最新小学六年级数学:定义新运算
(完整版)定义新运算(最新整理)

例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9 的值?
练习:(1)对定义运算※为 a※b=(a+b)×2。 求 5※7 和 17※5 的结果?
(2)对于任意的两个数 a 和 b,规定 a b= 3a-b÷3。求 6 9 和 9 6 的值。
1
例题延伸:若 A * B 表示(A+3×B)×B,求 5 * 7 的值。
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为 数学语言,能够根据题意列出新符号代表的数学算式。
PQ
例 4:P、Q 表示两个数,P△Q=
,求 4△(6△9)的值是多少?
3
2
练习:(1)如果 a b= a b ,那么 1998 2000 的值是多少? 2
a 1
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值? (体现对应思想和解题的三
个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运 算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义 的算式含义,能够将新定义的运算方法转化为旧的运算规则。 一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与 定义算式中字母的对应;(3)将对应数字代入算式计算 (二)例题引导: 第一类:(直接运算型) 例题引导: ①表示求两个平均数的运算,则 a①b=(a+b)÷2,当 a=5,b=15 时,求 a①b?
完整)小学六年级数学:定义新运算

完整)小学六年级数学:定义新运算一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为4厘米的小长方形。
求剩余部分的周长。
2.几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能,说明理由。
导学】定义新运算新运算指的是具有新的运算符号和运算法则的运算。
要解答这类题目,需要理解“新”的含义。
解答新运算题目的方法有以下三种:1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
例题精讲】例1:定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
解:先计算3△4,3△4=(3+1)÷4=1.再代入6△1,6△1=(6+1)÷1=7.所以,6△(3△4)=7.例2:定义新运算为ab=(a+1)÷b,已知4=1.25,则x的值为多少?(1)求2(34)的值;(2)若xab=75,求x 的值。
解:(1) 2(34)=2×(3+1)÷4=2.(2) xab=x×(x+1)÷4=75.化简得x²+x=300,解得x=15或x=-20.因为x是自然数,所以x=15.例3:如果:1※2=1+11、2※3=2+22+222、3※4=3+33+333+3333,计算:(3※2)×5.解:3※2=3+33+333=369,所以(3※2)×5=1845.例4:对于任意的自然数a和b,规定新运算:a b a(a1)(a2)(a b1)。
(1)求1100的值(2)已知x1075,求x的值?解:(1) 1100=1+2+3+…+100=5050.(2) x10=x +(x+1)+…+(x+9)=10x+45,化简得x=3.能力展示】知识技巧回顾】1.研究到了新运算的定义及解题方法。
六年级《定义新运算》奥数教案

师:所以4⊙6等于多少?
生:2+12=14。
板书:
4、6的最大公约数是2;
4、6的最小公倍数是12;
所以4⊙6=2+12=14。
(一)星海历练1(5分钟)
把64=2×2×2×2×2×2表示成∫(64)=6,把243=3×3×3×3×3表示成g(243)=5,那么∫(16)=g___。
分析:
师:然后再怎么计算?
生:再将x和10代入公式就可以了。
板书:
解:4◇1=3×4-2×1=10
x◇10=3x-2×10=3x-20
x◇(4◇1)=3x-20=7
x=9
(二)太空探险2(5分钟)
对于数a,b,c,d,规定(a,b,c,d)=2ab-c+d。已知(1,3,5,x)=7,求x的值。
分析:
根据新运算所代表的意义,将(1,3,5,x)=7转化成我们所学过的加减乘除的形式再计算。
备课教员:
第八讲 定义新运算
一、教学目标:
1. 理解新定义符号的含义,严格按新的规则操作。
2. 经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养运用数学转化思想指导思维活动的能力。
3. 通过将新定义运算转化成一般运算的过程,感受数学中转化的思想方法。
二、教学重点:
理解新定义,按照新定义的式子代入数值。
(一)星海遨游1(10分钟)
定义新运算“⊙”如下:对于两个自然数a和b,他们的最大公约数与最小公倍数的和记为a⊙b,那么4⊙6=_________。
师:题目中新运算符号⊙所代表的意义是什么?
生:表示两个自然数最大公约数与最小公倍数的和。
师:对的,那4和6的最大公约数是多少?
最新六年级奥数定义新运算(精品课件)

