溶剂进行萃取时, E D D 1
2.特点
(1)历史悠久,1842年…; (2)应用广泛,常量、微量、痕量分离均可; (3)回收率高、选择性好; (4)仪器设备简单; (5)操作较为烦琐费时; (6)萃取剂价格较昂贵,有机溶剂易挥发易燃,有毒。
第一节 溶剂萃取分离法的一些 定义及特征参数
一、萃取剂和萃取溶剂
萃取剂:指与被萃物有化学反应,而能使被萃物被

溶剂萃取分离法课件

溶剂萃取分离法课件

缺点
萃取剂消耗量大
溶剂萃取分离法需要使用大量的有机溶剂作为萃取剂,增加了成 本和环境负担。
有机溶剂残留
在萃取过程中,有机溶剂可能会残留在目标物质中,影响产品质量 。
操作条件要求高
溶剂萃取分离法的操作条件如温度、压力、搅拌等要求较高,需要 严格控制。
改进方向
开发高效萃取剂
通过研发新型的高效萃取剂,降低溶剂用量 ,提高萃取效率。
优化实验条件
通过实验试错,优化实验条件, 提高萃取效率,减少实验时间。
01
确定目标
明确实验的目标,是分离某种特 定物质,还是进一步纯化某个样 品。
02
03
04
设计实验流程
确定萃取剂的用量、萃取的次数 、萃取剂的回收等实验流程。
实验仪器的准备和操作
01
02
03
04
准备实验仪器
包括分液漏斗、旋转蒸发器、 玻璃砂漏斗等萃取实验所需仪
生物学研究
在生物学研究中,溶剂萃 取法可用于提取生物组织 中的活性成分,如药物、 毒素和激素等。
环境监测
在环境监测中,溶剂萃取 法可用于提取水体和土壤 中的有害物质,如重金属 、有机污染物等。
在环境保护中的应用
废水处理
溶剂萃取法可用于处理废水中的 有害物质,如重金属、有机污染 物等,降低废水对环境的危害。
土壤修复
在土壤修复中,溶剂萃取法可用于 提取土壤中的有害物质,如重金属 、有机污染物等,提高土壤的环境 质量。
大气污染控制
在大气污染控制中,溶剂萃取法可 用于去除空气中的有害气体和颗粒 物,提高空气质量。
04
溶剂萃取分离法的实验技术和操作 步骤
实验方案的设计和优化
选择合适的萃取剂

第三章溶剂萃取法教程教案

第三章溶剂萃取法教程教案

水 有 - 化学势


RT
ln
a水


RT
ln
a有

RT
ln
a水

RT
ln a 有
ln
a有


a水
RT
用PA表示热力学分配常数:
PA
a有 a水
exp(
水 -

RT
)
[ A]有 有 [ A]水 水
K

有 水
以上校正了溶液浓度 质点间作用力
例1.I2在水相和有机相中存在形式对D 的影响
MeRn
R-+H3+O
5
MeRn
萃取剂的分配平衡: 萃取剂的电离平衡: 被萃取离子与萃取剂的
K DR [ HR ] 有 [ HR ] 水
K
i
[ H ][ R [ HR ]水
]
络合平衡:
K
f
[ MeRn ]水 [ Me n ][ R ] n
内络盐在水相和溶剂相
中的分配平衡:
K DX
[ MeRn
]有 [ MeRn
]水
有机溶剂中 Me n 的总浓度 D 水溶液中 Me n 的总浓度
[ Me
[ MeRn ]有 n ] [ MeRn
]水
K DX 1
K f [R ]n [R ]n K f
乘 [ R ]n
(
除 [ MeRn ]水
)
(代入
[R ]
[ HR K i [H
]水 ]
,K
无机离子
非极性共价分子——直接萃取 水合离子——萃取剂
(3)萃取体系的分类
8-羟基喹啉

