紫外-可见分光光度计的结构

合集下载

紫外可见分光光度计的结构

紫外可见分光光度计的结构

紫外可见分光光度计的结构紫外可见分光光度计(UV-Vis Spectrophotometer)是一种广泛应用于化学、生物、环境科学等领域的实验仪器。

它通过测量物质在紫外-可见光波段的吸收或透过光的强度来研究溶液的结构和浓度。

下面将详细介绍紫外可见分光光度计的结构。

1.光源:光源是紫外可见分光光度计的重要组成部分。

常用的光源有氘灯(D2灯)和钨灯(W灯)。

氘灯主要用于紫外光波段,钨灯主要用于可见光波段。

光源的稳定性和亮度决定了测量的精确性和灵敏度。

2.参比池:参比池用于校正光源的强度和波长。

它通常由空气或溶剂组成,并通过选择适当的光栅和检测光束经过参比池进行定标。

参比池还可以校正系统中的漂移误差。

3.单色器:单色器用于选择特定波长的光。

它通过光栅的作用使得散射的光只在特定波长被反射,从而实现波长的选择。

4.试样室:试样室是实验样品放置的位置。

样品溶液通过专门的试样室进入,在试样室中通过光束与光传感器之间交互作用,并测量光的强度或吸收。

5. 检测器:检测器是紫外可见分光光度计的核心部件之一、最常用的检测器是光敏电阻器(Photodiode)或光电倍增管(Photomultiplier Tube,PMT)。

光敏电阻器根据光的强度变化产生电信号,PMT则将光子转换为电子,并放大电信号。

6.数据处理系统:数据处理系统通常由计算机软件和控制电路组成,用于控制光源、接受和处理光信号,显示测量结果。

它还可以进行光谱图像的处理和分析,如波长校正、拟合曲线等。

紫外可见分光光度计的工作原理:当光束通过试样时,被溶液中的化合物吸收,导致光的强度减弱。

根据比尔-朗伯定律,光的吸收与溶液中物质的浓度成正比。

通过测量进入和离开试样室的光的强度,可以计算出溶液中物质的浓度。

总结起来,紫外可见分光光度计由光源、参比池、单色器、试样室、检测器和数据处理系统等部件构成。

它通过选择特定波长的光,测量样品吸收或透过光的强度,来研究溶液的结构和浓度。

紫外-可见分光光度计的基本组成和操作

紫外-可见分光光度计的基本组成和操作

2、仪器的维护与日常保养 分光光度计是精密光学仪器,正确安装、使用和保养对 保持仪器良好的性能和保证测试的准确度有重要作用。 (1)对仪器工作环境的要求: ①仪器应安放在干燥的房间内; ②仪器应放置在坚固平稳的工作台上; ③室内照明不宜太强;
④尽量远离高强度的磁场、电场及发生高频波的电器设 备;
在可见光区检验波长准确度最简便的方法是绘制镨钕滤 光片的吸收光谱曲线。镨钕滤光片的吸收峰为528.7nm和 807.7nm。
在紫外光区检验波长准确度比较实用和简便的方法是: 用苯蒸气的吸收光谱曲线来检查。
谱 钕 滤 光 片 吸 收 曲 线
苯 蒸 汽 的 吸 收 曲 线
(2)吸光度校正 其中应用最普遍的是以重铬酸钾水溶液的吸收曲线为标 准值校正。 (3)吸收池成套性检验 简便的方法进行配套检验: 用铅笔在洗净的吸收池毛面外壁编号并标注光路走向。
缺点:有微小暗电流(Dark current,40K的放射线激
发)。
阴极e光束 阳来自丝(Ni)抽真空直流放大
R - 90V DC +
(3)光电倍增管 石英套
阳极
栅极,
光束 屏蔽
光电倍增管示意图
优点:高灵敏度;响应快;适于弱光测定,甚至对单一 光子均可响应。
缺点:热发射强,因此暗电流大,需冷却(-30℃)。不 得置于强光(如日光)下,否则可永久损坏 PMT!
4、检测器 利用光电效应将透过吸收池的光信号变成可测的电信号。 常用的检测器有光电池、光电管及光电倍增管。 (1)硒光电池 优点:光电流直接正比于辐射能;使用方便、便于携带 (耐用、成本低);
缺点:电阻小,电流不易放大;响应较慢。只在高强度 辐射区较灵敏;长时间使用后,有“疲劳”现象。
Se Fe(Cu)