练习1:
1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。
【思路导航】根据定义先算4△6。在这里“△”是新的运算符号。
3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
练习2:
1.设p、q是两个数,规定p△q=4×q-(p+q)÷2, 求5△(6△4)。 2.设p、q是两个数,规定p△q=p2+(p-q)×2。求 30△(5△3)。 3.设M、N是两个数,规定M*N=M/N+N/M,求10*20 -1/4。
第1讲 定义新运算
知识要点
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。 解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规的 四则运算算式进行计算。 定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。 新定义的算式中有括号的,要先算括号里面的。 但它在没有转化前,是不适合于各种运算定律的。
⑤=4×5×6,…… 如果1/⑥-1/⑦ =1/⑦×A,那么,A是 几?
【思路导航】这题的新运算被定义为: @ = (a-1)×a×(a+1), 据此,可以求出 : 1/⑥-1/⑦ =1/(5×6×7)-1/(6×7×8),
六年级奥数定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
(完整)小学六年级数学:定义新运算.doc

第三讲定义新运算学生姓名年级小学 6 年级学科数学授课教师日期时段核心内容新运算课型教学目标重、难点1、能理解运算定义及熟练解决新运算2、培养学生整体思想和转换思想;3、会灵活运用这些方法解决实际问题新运算解答方程;【精准诊查】【课首小测】1、一个长为 20 厘米、宽为 16 厘米的长方形纸片,沿它的边剪去一个长为8 厘米、宽为 4 厘米的小长方形。
求;剩余部分的周长。
2、几个连续自然数相加,和能等于56 吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。
【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。
1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
1【例题精讲】【例 1】定义新运算为a△b=(a+1)÷b,求6△(3△4)的值。
a 1【例 2】定义新运算为a e bb( 1)求2 e 3 e 4 的值;(2)若 x e 4 1.25 ,则x的值为多少?【例 3】如果:1※2=1+112 ※ 3= 2+22+2223※ 4= 3+33+333+3333计算:(3※2)× 5【例 4】对于任意的自然数a和b,规定新运算:a b a ( a 1) (a 2) L( a b1) ( 1)求 1 100 的值(2)已知x1075,求x为多少?【我爱展示】1. P 、 Q 表示数, P * Q 表示P Q,求 3 * (6 * 8)。
22. 如果 a △ b 表示 ( a 2) b ,例如 3△ 43 24 4 ,那么,当 a △ 5=30时 ,a=3. 定义: 6 ※2=6+66=722※3=2+22+222=246, 1 ※4=1+11+111+1111=1234. 7 ※5=。
1定义新运算

1定义新运算定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
小学六年级奥数中体现,解题方法较简单。
解答定义新运算,关键是要正确地理解新定义运算的算式含义。
然后严格按照新定义运算的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
简介定义新运算是一种特殊设计的运算形式,它使用的是一些特殊的运算符号,如:*、Δ等,这是与四则运算中的加减乘除不同的。
注意(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
例题定义新运算可以作为数学问题,如:例1、x,y表示两个数,规定新运算"*"及"△"如下:,其中m,n,k均为自然数,已知的值.分析我们采用分析法,从要求的问题入手,题目要求的值,首先我们要计算,根据"△"的定义:,由于k的值不知道,所以首先要计算出k的值.k值求出后,的值也就计算出来了,我们设,按"*"的定义:,在只有求出m,n时,我们才能计算的值。
因此要计算的值,我们就要先求出k,m,n的值。
通过可以求出m,n的值,通过求出k的值.解因为,所以有.又因为m,n均为自然数,所以解出:。
六年级奥数定义新运算及答案(最新编写-修订)

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示,例如3△4,那么,当a △5=30时, b a ⨯-)2(44)23(=⨯-=a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,,那么2-=⊗ab b a 。
[]=⊗⊕⊕⊗)53()86(45.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, b a 23-x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=.如果(x ※3)※4=421200,那么)1()1(++⨯⋅⋅⋅⨯+⨯b a a a x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=,其中的表示cxy by ax -+c b a ,,已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b 。
ab b a -+=22(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
(完整)小学六年级数学:定义新运算

