2019中考数学第一轮复习导学案整式及其运算
2019年苏州市中考数学一轮复习第2讲《整式》讲学案
2019年中考数学一轮复习第2讲《整式》【考点解析】1. 代数式及相关问题【例题】. (2019·重庆市A卷)若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.5【分析】把a与b代入原式计算即可得到结果.【解答】解:当a=2,b=﹣1时,原式=2﹣2+3=3,故选B【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.【变式】(2019·湖州市 )当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 4【分析】把x的值代入代数式进行计算即可得解.【解析】把x=1代入代数式4−3x即可得原式=4-3=1.故选A.【点评】代入正确计算即可.2. 幂的运算【例题】(2019海南)下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.【变式】(2019·重庆市B卷)计算(x2y)3的结果是()A.x6y3B.x5y3C.x5y D.x2y3【考点】幂的乘方与积的乘方.【分析】根据积的乘方和幂的乘方法则求解.【解答】(x2y)3=(x2)3y3=x6y3,【点评】本题考查了积的乘方和幂的乘方,熟练掌握运算法则是解题的关键. 3. 整式的概念【例题】(2019·山东潍坊)若3x 2n y m与x 4﹣n y n ﹣1是同类项,则m+n= .【考点】同类项.【分析】直接利用同类项的定义得出关于m ,n 的等式,进而求出答案. 【解答】解:∵3x 2n y m 与x 4﹣n y n ﹣1是同类项,∴,解得:则m+n=+=.故答案为:. 【变式】1.若2m 5x y -与n x y 是同类项,则m n +的值为( )A .1 B.2 C .3 D.4 【答案】C .【解析】∵2m 5x y -与n x y 是同类项,∴m 1m n 3n 2=⎧⇒+=⎨=⎩.故选C .4. 整式的运算【例题】(2019·湖南常德)计算:(25)(32)b a b a a b ++-= 【答案】52b +32a .【分析】按照单项式乘多项式的法则展开,去括号合并即可得到结果. 【解析】(25)(32)b a b a a b ++-=2ab+52b +32a -2ab=52b +32a .【点评】本题考查的是整式的混合运算能力,是各地中考中常见的计算题型. 【变式】(2019·山东济宁)已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3 B .0C .6D .9【考点】代数式求值.【分析】将3﹣2x+4y 变形为3﹣2(x ﹣2y ),然后代入数值进行计算即可. 【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;5. 化简求值【例题】(2019·湖南长沙)先化简,再求值:(x+y)(x -y)-x(x+y)+2xy ,其中x=()3p -,y=2.【答案】xy -2y ;-2.【分析】首先根据平方差公式和单项式与多项式的乘法法则将多项式展开,然后进行合并同类项,最后将x 和y 的值代入化简后的式子进行计算.【解析】原式=2x -2y -2x -xy+2xy=xy -2y , 当x=()3p-=1,y=2时,原式=xy -2y =1×2-4=2-4=-2.【点评】熟练整式的运算以及计算准确是解决本题的关键.【变式】(2019·青海西宁)已知x 2+x ﹣5=0,则代数式(x ﹣1)2﹣x (x ﹣3)+(x+2)(x ﹣2)的值为 2 . 【考点】整式的混合运算—化简求值.【分析】先利用乘法公式展开,再合并得到原式=x 2+x ﹣3,然后利用整体代入的方法计算. 【解答】解:原式=x 2﹣2x+1﹣x 2+3x+x 2﹣4 =x 2+x ﹣3, 因为x 2+x ﹣5=0, 所以x 2+x=5, 所以原式=5﹣3=2. 故答案为2.6. 利用整式的有关知识探究综合问题【例题】(2019·贵州铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= . 【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1,从而可得. 【解析】(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【点评】解决问题要认真审题,在找出规律后要加以验证. 21世纪教育【变式】观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式【解析】通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n.【答案】(2n+1)2﹣(2n﹣1)2=8n7. 分解因式【例题】(2019广东汕头)从左到右的变形,是因式分解的为()A.(3-x)(3+x)=9-x2B.(a-b)(a2+ab+b2)=a3-b3C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)D.4x2-25y2=(2x+5y)(2x-5y)【答案】D.【解析】根据因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可:【解答】(3-x)(3+x)=9-x2不是因式分解,A不正确;(a-b)(a2+ab+b2)=a3-b3不是因式分解,B不正确;a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)不是因式分解,C不正确;4x2-25y2=(2x+5y)(2x-5y)是因式分解,D正确,故选D.【点评】要正确理解因式分解的定义.【变式】1.(2019·湖北黄石)因式分解:x2﹣36= (x+6)(x﹣6).