紫外可见分光光度法简介

紫外可见分光光度法简介

紫外-可见分光光度法简介紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS),它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。

按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。

紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。

操作简单、准确度高、重现性好。

波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。

分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。

吸收光谱描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。

紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。

最大吸收波长(λmax)表示物质对辐射的特征吸收或选择吸收,它与分子中外层电子或价电子的结构(或成键、非键和反键电子)有关。

朗伯-比尔定律是分光光度法和比色法的基础。

这个定律表示:当一束具有I0强度的单色辐射照射到吸收层厚度为b,浓度为c的吸光物质时,辐射能的吸收依赖于该物质的浓度与吸收层的厚度。

其数学表达式为:式中的A 叫做吸光度;I0为入射辐射强度;I为透过吸收层的辐射强度;(I/I0)称紫藤为透射率T;ε是一个常数,叫做摩尔吸光系数,ε值愈大,分光光度法测定的灵敏度愈高。

紫外-可见分光光度计有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。

②单色器[1]。

它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。

紫外可见分光光度计原理及操作.ppt

紫外可见分光光度计原理及操作.ppt

吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或
测定该物质的含量,这就是分光光度定性和定量分析的基础。 3)紫外分光光度法使用基于朗伯-比耳定律(Lambert-Beer)。
朗伯-比耳定律是光吸收的基本定律,俗称光吸收定律,是分光光度法
定量分析的依据和基础。
朗伯-比耳定律
一、透射率T%
dT d lg T 0.434 bdc T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸光度读数误差最小! 通常可通过调节溶液浓度或改变光程 b来控制A的读数在0.15~1.00范类型来自3.比例双光束分光光度计
由同一单色器发出的光被分成两束,一束直接到达检测器,另一束 通过样品后到达另一个检测器。这种仪器的优点是可以监测光源变化带
来的误差,但是并不能消除参比造成的影响
UV-2550的特点
6 挡狭缝可选
PC 控制存储、调用方便 可采用复制、拷贝方法在电子表格和字处理软件中处理数据和打印报 告 可加载膜厚、动力学、多波长、色彩分析等软件 DDM(双闪耀波长双单色器)降低杂散光,提高长波长区的能量响应 (UV-2550)
它的作用是放大信号并以适当方式指示或记录下来。现在一般的紫
外可见分光光度计有计算机控制和主机单片机控制两种类型,功能基本 类似。
类型
紫外-可见分光光度计的类型很多,但可归纳为三种类 型,即单光束分光光度计、双光束分光光度计和比例双光束 分光光度计。
1.单光束分光光度计 经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以 进行吸光度的测定。这种简易型分光光度计结构简单,操作方便,维修 容易,适用于常规分析。

第一章 第三节 紫外可见分光光度计的结构和原理

第一章 第三节 紫外可见分光光度计的结构和原理

二、定量分析
基本原理:通过测定溶液对一定波长 入射光的吸光度,依据朗伯-比耳定律, 求出溶液中物质的浓度。
应用范围:单组分、多组分。
1. 单组分的定量分析
吸光系数法(绝对法)
在测定条件下,如果待测组分的吸光 系数已知,可以测定溶液的吸光度,直接根 据朗伯-比耳定律,求出组分的浓度或含量。
【例1-4】已知维生素B12的在361nm处的质量 吸光系数为20.7L·g-1·cm-1。称取样品30.0mg, 加水溶解后稀释至1000ml,在该波长处用 1.00cm吸收池测定溶液的吸光度为0.618,计 算样品溶液中维生素B12的质量分数。
元件和出射狭缝 。 类型:棱镜、光栅。
λ2


色散元件
λ1





聚光元件
射 狭



入射狭缝:光由此进入单色器; 准直系统:使入射光成为平行光束; 色散元件:将复合光分解成单色光,棱镜或光栅; 聚光元件:将所得单色光聚焦至出射狭缝; 出射狭缝:将单色光比色皿。
动 画 演 示
玻璃棱镜适用于可见光区。 石英棱镜适用于可用于紫外、可见光区。 光栅可用于紫外、可见和近红外光谱区。
3. 吸收池
作用:光与物质发生作用的场所,要求吸收池 能让入射光束通过。
类型:玻璃池—只能用于可见光区; 石英池—可用于可见光区及紫外光区。
4. 检测器
作用:利用光电效应将透过吸收池的光信号 变成可测的电信号。
类型:光电池、光电管、光电倍增管。
Se Fe (Cu)
硒光电池
玻璃 透过光 Ag(Au)薄膜
塑 料
优点:使用方便、便于携带(耐用、成本低)。 缺点:电阻小,电流不易放大;响应较慢。