第三讲定义新运算【课首小测】1、一个长为20厘米、宽为16厘米的长方形纸片,沿它的边剪去一个长为8厘米、宽为4厘米的小长方形。
求;剩余部分的周长。
2、几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果不能、说明理由。
【互动导学】【导学】:定义新运算新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义。
1.按照新定义的运算准确计算,常见的如△、◎、※等。
(特殊的运算符号,表示特定的意义,是人为设定的。
)2.理解新定义,严格按照新定义的式子代入数值计算。
3.把定义的新运算转化成我们所熟悉的四则运算或方程。
【例题精讲】【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值。
【例2】定义新运算为1a ab b+=(1)求()234的值; (2)若4 1.25x=,则x 的值为多少?【例3】如果:1※2=1+112※3=2+22+222 3※4=3+33+333+3333计算:(3※2)×5【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++++-(1)求1*100的值 (2)已知x *10=75,求x 为多少?【我爱展示】1.P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)。
2.如果a △b 表示(2)a b -⨯,例如3△4()3244=-⨯=,那么,当a △5=30时,a=3.定义: 6※2=6+66=722※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5= 。
4.定义新运算”⊗“,使下列算式成立:248⊗=,5313⊗=,3511⊗=,9725⊗=,求73⊗= 。
5.对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-,如果(3)23660x **=,那么x 等于几?【能力展示】【知识技巧回顾】1、学习到哪些知识:2、解答新运算的步骤:【巩固练习】1.如果规定a b *=5×a-12b ,其中a 、b 是自然数,那么106*= 。
小学六年级奥数 新定义运算

第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、?等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a*b =(a+b)×(a-b),求27*9。
2、设a*b=a 2+2b ,求10*6和5*(2*8)。
3、设a*b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa =+++⋅⋅,那么8*5= 。
六年级【下】数学-第四讲 定义新运算(20 张)全国通用实用课件

人教版 小升初 六年级
题型一:简单的(单层)新运算定义
例1:规定A※B=A×B+A-B,那么5※6=
解:因为A※B=A×B+A-B,所以有5※6=5×6+5-6=29
人教版 小升初 六年级
练1:设ab=5a-3b,那么1912等于多少?
人教版 小升初 六年级
练2:现定义一种新运算:a﹡b= a b ,则6﹡9是多少? 3
2、将新运算“﹡”定义为:a﹡b=a+b×(a-b),求27﹡9.
人教版 小升初 六年级
3、如果2﹡1= 1 ,3﹡2= 1 ,4﹡3= 1 ,那么6﹡3÷(2﹡6)。
2
33
444
人教版 小升初 六年级
4、如果1※2=1+2,2※3=2+3+4,...,5※6=5+6+7+8+9+10,求 x※3=57中x的值。
人教版 小升初 六年级
练1:对于非零自然数a、b,规定a﹡b=a× 1 、a△b=a÷1 ,
如果(x△3)﹡2=3360,那么x为多少? b
b
人教版 小升初 六年级
练2:规定③=2×3×4,④=3×4×5,⑤=4×5×6,⑥
=5×6×7......如果 ⑨ 1 - ⑩ 1 ⑩ 1 ,A那么A的值为多少?
人教版 小升初 六年级
练1:若2△3=2+3+4=9,5△4=5+6+7+8=26,按此规律,12△5=___
人教版 小升初 六年级
练2:观察下列等式:式中的“!”是一种数学运算符号,1!=1,
2!=2×1,3!=3×2×1,4!=4×3×2×1,......则计算 103 ! 101 !
完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
小学六年级数学题:定义新运算(A)---习题详解

小学六年级数学题:定义新运算(A)---习题详解本文将为小学六年级的学生详解定义新运算(A)的题。
题1题目:已知 x = 3,y = 2,求 xy + (3 - y) 的值。
解析:将 x 和 y 的值代入表达式中,得到 xy + (3 - y) = 3 * 2 + (3 - 2) = 6 + 1 = 7。
因此,该表达式的值为 7。
题2题目:已知 a = 8,b = 5,求 ab - 2b 的值。
解析:将 a 和 b 的值代入表达式中,得到 ab - 2b = 8 * 5 - 2 * 5 = 40 - 10 = 30。
因此,该表达式的值为 30。
题3题目:已知 m = 4,n = 6,求 2m + n^2 的值。
解析:将 m 和 n 的值代入表达式中,得到 2m + n^2 = 2 * 4 + 6^2 = 8 + 36 = 44。
因此,该表达式的值为 44。
题4题目:已知 p = 7,q = 3,求 (p-1)(q+2) 的值。
解析:将 p 和 q 的值代入表达式中,得到 (p-1)(q+2) = (7-1)(3+2) = 6 * 5 = 30。
因此,该表达式的值为 30。
题5题目:已知 x = 4,y = 2,求 x^2 - y^2 的值。
解析:将 x 和 y 的值代入表达式中,得到 x^2 - y^2 = 4^2 - 2^2 = 16 - 4 = 12。
因此,该表达式的值为 12。
以上是关于定义新运算(A)的五道题的解析。
请注意,以上答案仅供参考,题目中的数值可能因实际情况而有所不同。
小学六年级奥数-定义新运算