第三章溶剂萃取法

第三章溶剂萃取法
分离与富集方法介绍
在含Hg2+,Bi3+,Pb2+,Cd2+溶液中用二苯硫腙—CCl4萃取
• 萃取Hg2+,若控制溶液的pH等于1.则Bi3+,Pb2+,Cd2+不 被萃取 • 要萃取Pb2+,可先将溶液的pH调至4—5,将Hg2+,Bi3+先除 去,再将pH调至9—10,萃取出Pb2+
分离与富集方法介绍
分离与富集方法介绍
一、萃取分离法的基本原理
1.萃取过程的本质 就是将物质由亲水性转化为疏水性的过程。 亲水性物质:离子型化合物,易溶于水而难溶于 有机溶剂的物质。如无机离子,含亲水基团OH,-SO3H,-NH2…的物质, 疏水性或亲油性物质:共价化合物,具有难溶于 水而易溶于有机溶剂的物质。如许多有机化合物, 酚酞,油脂等(含疏水基团-CH3,-C2H5,苯基等)
分离与富集方法介绍
2.分配系数和分配比
(1)分配系数 (2)分配比 (3)分配系数与分配比 (4)萃取百分率 (5) E和D的关系:
分离与富集方法介绍
(1)分配系数
• 分配系数的含义:
[A]O KD = ——————— [A]W
称为分配定律
• 分配定律适用范围:只适用于浓度较低的稀溶液,而且溶 质在两相中以相同的单一形式存在,没有离解和缔合副反应
• 在HCl溶液中.Ti(III)与Cl-配合形成TiCl4-,加入以阳离 子形式存在于溶液中的甲基紫(或正辛胺),生成不带电 荷的疏水性离子缔合物,被苯或甲苯等惰性溶剂萃取。 • GaCl4-、InCl4-、SbCl4-、AuCl4-、PtCl62-、PdCl62-、 IrCl62-、UO2(SO4)32-、Re(NO3)4-等可以采用此法萃取 • 阳离子可以是含碳6个以上的伯、仲、叔胺或含 -NH2的碱 性染料 • 有机溶剂:苯、甲苯、一氯乙烷、二氯乙烷等惰性溶剂

第三章 溶剂萃取分离法-xin

第三章  溶剂萃取分离法-xin

V水 V有 D
5
V水 V有
)
n
4 . 07 10
0 . 018 (
V水 /V有 40 + V 水 / V 有

2
V水/V有=2
第二节 溶剂萃取分离法
例6. 某物质的水溶液100 mL,用5份10 mL萃取剂溶液
连续萃取5次,总萃取率为87 % ,则该物质在此萃取体系
中的分配比是多少?
解:
解:
0 . 84 D
D VW VO
D = 5.25
第二节 溶剂萃取分离法
0 . 97 1 (
VW DV O V W
)
n
0 . 03 (
1 D 1
)
n
(
1 6 . 25
)
n
1.523=0.795n 即n=2(次)
n=1.9
第二节 溶剂萃取分离法
例4.弱酸HA在CH3Cl和水中的分配比为8.20,取
一、溶剂萃取的发展史
1842年,Peligot首先用二乙醚萃取硝酸铀酰。 1863年,Brawn将二乙醚用于硫氰酸盐的萃取。 1892年,Rothe等用乙醚从浓盐酸中萃取HFeCl4 1872年,Berthelot提出了萃取平衡的关系式。
1891年,Nernst提出Nernst分配定律。
20世纪40年代,自采用TBP(磷酸三丁酯)作为核燃 料的萃取剂以来,萃取技术得到了更广泛的发展。
E mo mn mo
0 . 87 1 (

mo mo

mn mo
)
5
设 m o 1g ,
0 . 87 1 (
则: E 1 m n
100

第三章溶剂萃取分离法(1)

第三章溶剂萃取分离法(1)

第三章溶剂萃取分离法萃取通常是指原先溶于水相的某种或几种物质,与有机相接触后,通过物理或化学过程,部分地或几乎全部地转入有机相的过程。

就广义而言,萃取可分为液相到液相、固相到液相、气相到液相等三种过程。

通常所说的“萃取”指的是液液萃取过程,即溶剂萃取过程。

溶剂萃取(solvent extraction)在有机化学中很早就用作为一种基本的分离手段,无机物质的萃取开始于十九世纪初,1842年Peligot首先报道了用乙醚从沥青铀矿中提取和纯化硝酸铀酰。