仪器分析_课后答案解析

仪器分析_课后答案解析

紫外-可见分光光度法思考题和习题1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。

吸光度:指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,用来衡量光被吸收程度的一个物理量。

吸光度用A表示。

透光率:透过透明或半透明体的光通量与其入射光通量的百分率。

吸光系数:单位浓度、单位厚度的吸光度摩尔吸光系数:一定波长下C为1mol/L ,l为1cm时的吸光度值百分吸光系数:一定波长下C为1%(w/v) ,l为1cm时的吸光度值发色团:分子中能吸收紫外或可见光的结构单元,含有非键轨道和n分子轨道的电子体系,能引起π→π*跃迁和n→ π*跃迁,助色团:一种能使生色团吸收峰向长波位移并增强其强度的官能团,如-OH、-NH3、-SH及一些卤族元素等。

这些基团中都含有孤对电子,它们能与生色团中n电子相互作用,使π→π*跃迁跃迁能量降低并引起吸收峰位移。

红移和蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移);吸收峰位置向短波方向移动,叫蓝移(紫移,短移)2.什么叫选择吸收?它与物质的分子结构有什么关系?物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。

这时称该物质对此波长(或波段)的光有选择性的吸收。

?由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。

3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征?电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。

而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。

第一章 紫外-可见分光光度法

第一章 紫外-可见分光光度法

➢ *跃迁:可以发生在任何具有不饱和键的 有机化合物分子中,其最大摩尔吸光系数max 很大。
➢ n*跃迁:发生在含有杂原子(O、N、S、P 、卤素等)的不饱和化合物中,其最大摩尔吸 光系数max 比较小。
二、常用术语
➢ *生色团:分子中可以吸收光子产生电子跃迁的基团 。含有键的不饱和基团
➢ *助色团:有些基团本身没有生色作用,但却能增强 生色团的生色能力,即它们与生色团相连时,会使其 吸收带最大吸收波长发生红移,并且增加其强度。通 常是带有非键电子对的杂原子的饱和基团,如-OH、 -NH2、-OR、-SH、-SR、-Cl、-Br、-I等。
不需参比液(消除了由于参比池的不同和制备空白溶液等产生 的误差)、克服了电源不稳而产生的误差,灵敏度高。
(4)光多道二极管阵列检测分光光度计
具有快速扫描的特点
可在0.1秒内获得190~ 820nm范围的全光光谱。 用于追踪化学反应的反应 动力学研究。 操作简单,只需将样品放 入无盖开放式样品室,并 点击“开始”即可。
音:
1 暗噪音:检测器与放大电路等各部件不确定性引起。
2 讯号噪音:亦称讯号散粒噪音 电子跃迁的不相等性
测量光强的不确定性
c 0.434K 1 1 c lgT T
➢ 当相对误差 c/c 最小时,求得T=0.368 或 A=0.4343。即当 A=0.4343 时,误差最小!
➢ 通常可通过调节溶液浓度或改变光程l 来控制 A 的读数在 0.2~0.7 范围内。
2. 杂散光 从单色器得到的单色光中与所需波长相 隔较远的光。
3. 散射光与反射光 使透光强度减弱 ,吸光度值偏高。
4. 非平行光 使l 增大影响测量值
(三)透光率测量误差T
由于光源不稳定性、读数不准等带来的误差。

紫外可见分光光度计的结构、工作原理与应用

紫外可见分光光度计的结构、工作原理与应用

紫外可见分光光度计紫外可见分光光度计原理是:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。

它是带状光谱,反映了分子中某些基团的信息。

可以用标准光谱图再结合其它手段进行定性分析。

根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数b为液池厚度,c为溶液浓度)可以对溶液进行定量分析。