• 【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44 ,那么7*4=________;210*2=________。 • 【思路导航】经过观察,可以发现本题的新运算 “*”被定义为。因此
练习1:
• 1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求 27*9。 • 2.设a*b=a2+2b,那么求10*6和5*(2*8)。 • 3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
• 【例题2】设p、q是两个数,规定:p△q=4×q(p+q)÷2。求3△(4△6)。 • 【思路导航】根据定义先算4△6。在这里“△”是新 的运算符号。 • 3△(4△6) • =3△【4×6-(4+6)÷2】 • =3△19 • =4×19-(3+19)÷2 • =76-11 • =65
练习5:
• 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。 • 2.对两个整数a和b定义新运算“△”:a△b= ,求 6△4+9△8。 • 3.对任意两个整数x和y定于新运算,“*”:x*y= (其中m是一个确定的整数)。如果1*2=1,那么 3*12=________。
• 因此
7*4=7+77+777+7777=8638 210*2=210+210210=210420
第八讲 定义新运算 学生版-六年级数学思维拓展

第8讲 定义新运算义一些其他的运算,这里所说的定义,是指按照某种约定,给这种新运算一个明确的含义,只要弄明白这种含义,就可以正确地计算出有关算式的结果。
例1 “⊙”表示一种新的运算,它是这样定义的:a ⊙b=axb-(a+b)求:(1) 3⊙5;(2) (3⊙4)⊙5。
【思路点拨】 看起来和以前的加、减、乘、除不一样。
那么这里的新运算和加、减、乘、除有什么联系呢?按照题目中的定义,新运算表示两个数的积减去这两个数的和所得的差。
以前学加、减、乘、除运算的时候,要注意运算顺序,这样的新运算的运算顺序是怎样的?在有括号的算式中,应先算小括号里的,再算中括号里的。
如果没有括号,就从左往右依次运算。
例2 将新运算“*”定义为:a*b=÷÷ ×b a b a 1111(a 、b 非0)。
求3*(4*5)。
【思路点拨】新运算的定义是两个数的倒数的积除以这两个数的倒数的商。
注意,除以倒数的商,后面要有括号。
要先算 4*5。
例3 如果2△3=2+3+4=9,5△4=5+6+7+8=26,那么:(1)求9△5;(2) 解方程χ△3=15【思路点拨】 这个新运算有点儿复杂,表示的是几个连续自然数连加。
新运算中的第一个数就是第一个加数,新运算中的第二个数就是加数的个数。
例4 规定“ ”的运算法则如下,对于任何整数a,b:(2a+b-1 (a+b ≥10),a b=2ab (a+b<10)。
求:1 2+2 3+3 4+4 5+5 6+6 7+7 8+8 9+9 10。
【思路点拨】这道题有两种情况,要先看这两个数的和,再把两个数的和与10比较大小。
如果两个数的和不比10小,那就是表示2a+b-1,如果两个数的和小于10,那就是表示2ab 。
1 2+2 3+3 4+45 这几项中两个数的和都小于10;5 6+6 7+7 8+89 +9 10这几项中两个数的和都大于10。
所以在计算时要分成两步来计算,先算两个数的和小于10的;后算两个数的和大于10的。
定义新运算(六年级)