1892年Rothe和Hanroit又成功地使用乙醚从浓盐酸中萃取出了三氯化铁。

1891年Nernst提出了著名的Nernst分配定律。

20世纪20年代以后,有机螯合剂开始应用于金属离子的溶剂萃取中,使各种金属离子的溶剂萃取有较为迅速地发展。

50年代初,随着原子能科学技术的发展,进一步推动了溶剂萃取的蓬勃发展,寻找各种选择性高的新萃取剂更引起人们的浓厚兴趣。

目前萃取剂的种类十分繁多,而且已对周期表中94个元素的萃取性能进行过研究。

本章所讨论的溶剂萃取分离法即是利用溶剂萃取的原理,在被分离物质的水溶液中,加入与水互不混溶的有机溶剂,借助于萃取剂的作用,使一种或几种组分进入有机相,而另一些组分仍留在水相,从而达到分离的目的。

该分离方法已在无机化学、分析化学、放射化学、湿法冶金以及化工制备等诸多领域得到了广泛地应用,主要是由于,溶剂萃取分离法既可以用于大量元素分离,也适合于微量元素的分离和富集,而且还具有所用的仪器设备简单、操作简便快速、回收率高、选择性好等优点,如果被萃取物质是有色化合物,还可以将溶剂萃取与分光光度法结合起来,在有机相中直接进行光度测定,这样可大大地提高方法的灵敏度和选择性。

当然,该分离法也有一些不足之处,如使用的萃取剂价格大多较昂贵,作为稀释剂用的有机试剂易挥发并有一定的毒性,但是随着科学技术的发展,这些缺点会逐步得到改善的。

§3-1溶剂萃取分离法的一些特征参数在萃取过程中,通常是利用以下几个特征参数来衡量某一溶剂萃取体系的优劣以及组分分离富集的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
萃取分离的依据
相似相溶原理
离子型化合物 极性
亲水性
物质
相互转换 疏水性 共价键化合物 弱极性或非极性
本质:将待萃取组分由亲水性转化为疏水性,使其萃入有 机相中。 例,8-羟基喹啉-CHCl3对Al 3+ 的萃取 反萃取 Back extraction
萃取的反过程(将组分从有机溶液中萃取到水溶液中)
0.05*10-2
0.032*10-2

4.26*10-2
2.72*10-2
85.20
85.00
在较低浓度范围内,KD基本为一常数, 而当溶质浓度较高时,KD明显偏离常数, 这是因为溶质浓度较高时,溶质间的相互作用使得溶质 的活度明显小于其平衡浓度。
3.2.2 分配比D
被萃取物质在有机相中总浓度和水相中的总浓
第三章
溶剂萃取分离法
教学内容
3.1 萃取分离法简介 3.2 萃取分离的基本参数 3.3 萃取类型与萃取条件的选择 3.4 萃取分离操作和注意事项 3.5 现代萃取分离技术
3.1 萃取分离法简介
萃取分离法:是将样中的目标物选择性的转移到另一相 中或选择性地保留在原来的相中(转移非目标物),从而 使目标物与原来的复杂基体相互分离的方法。
Light phase
1. 为什么溶质会转移? 2. 如何达到分配平衡?
杂质
溶质 萃取溶剂 原溶剂
Heavy phase
3.2 萃取分离的基本参数

3.2.1 分配平衡常数----分配系数
分配定律:在一定温度下,当某一溶质在互不 相溶的两种溶剂中达到分配平衡时,该溶质在两相 中的浓度比为一常数。
• 萃取过程:开始Ni2+在水中以水合离子Ni(H20)62+形式存 在,是亲水的,在 pH 8 ~ 9 的氨性溶液中,加入丁二酮 肟,与Ni2+形成螯合物,是疏水性,可被氯仿萃取。 Ni2+ • 反萃取过程: 向丁二酮肟镍螯合物的氯仿萃取液中加入 萃取 盐酸,酸的浓度达到 0.5 ~ 1mol/L 时,螯合物被破坏, Ni2+又恢复了亲水性,重新回到水相。
A(W) → A(O)
KD
A O A W
在常温常压下KD为常数;应用前提条件 a) 稀溶液 b) 溶质对溶剂互溶没有影响 c) 必须是同一分子类型,不发生缔合或离解
如:用CCl4萃取I2,I2在两相中以分子的形式存在,存在形式相同。
碘在水---四氯化碳之间的分配(25℃)
[I2]aq mol/L 0.1148*10-2 0.0762*10-2 [I2]CCl4 mol/L 10.09*10-2 6.52*10-2 KD 87.89 85.54
度之比,即各种不同存在形式都考虑进去了。
有机相中溶质的总浓度 cO D 水相中溶质的总浓度 cW
当两相中无任何副反应时,KD=D CCl4—水萃取体系萃取I2 在复杂体系中KD 和D不相等。 分配比除与萃取体系和温度有关外,还与酸度、 溶质的浓度等有关,通常由实验直接测定。