你可以用紫外可见分光光度计测定定三种农药的波长在某溶液中的最大、最小吸收波长。

配制溶液-在光谱检测项下进行-调整检测光谱范围及速度--扫描光谱图--吸光度最大处对应波长为最大吸收波长,吸光度最小处对应的波长为最小吸收波长。

1.光源灯;2.滤光片;3.球面反射镜;4.入射狭缝;5.保护玻璃;6.平面反射镜;7.准直镜;8.光栅;9.保护玻璃;10.出射狭缝; 11.聚光镜;12.试样室; 13.光门;14.光电管.分光光度计工作原理:由光源灯(1)发出连续辐射光线,经滤光片(2)和球面反射镜(3)至单色器的入射狭缝(4)聚焦成像,光束通过入射狭缝(4)经平面反射镜(6)到准直镜(7)产生平行光,射至光栅(8)上色散后又以准直镜(7)聚焦在出射狭缝(10)上形成一连续光谱,由出射狭缝选择射出一定波长的单色光,经聚光镜(11)聚光后,通过试样室(12)中的测试溶液部分吸收后,光经光门(13)再照射到光电管(14)上.调整仪器,使透光度为100%,再移动试样架拉手,使同一单色光通过测试溶液后照射到光电管上.如果被测样品有光吸收现象,光量减弱放大器处理,将光能的变化程度通过数字显示器显示出来.可根据需要直接在数字显示器上读取透光度(T),吸光度(A)或浓度(C).基本操作:(1)通电---仪器自检----预热20min;(2)用键设置测试方式:透射比(T),吸光度(A),已知标样浓度方式(C)和已知标样浓度斜率(K)方式;(3)波长选择:用波长调节旋钮设置所需的单色光波长;(4)放样顺序:打开样品室盖,在1~4号放置比色皿槽中,依次放入%T校具(黑体),参比液,样品液1和样品液2.(5)校具(黑体)校"0.000":将%T校具(黑体)置入光路,在T方式下按"%T"键,此时仪器自动校正后显示"0.000"(6)参比液校"100"%T或"0.000"A:将参比液拉入光路中,按"0A/100%T"键调0A/100%T,此时仪器显示"BLA",表示仪器正在自动校正,校正完毕后显示"100"%T 或"0.000"A后,表示校正完毕,可以进行样品测定.(7)样品测定:将两样品液分别拉入光路中,此时若在"T"方式下则可依次显示样品的透射比(透光度)若在"A"方式下,则显示测得的样品吸光度.7200型光栅分光光度计的使用注意事项(1)(1) 预热是保证仪器准确稳定的重要步骤.(2) 比色皿的清洁程度,直接影响实验结果.因此,特别要将比色皿清洗干净.先用自来水将用过的比色皿反复冲洗,然后用蒸馏水淋洗,倒立于滤纸片上,待干后再收回比色皿盒中.必要时,还要对比色皿进行更精细的处理,如用浓硝酸或铬酸洗液浸泡,冲洗.(3) 比色皿与分光光度计应配套使用,否则会引起较大的实验误差. 比色皿不能单个调换 1.3 7200型光栅分光光度计的使用注意事项(2)(4) 比色皿内盛液应为其容量的2/3,过少会影响实验结果,过多易在测量过程中外溢,污染仪器. 比色皿中试样装入量应为2/3~3/4之间(5) 拿放比色皿时,应持其"毛面",杜绝接触光路通过的"光面".如比色皿外表面有液体,应用绸布拭干,以保证光路通过时不受影响.(6) 若待测液浓度过大,应选用短光径的比色皿,一般应使吸光度读数处于0.1~0.8范围内为宜.由于测定空白,标准和待测溶液时使用同样光径的比色皿,故不必考虑因光径变化而引起的影响.UV-754型紫外-可见分光光度计正确使用方法2.1 紫外分光光度计法概述(1)2.1.1定义用紫外光源通过分光光度技术对物质进行测定的方法叫作紫外分光光度法.所使用的仪器叫作紫外分光光度计.2.1.2原理因为许多化合物的分子结构中存在共轭双键,在200~400nm的紫外光区具有吸收光的特性,所以无需进行显色反应便能直接测定.2.1.3应用常用于对蛋白质和核酸进行定性,定量测定.蛋白质分子中所含酪氨酸,色氨酸和苯丙氨酸等芳香族氨基酸残基在波长280nm处具有最大吸收峰.故常用波长280nm处的吸光度测定蛋白质的浓度.2.1.4特点(1) 组成核酸的碱基也含有共轭双键,其最大吸收峰的波长在260nm处.但在280nm处也有一定的光吸收,对蛋白质的测定有一定的干扰作用.若分别测定280nm和260nm处的吸光度,可通过经验公式消除核酸对蛋白质测定的影响. (2)可对微量蛋白质(1~10g/L)不需显色,进行直接定量测定.因此操作简便,而且可回收样品.此外,盐类在280nm处无光吸收,少量盐类也不会影响测定结果.