定义新运算【知识要点】“新运算”:就是用*、[△]、☆、⊙等多种符号,按照一定的关系,临时规定的一种新的运算程序.【例题】例1 a 、b 是自然数,规定a ▲b =155a b ⨯-⨯,则5▲10 10▲5(填“=”或“≠”).例 2.A 、B 表示两个数,A ※B =3A B+,则10※(6※9)= .例3.规定x [△]y =y x yx ⨯+,则(3[△]2)[△](4[△]10)= .例4 规定2,yx y x y x y x +=⊕⨯=⊗,则()[]3331⊗⊕⊗=例5 现定义两种运算:“⊕”、“⊗”,对于任意整数、b ,1,a b a b ⊕=+-1a b a b ⊗=⨯+,则4[(68)(85)]⊕⊕⊗⊕= .例6 如果定义新运算“*”,使得5*2=51+52=30,4*3=41+42+43=84,那么2*7的值是多少?例7 对于数,,,a b c d ,规定,,,2a b c d ab c d <>=-+.已知7,5,3,1=〉〈x ,求x 的值.【练习】1.如果规定152a b a b *=⨯-⨯,其中a 、b 是自然数,那么: (1)10*6= ; (2)6*10= .2.设32a b a b ∇=⨯-⨯,则43135∇⎪⎭⎫ ⎝⎛∇= .3.A.B 是两个数,规定3□4=3×4×5×6=360,2□3=2×3×4=24.求4□3 ,1□2□3六年级4. 规定()b a b a b a +-⨯=∆,则()()5823∆∆∆的值是多少?5.规定:符号∆为选择两个数中较大的数的运算,O 为选择两个数中较小的数的运算.例如:353,553=O =∆,则()[]()[]735537∆O ⨯∆O 的值是多少6.规定()()b a a a b b a ⨯⨯+⨯+⨯-=∇ 211(a 、b 为自然数且a<b),求()()5354∇+∇的值。
六年级定义新运算知识点

六年级定义新运算知识点在六年级数学学习中,我们将学习一些新的运算知识,这些知识将帮助我们更好地解决数学问题。
本文将对六年级定义的新运算知识点进行全面介绍。
一、整数运算整数运算是六年级数学学习的基础。
在整数运算中,我们将学习加法、减法、乘法和除法等运算。
整数运算可以帮助我们更好地理解正数、负数和零之间的关系,掌握数轴上的运算规则。
1. 加法运算:在六年级中,我们将学习正数与正数相加、负数与负数相加和正数与负数相加的规则。
例如,当两个正数相加时,其结果仍为正数;当两个负数相加时,其结果仍为负数;当正数与负数相加时,需要根据它们的绝对值大小判断结果的正负性。
2. 减法运算:六年级中的减法运算将涉及正数与正数相减、负数与负数相减以及正数与负数相减等情况。
通过减法运算,我们可以更好地理解数的相反数概念,并掌握正数减去负数和负数减去正数的规则。
3. 乘法运算:在乘法运算中,我们将学习正数与正数相乘、负数与负数相乘和正数与负数相乘的运算规则。
正数与正数相乘结果为正数,负数与负数相乘结果也为正数,而正数与负数相乘结果为负数。
4. 除法运算:在六年级中,我们将学习正数与正数相除、负数与负数相除以及正数与负数相除的运算。
需要注意的是,除数不能为零。
正数与正数相除或负数与负数相除的结果为正数,而正数与负数相除的结果为负数。
二、分数运算分数是六年级较为复杂的运算内容之一。
在分数运算中,我们将学习分数的四则运算,包括分数的加减乘除。
1. 分数加减:在分数加减运算中,我们需要找到两个分数的公共分母,然后将它们的分子相加或相减,再将结果化简为最简分数。
2. 分数乘法:分数乘法的规则是将两个分数的分子相乘,同时将分母相乘,最后再将结果化简。
3. 分数除法:分数除法需要将除数的分子与被除数的分母相乘,同时将除数的分母与被除数的分子相乘,最后将结果化简为最简分数。
三、小数运算小数运算是在六年级中引入的新内容之一。
小数运算可以帮助我们更好地理解小数的大小关系,掌握小数的加减乘除运算。
定义新运算完整版