【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.2.(2019·湖北荆门)分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【考点】因式分解-运用公式法.【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).8. 利用提公因式分解因式ab =【例题】(2019·舟山 )因式分解:a【答案】a(b-1)【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,直接提取公因式a 即可.【解析】原式=a(b -1).【点评】要确定好公因式,还要看是否分解到不能再分为止. 【变式】(2019·吉林·3分)分解因式:3x 2﹣x= x (3x ﹣1) . 【考点】因式分解-提公因式法.【分析】直接提取公因式x ,进而分解因式得出答案. 【解答】解:3x 2﹣x=x (3x ﹣1). 故答案为:x (3x ﹣1). 9. 利用公式法进行因式分解【例题】(2019·辽宁葫芦岛)分解因式:2249m n -= . 【答案】(23)(23)m n m n +-.【分析】由平方差公式a 2-b 2=(a+b)(a-b)即可得. 【解析】原式=(23)(23)m n m n +-.【点评】本题考查了用平方差公式分解因式,要记住公式的特征是解题的关键. 【变式】(2019·四川宜宾)分解因式:ab 4﹣4ab 3+4ab 2= ab 2(b ﹣2)2. 【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解. 【解答】解:ab 4﹣4ab 3+4ab 2 =ab 2(b 2﹣4b+4) =ab 2(b ﹣2)2.故答案为:ab 2(b ﹣2)2. 10. 灵活应用多种方法分解因式【例题】(2019·辽宁丹东)分解因式:xy 2﹣x= x (y ﹣1)(y+1) . 【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解. 【解答】解:xy 2﹣x , =x (y 2﹣1), =x (y ﹣1)(y+1). 故答案为:x (y ﹣1)(y+1) 【变式】(2019·湖北鄂州)分解因式:a 3b -4ab = . 【答案】ab (a+2)(a-2).【解析】先提公因式ab,然后把a2-4利用平方差公式分解即可.a3b-4ab =ab(a2-4) =ab(a+2)(a-2).【点评】本题考查的是综合运用知识进行因式分解的能力.【典例解析】1.(2019·山东滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【考点】因式分解的应用.【分析】运用多项式乘以多项式的法则求出(x+1)(x﹣3)的值,对比系数可以得到a,b的值.【解答】解:∵(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.故选:B.【点评】本题考查了多项式的乘法,解题的关键是熟练运用运算法则.2.(2019·重庆市B卷)若m=﹣2,则代数式m2﹣2m﹣1的值是()A.9 B.7 C.﹣1 D.﹣9【考点】代数式求值.【分析】把m=﹣2代入代数式m2﹣2m﹣1,即可得到结论.【解答】解:当m=﹣2时,原式=(﹣2)2﹣2×(﹣2)﹣1=4+4﹣1=7,故选B.【点评】本题考查了代数式求值,也考查了有理数的计算,正确的进行有理数的计算是解题的关键.3.(2019·四川南充)如果x2+mx+1=(x+n)2,且m>0,则n的值是.【分析】先根据两平方项确定出这两个数,即可确定n的值.【解答】解:∵x2+mx+1=(x±1)2=(x+n)2,∴m=±2,n=±1,∵m>0,∴m=2,∴n=1,故答案为:1.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.【中考热点】【例题1】(2019·贵州安顺)下列计算正确的是()A.a2•a3=a6B.2a+3b=5abC.a8÷a2=a6D.(a2b)2=a4b【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方及幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,本选项错误;B、2a+3b不能合并,本选项错误;C、a8÷a2=a6,本选项正确;D、(a2b)2=a4b2,本选项错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.【例题2】. (2019·吉林)先化简,再求值:(x+2)(x﹣2)+x(4﹣x),其中x=.【考点】整式的混合运算—化简求值.【分析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=代入化简后的式子,即可求得原式的值.【解答】解:(x+2)(x﹣2)+x(4﹣x)=x2﹣4+4x﹣x2=4x﹣4,当x=时,原式=.【例题3】(2019·内蒙古包头)若2x﹣3y﹣1=0,则5﹣4x+6y的值为 3 .【考点】代数式求值.【分析】首先利用已知得出2x﹣3y=1,再将原式变形进而求出答案.【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.2019-2020学年数学中考模拟试卷一、选择题1.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.2.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高( )A.平均数变小,中位数变小B.平均数变小,中位数变大C.平均数变大,中位数变小D.平均数变大,中位数变大3.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A.4℃B.