(3)紫外分光光度法完全符合Lambert-Beer定律的基本原理.在其它条件保持一致的情况下,被测溶液的吸光度与被测溶液的浓度成正比.2.2 UV-754型分光光度计的结构和工作原理2.2.1仪器结构由光源(钨灯或氚灯),单色器,试样室,接受器(光电管),微电流放大器,A/C 转换器,打印机,键盘和显示器等部件组成.微处理机(CPU)通过输入,输出口(I/O)对微电流放大器,显示器和打印机等部件进行控制,实现仪器的整体功能.2.2.2工作原理UV-7 5 4型紫外-可见分光光度计光学系统1.氚灯;2.钨灯;3.滤光镜;4.聚光镜;5.入射狭缝;6.平面;7.准直镜;8.光栅;9.出射狭缝; 10.聚光镜; 11.试样室; 12.光门; 13.光电管2.2.2工作原理由光源氚灯或钨灯(1或2)发出连续辐射光线经滤光镜(3)和聚光镜(4)至单色器入射狭缝(5)处聚焦成像,再经平面反射镜(6)反射至准直镜(7)产生平行光射至光栅(8)在光栅上色散后又经准直镜(7)聚焦在出射狭缝(9)上成一连续光谱,经出射狭缝射出的光在聚光镜(10)聚光后分别通过试样室 (11)中的空白溶液(或对照溶液),标准溶液或样品溶液,被部分吸收后光经光门(12)再照射到光电管(13)上.被光电管接收的光信号再被转换成电信号,后者通过输入,输出口(I/O).进入微处理机进行调零,变换对数,浓度计算以及打印数据等处理,将检测结果通过显示器和打印系统显示出来.2.3 UV-754型分光光度计使用方法(外型)2.3.1 UV-754型紫外可见分光光度计1.试样架拉手;2.键盘部分;3.数据打印;4.波长刻度盘;5.波长手轮;6.电源汗关;7.氚灯触发按钮;8.光源室.2.3 UV-754型分光光度计使用方法(键盘) UV-754型紫外-可见分光光度计键盘详细内容说明如下:2.3 UV-754型分光光度计使用方法(键盘内容1) ①功能键: F1~F8,暂无功能,备扩展使用. ② T键: 具有三种透光度状态调节功能.③ A/C键:吸光度/浓度转换键,按此键可分别表示"吸光度0~3A","吸光度0~","吸光度0~0.1A"和"浓度"四种状态.④送入键:只在"A/C键"处于"浓度"状态时才起作用. ⑤打印键:手动方式时有效,每按一次,便打印一次数据.⑥控制键:在分别使用"设定+","设定一","倍率","显示方式"和"打印方式"各键时,需与控制键分别联合使用才起作用.⑦设定+键:在"A/C键"处于"浓度"状态时才能设定"标准浓度值","斜率K值"或"斜率B值"等数据.其功能是将设定数值增加.2.3 UV-754型分光光度计使用方法(键盘内容2) ⑧设定- 键:是使设定数值减小,操作与"设定+键"类同.⑨倍率键:用来设定标准溶液浓度的放大倍数.有"1","0.1"和"0.01"三档,与"控制键"同时按下,倍率便发生相应的变化.⑩显示方式键:可表示"积分","浓度"和"样品号"三种状态.(11) 打印方式键:存在"自动"(每移动一次试样架,仪器自动打印一次数据),"方式1"(手动方式,每按一次此键,仪器打印一次数据)和"方式2"(每分钟定时打印一次数据)三种状态.每与"控制键"同时按一次此键便改变一个状态.(12) 送纸键:每按一次此键,仪器移动一次打印纸. (13) TAC:数字显示器显示测定结果或输入的数据. 2.3.2 UV-754型紫外可见分光光度计使用方法(1) (1)测试准备①将盛有"空白"或"对照"溶液的比色皿处于试样室光路位置; ②选择波长旋动波长手轮选定所需波长;③确定光源波长在200~290nm时,选择氚灯为光源;波长在290~360nm时,同时以氚灯和钨灯为光源;波长在360~850nm时,选择钨灯为光源;若使用氚灯,需按氚灯触发按钮启动;④仪器自检显示器显示"754"后,数字显示出现"100.0",表明仪器通过自检程序,此时仪器进入"0~100%","连续"和"自动"状态(打印系统处于自动打印状态)⑤仪器预热30min后方可进行测试.2.3.2 UV-754型紫外可见分光光度计使用方法测试过程①数字显示透光度"100.0"(或吸光度"0.00")2~3s后,将盛有标准溶液的比色皿移至光路,打印系统便自动打印出所得数据;②将盛有样品溶液的比色皿移至光路,打印系统即自动打印出该样品的数据.待第一个样品数据打印完毕后,将第二个样品置于试样室光路………,若有多个样品,操作以此类推。