定义新运算知识要点:定义新运算就是以加减乘除四则运算为基础,用某种新的符号来表示新运算。
见到这种新的运算符号所定义的运算后,就按照它所规定的“运算程序”进行运算,直到得出最后的结果。
运算时要严格按照新运算的定义要求进行计算,不得随意改变运算顺序,这是最关键的一点。
运算时,有括号的先算出括号里的值,再算出括号外的值,在没有确定新定义运算具有交换律,结合律之前,不能运用运算定律解题。
运算的符号可以是※,也可以是○,□。
§。
等,符号的种类是次要的,符号定义的运算运算程序才是主要的。
例1:设a、b是两个自然数,定义a*b=2a+4b,计算4*5是多少?开心一练:1设a、b是两个自然数,定义a*b=3a+5b,计算6*3是多少?2 对于自然数,定义a*b=3a+2b,求(1)10*11(2)11*10例2:定义新运算“*”对任何数a和b,有a*b=a×b-a+b,计算(1)8*10(2)(3*4)*5开心一练:1 定义新运算“*”对任何数a和b,有a*b=a×b+a-b,计算(1)4*6 (2)(4*6)*52对于整数a、b,设a*b=3a+b-1,求(1)4*(3*5)(2)(4*3)*53规定a△b=3a-b,求10△(2△5)。
例3:设a*b=4a-3b,求(1)5*(3*2)(2)x*(2*x)=15,求x。
开心一练:1已知a*b=a×b+a,如果(3*x)*2=18求x。
2设a*b=5a+4b,求(1)4*(3*2)(2)已知x*(4*x)=122,求x。
例4:对整数a*b,规定a*b=ax+b,如果4*5=23,求3*2的值。
开心一练:1 对整数a*b,规定a*b=a÷b×2+ab+x,如果6*3=28,求5*2的值。
2 对于整数a、b,设a*b=3a-bx,已知5*4=7,求x。
例5:设a、b都表示数,规定a♦b=3×a-2×b (1)求3♦2,2♦3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学:定义新运算
【课首小测】
小学六年级数学:定义新运算
2、几个连续自然数相加,和能等于56吗?如果能,有几种不同的答案?写出这些答案;如果
不能、说明理由.
【互动导学】
【导学】:定义新运算
新运算在于有新的运算符号以及新的运算法则,解答这类题型须理解“新”的意义.
1.按照新定义的运算准确计算,常见的如△、◎、※等.(特殊的运算符号,表示特定的意义,
是人为设定的.)
2.理解新定义,严格按照新定义的式子代入数值计算.
3.把定义的新运算转化成我们所熟悉的四则运算或方程.
【例题精讲】
【例1】定义新运算为a △b =(a +1)÷b ,求6△(3△4)的值.
【例2】定义新运算为1
a a
b b
+=
(1)求()234的值; (2)若4 1.25x
=,则x 的值为多少?
【例3】如果:1※2=1+11
2※3=2+22+222 3※4=3+33+333+3333
计算:(3※2)×5
【例4】对于任意的自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++++
++-
(1)求1*100的值 (2)已知x *10=75,求x 为多少?
【我爱展示】
1.P 、Q 表示数,*P Q 表示2
P Q
+,求3*(6*8).
2.如果a △b 表示(2)a b -⨯,例如3△4()3244=-⨯=,那么,当a △5=30时,a=
3.定义: 6※2=6+66=72
2※3=2+22+222=246, 1※4=1+11+111+1111=1234. 7※5= .
4.定义新运算”⊗“,使下列算式成立:
248⊗=,5313⊗=,3511⊗=,9725⊗=,求73⊗= .
5.对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-,如果(3)23660x **=,那么x 等于几?
【能力展示】
【知识技巧回顾】
1、学习到哪些知识:
2、解答新运算的步骤:
【巩固练习】
1.如果规定a b *=5×a-1
2
b ,其中a 、b 是自然数,那么106*= . (2011实外)
2.对于自然数a 、b 、c 、d ,符号a b d c ⎛⎫
⎪⎝⎭
表示运算a ×c-b ×d ,
已知1<14b d ⎛⎫
⎪⎝⎭
<3,则b+d 的值是 . (2010实外)
3.定义新运算:ab
a b a b
∆=+,求2△10△10= . (2012成外)
4.对任意两数a 和b ,都有a ※b=23a b +,若6※x=22
3
,则x= . (2009实外)
5.如果规定:3=2×3×4,4=3×4×5,12=11×12×13,…,
111=252626-⨯ ,那么 = . (七中嘉祥)
6.设a 、b 分别表示两个数,如果a b *=342a b +,如4*3=3443
122
⨯+⨯=,则 (1)()267** = .
(2)如果()67109x **=,那么x = .(七中嘉祥)
8.规定:对于大于1的自然数n ,“
”表示如下运算:
=()
1
1n n ⨯+
如: =1
34
⨯,那么当n=49时,计算 + + + … + (2013西川)
【课后作业】
1.现定义一种新运算“*”,对于任意两个整数,a*b=a ×b-1,则8*(2*3)的结果是 .
2.定义新运算:对任意实数a 、b ,都有a ☆b=2a b -,那么2☆1= .
3 2
3 4 n n
3.若a、b是有理数,我们定义新运算“※”,使得a※b=2a-b,则(5※3)※1= . 4.定义一种新运算a▼b=2a-b,a▲b=b-a,求(2▼3)▲(3▼2)= .
5.定义新运算“♂”,对任意a,b有a♂b=
3
2
a b
,若4♂x=5,求x的值.。