实验室常用的稀释剂有6~12个碳的正构烷烃、氯仿、四氯化 碳、苯、甲苯和二甲苯。
常用萃取溶剂(稀释剂)
表 3 —4 名称 石油醚 己烷 乙醚 甲苯 苯 水 饱和 NaCl 水溶液 二氯甲烷 氯仿 四氯化碳 常用萃取剂 密度(g·mL-1) 0.63~0.65 0.69 0.71 0.87 0.88 1.00 1.20 1.34 1.50 1.59
物质的亲水性与疏水性
亲水性物质:易溶于水而难溶于有机溶剂的物质。 如:无 机盐类,含有一些亲水基团的有机化合物。 常见的亲水基团有一OH,一SO3H,一NH2,=NH 等。 疏水性物质:具有难溶于水而易溶于有机溶剂的物质。如: 有机化合物,常见的疏水基团有烷基如一CH3,一C2H5,卤 代烷基,苯基、萘基等。 物质含疏水基团越多,相对分子质量越大,其疏水性越强。
3
亲水
疏水
溶于CHCl3
水合离子的正电性被中和,亲水的水分子被疏水有机大分子取代 萃取剂:能与亲水性物质反应生成可被萃取的疏水性物 质的试剂。 螯合萃取剂:能与金属离子反应生成不带电荷的螯合 物的试剂 如 8-羟基喹啉、双硫腙 离子缔合萃取剂:能与金属配阴离子形成可被萃取的 离子缔合物的试剂 如磷酸三丁酯、罗丹明B 萃取溶剂:构成有机相而与水不相混溶的液体。 如CHCl3、苯、乙醇、CCl4

溶剂萃取是一种利用物质在互不混溶的两相(水相和有机 相)中的分配系数的差异,使目标物质与基体物质互相分 离的方法。 该法既可用于常量元素的分离,又适用于痕量元素的分离 与富集,而且方法简单、快速。若萃取组分是有机化合物, 便可直接进行光度分析,称为萃取光度法。该法具有较高 的灵敏度和选择性。

溶剂萃取法特点 萃取过程有选择性 能与其它步聚相配合 通过相转移减少产品水解 适用于不同规模 传质快 周期短,便于连续操作 毒性与安全环境问题
对萃取剂有以下基本要求:

具有至少一个萃取功能基团
具有足够的疏水性 良好的选择性


有较高的萃取容量
良好的物理性质

要求萃取剂化学稳定性好、无毒性、萃取速度 快、不产生乳化或形成第三相、价廉易得等。

大多数的萃取剂为易溶于有机相的液体,但也有少数萃取剂 是难溶于普通有机相的固体 (8-羟基喹啉),这时就需要用 另一种有机溶剂来溶解萃取剂。 稀释剂(惰性溶剂)是加入到有机相中起到溶解萃取剂、减 小有机相黏度和粘度、抑制乳化等作用的惰性溶剂。 稀释剂的密度与水的密度要有较大差异,以利于分层,其密 度一般介于正戊烷(0.63g/cm3)和CCl4(1.59 g/cm3)之间。
实验室液液萃取过程
分液漏斗
有机相 水相
一般工业液液萃取过程
萃取液 (待分离物 质+少量杂质 洗 涤 剂 萃 取 洗 涤 反 萃 剂 待 萃 物 质
萃取剂+稀释剂 (待返回使用) 反 萃 取
料液 (待分离物 质+杂质
萃取剂 +稀释剂 杂质+少量 待萃物质
产物(待萃物质) 萃残液 (杂质)
3.1.1 萃取分离法的基本原理
H O Ni
2+
O
CH3
C C
N N
OH OH
CH3 CH3
C C
N Ni N
O
N N
O
C C
+ 2
CH3
CH3 CH3
Ni(H2O)62+
丁二酮肟
H
NiDx2/CHCl3
例:8-羟基喹啉-CHCl3对Al3+ 的萃取
N Al(H2O)63+ + 3 OH O N Al + 3 H+ + 6 H2O
相关文档
最新文档