仪器分析实验思考题

仪器分析实验思考题

紫外-可见分光光度法:1 紫外光谱法测苯甲酸钠含量的实验中使用的是玻璃吸收池还是石英吸收池?为什么?2 简述紫外-可见分光光度计的基本结构。

3 紫外-可见分光光度计中使用的光源有哪些?4苯甲酸测定中制作A-λ吸收曲线的目的是什么?5采用标准比较法求样品中苯甲酸钠的含量,计算原理是什么?6 荧光分光光度法测药片中VB2含量的实验中使用的比色皿是四面透光还是两面透光?为什么?7 物质的摩尔吸光系数和哪些因素有关?8 实验中如何确定物质的摩尔吸光系数?荧光分光光度法:1 简述荧光-分光光度计的基本结构。

2 荧光分光光度计中使用的光源是什么?3荧光分光光度计中第一单色器和第二单色器为什么不在一条直线上,而是呈90°角?4荧光分光光度法测定物质浓度的基本原理是什么?5荧光分光光度计中使用哪种灯提供光源?简述分子荧光法中维生素B2荧光波长的是多少?原子吸收分光光度法1简述火焰原子分光光度计的基本结构。

2火焰原子分光光度计中使用的光源是什么?3火焰原子分光光度计中,火焰是由哪两种气体燃烧产生的?4原子化器的作用是什么?自动电位滴定法:1电位滴定法测定VB1中Cl含量的实验中,所使用的指示电极和参比电极分别是什么?2电位滴定法较指示剂法有何优点?3 电位滴定法测定VB1中Cl含量的实验中,所使用的标准滴定溶液是什么?4电位滴定法测定VB1中Cl含量的实验中,如何确定滴定终点?5电位滴定法测定VB1中Cl含量的实验中,滴定操作时应注意哪些问题?气相色谱法1简述气相色谱仪的基本结构。

2简述气相色谱法分离原理。

3气相色谱法测定含量的实验中,流动相是什么?纯度有什么要求?4气相色谱法测定含量的实验中,使用的气体有哪些?5气相色谱法测定含量的实验中,使用的检测器是什么?6气相色谱法测定含量的实验中,使用的色谱柱是什么?7气相色谱法测定含量的实验中,定量分析的依据是什么?8常用气相色谱法的定性、主要有哪些定性方法。

4紫外-可见分光光度法

4紫外-可见分光光度法
在进行光度测量时,调节仪器的零点,消除由于吸收池壁及溶剂对 入射光的反射和吸收带来的误差,有时还可以扣除干扰的影响
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律

简述紫外-可见分光光度计的基本结构

简述紫外-可见分光光度计的基本结构

简述紫外-可见分光光度计的基本结构
紫外可见分光光度计是一种用于分析物质的仪器设备,其基本结构包括以下部分:
1. 光源:光源通常采用氘灯和钨灯。

氘灯主要用于紫外区域的分析,钨灯主要用于可见区域和近红外区域的分析。

2. 单色器:单色器用于将光源发出的多色光分解成单色光,以便进一步分析。

单色器通常包括衍射、光栅和全息三种类型。

3. 样品室:样品室通常是由四个透明的玻璃窗组成,样品被放置在中心位置。

样品室内部的设计可以减少对光的散射和吸收。

4. 探测器:探测器主要用于测量样品吸收的光线强度。

常用的探测器有光电二极管、光电倍增管和半导体探测器等。

5. 电子信号处理系统:电子信号处理系统通常由电路和计算机组成,用于将探测器所测得的光强信号转化为数据,便于进一步分析和处理。

6. 显示器:显示器用于展示分析结果,通常采用数字显示器或计算机屏幕。

以上就是紫外可见分光光度计的基本结构。

紫外可见分光光度计的结构

紫外可见分光光度计的结构

紫外可见分光光度计的结构
紫外可见分光光度计的结构主要由以下几个部分组成:光源系统、样品室、光学系统、检测器和信号处理系统。

光源系统是紫外可见分光光度计的重要组成部分之一,它一般采用氘灯、钨灯或者卤素灯作为光源。

氘灯主要用于紫外光区域的测量,钨灯主要用于可见光区域的测量,而卤素灯则可以同时在紫外和可见光区域进行测量。

样品室是放置样品的区域,它通常由一个透明的样品池和一个盖子组成,样品池可以用玻璃或者石英制成,以便透过紫外和可见光线。

在样品室中,可以放置待测样品或者参比液体,用于测量它们的光吸收或透射特性。

光学系统是用于将光从光源引导到样品室,并将经过样品的光引导到检测器进行测量的部分。

光学系统主要包括透镜、光栅、滤光片等光学元件,以及反射镜或棱镜等用于调整光路的装置。

检测器是紫外可见分光光度计的核心部分,它负责接收并转换通过样品后的光信号。

常用的检测器包括光电二极管(Photodiode)和光电倍增管(Photomultiplier Tube)。

光电二极管适用于可见光区域的测量,而光电倍增管则适用于紫外光区域的测量。

信号处理系统主要用于接收检测器转换的电信号,并对其进行放大、滤波和数字化处理,最后将结果显示在仪器的屏幕上或者输出到计算机或打印机。

信号处理系统可以采用模拟电路或数字电路进行设计,以满足不同应用的需求。

综上所述,紫外可见分光光度计的结构包括光源系统、样品室、光学系统、检测器和信号处理系统。

这些组成部分共同协作,使得紫外可见分光光度计能够精确测量样品的光吸收或透射特性,为化学、环境、生物等领域的分析提供了有力的工具。

第四章 光谱分析技术及相关仪器习题参考答案

第四章 光谱分析技术及相关仪器习题参考答案

第四章光谱分析技术及相关仪器习题参考答案一、名词解释1.激发光谱:将激发光的光源用单色器分光,连续改变激发光波长,固定荧光发射波长,测定不同波长的激发光照射下,物质溶液发射的荧光强度的变化,以激发光波长为横坐标,荧光强度为纵坐标作图,即可得到荧光物质的激发光谱。

从激发光谱图上可找出发生荧光强度最强的激发波长λex。

2.荧光光谱:选择λex作激发光源,并固定强度,而让物质发射的荧光通过单色器分光,测定不同波长的荧光强度。

以荧光波长作横坐标,荧光强度为纵坐标作图,便得荧光光谱。

荧光光谱中荧光强度最强的波长为λem 。

荧光物质的最大激发波长(λex)和最大荧光波长(λem)是鉴定物质的根据,也是定量测定中所选用的最灵敏的波长。

3.光谱分析:对物质发射辐射能的能谱分析或对辐射能与物质相互作用引起的能谱改变的分析均称为光谱分析。

4.吸收光谱:光照射到物质时,一部分光会被物质吸收。

在连续光谱中某些波长的光被物质吸收后产生的光谱被称作吸收光谱。

每一种物质都有其特定的吸收光谱,因此可根据物质的吸收光谱来分析物质的结构和含量。

5.发射光谱:一部分物质分子或原子吸收了外来的能量后,可以发生分子或原子间的能级跃迁,所产生的光谱称为发射光谱,包括线状光谱、带状光谱及连续光谱。

通过测定物质发射光谱可以分析物质的结构和含量。

6.摩尔吸光系数(ε):摩尔吸光系数表示在一定波长下测得的液层厚度为1cm, 溶液浓度c为1mol/L时的稀溶液吸光度值。

吸光系数与入射光波长、溶液温度、溶剂性质及吸收物质的性质等多种因素有关。

当其它因素固定不变时,吸光系数只与吸收物质的性质有关,可作为该物质吸光能力大小的特征数据。

7.分光光度计:能从含有各种波长的混合光中将每一单色光分离出来并测量其强度的仪器称为分光光度计。

它具有分析精密度高、测量范围广、分析速度快和样品用量少等优点。

根据所使用的波长范围不同可分为紫外光区、可见光区、红外光区以及万用(全波段)分光光度计等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强 度 氙灯(气体放电光源) 钨灯(热辐射光源) 氢灯
氙灯:紫外、 可见光区均可用 作光9-2 光源的波长-强度关系图
氙灯
氢灯 钨灯
图9-3 紫外-可见分光光度计的光源
二、仪器的基本组成-单色器
2、单色器:将光源发射的复合光分解成单色光并可从中选
出一任波长单色光的光学系统。 单色器主要由狭缝、色散元件和透镜系统组成。
内的空气质量进行一次检测,发现储藏室和卧室中的甲醛
含量竟然远远超出标准值的三倍。 国家标准《公共场所空气中甲醛测定方法》 (GB/T18204.26-2000) 第一法:酚试剂分光光度法 (仲裁法) 第二法:气相色谱法
问题:为什么分光光度法能测定空气中甲 醛的含量?
主要是由于空气中的甲醛与酚试剂反应生成嗪,嗪在
酸性溶液中被高铁离子氧化形成蓝绿色化合物,可以对
630nm的光产生选择性吸收,而可以建立相应的分析方
法。
紫外-可见分光光度计: 紫外辐射: λ=200~400nm 可见光区: λ=400~760nm
紫外-可见分光光度计
一、仪器的工作原理
采用一个可以产生多个波长的装置,通过分光装置, 得到一束平行的波长范围很窄的单色光,通过一定厚度的 试样溶液后,部分光被吸收,剩余的光照射到光电元件上 ,产生光电流,在仪器上可读出相应的吸光度或透光率, 完成测定。 定义: 单色光:只具有一种波长的光。 混合光 :两种以上波长组成的光。 朗博-比尔定律:
A ( )bc
二、仪器的基本组成
国产分光光度计类型主要有:72、721、722和725等型。 其基本构造主要由光源、单色器、吸收池、检测器和显示器 五大部分组成。
光源
单色器
样品池
检测器
显示器
图9-1 紫外-可见分光光度计基本结构示意图
二、仪器的基本组成-光源
1、光源:发出所需波长范围内的连续光谱,有足够的光强 度,稳定。 可见光区:钨灯,碘钨灯(320~1000nm)。 紫外区:氢灯,氘灯(180~375nm)。
图9-6 单色器光路示意图
二、分光光度计的基本组成-吸收池
3、 吸收池:又叫比色皿,用于盛放待测溶液和决定透光 液层厚度的器件。 主要有石英吸收池和 玻璃吸收池两种。 玻璃池:可见光区。 石英池:紫外区或可见光区。
图9-7 比色皿
注意事项:手执两侧的毛面,盛放液体高度四分之三。
主要规格:0.5cm、1.0cm、2.0cm、3.0cm和5.0cm
第九章 紫外-可见分光 光度法 第四节 紫外—可见分光 光度计
一、工作原理
二、基本组成
2014-12-15
知识要求
理解紫外-可见分光光度计的工作原理。 熟悉紫外-可见分光光度计的基本组成。
了解紫外-可见分光光度计的使用。
课程引入
2005年中央-12台曾报道,上海市的蔡女士一家刚住进 新房没多久,丈夫就得了白血病去世。通过检测机构对室
二、仪器的基本组成-检测器、显示器
4、检测器 利用光电效应将透过吸收池的光信号变成可测的电
信号,常用的有光电管、光电倍增管、光电二极管、光
电摄像管等,要求灵敏度高、响应时间短、噪声水平低 、稳定性好的优点。 5、显示器 将检测器输出的信号放大并显示出来的装置。低
档仪器,刻度显示;中高档仪器,数字显示,自动扫
哪些药物可用光度法进行含量测定?
敬请批评指正,谢谢大家!
玻璃棱镜:可见光区 石英棱镜:紫外区、可见光区
M1
M2 出 射 狭 缝
图9-4 三棱镜分光
图9-5 光栅衍射示意图
二、分光光度计的基本组成-单色器
色散元件是棱镜和反射光栅的组合。 狭缝和透镜系统控制光的方向。
800
λ1
白光
600 500 400
λ2
入射狭缝 准直透镜 棱镜 聚焦透镜 出射狭缝
描记录。
1 2 12 3 11 10 9 8 7 6 4 5
图9-8 72型分光光度计光学系统图 1-光源 2-进光狭缝 3,6-反光镜 4,7-透镜 5-棱镜 8-出光狭逢 9-比色皿 10-光量调节器 11-硒光电池 12-检流器
图9-9 UV-7504紫外-可见分光光度计
课后作业:
紫外-可见分光光度计的类型有哪些?
相关文档
最新文档