﹣4℃C.4℃或者﹣4℃D.34℃4.如图,将正五边形ABCDE沿逆时针方向绕其顶点A旋转,若使点B落在AE边所在的直线上,则旋转的角度可以是()A.72°B.54°C.45°D.36°5.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19986.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.257.如图,将ABC 绕点A 逆时针旋转110,得到ADE ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55B .50C .45D .358.如图是某几何体的三视图,则该几何体的表面积为( )A .B .C .D .9.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒10.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,侧得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 为( )A .B .C .D .11.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .14A .m >1B .m >3C .m <1D .1<m <3二、填空题13.婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF 的对角线AC 的中点O 为圆心,OB为半径作⊙O ,AQ 切⊙O 于点P ,并交DE 于点Q ,若AQ =,则该圆的半径为_____cm .14. 15.若关于x 的分式方程7311+=--mx x 有增根,则m 的值为________。
2019中考数学一轮复习 教学设计五(整式) 鲁教版
(3)合并同类项法则:
(4)去括号法则:括号前是“+ ”号,________________________________
括号 前是“-”号,________________________________
③(-2a +3b)(-2 a-3b);④(2a+3b)(-2a-3b).
A.①②;B.②③;C.③④;D. ①④
二:【经典考题剖析】
1.计算:-7a2b+3ab2-{[4a2b-(2ab2-3ab)]-4ab-(11ab2b-31ab-6ab2}
2.若 求(x2m)3+(yn)3-x2m·yn的值.
4.下列各题计算正确的是()
A、x8÷x4÷x3=1 B、a8÷a-8=1 C. 3100÷399=3 D.510÷55÷5-2=54
5.若 所得的差是单项式.则m=___.n=_ ____,这个单项式是____________.
6.- 的系数是______,次数是______.
7.求值:(1- )(1- )(1- )…( 1- )(1- )
2.若代数式-2xayb+2与3x5y2-b是同类项,则代数式3a-b=_______
3.合并同类项:
4.下列计算中,正确的是()
A.2a+3b=5ab;B.a·a3=a3;C.a6 ÷a2=a3;D.(-ab)2=a2b2
5.下列两个多项式相乘,可用平方差公式().
①(2a-3b)(3b-2a);②(-2a+3b)(2a+3b)
(a+b)3=a3+3a2b+3ab2+b3
2019年中考数学复习课时3整式及其运算导学案.doc
2019年中考数学复习课时3整式及其运算导学案【课前热身】 1. 31-x 2y 的系数是 ,次数是 . 2.计算:2(2)a a -÷= .3.下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. 计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x - 5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b + 6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a 万元【考点链接】 1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值.3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项.合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ;(3) (a +b)2= ;(4)(a -b)2= .7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 若0a >且2x a =,3y a =,则x y a -的值为( ) A .1- B .1 C .23 D .32例2按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a4 2.下列运算中,结果正确的是( ) A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .74. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 1 1 1 1 2 11 3 3 1 1 4 6 4 1 .......................................ⅠⅡ 1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++。
2019版中考数学《1.2整式及其运算》导向(含答案)
§1.2 整式及其运算一、选择题1.(原创题)下列的运算中,其结果正确的是( )A .32+23=5 5B .16x 2-7x 2=9x 2C .x 8÷x 2=x 4D .x(-xy)2=x 2y 2解析 A .32+23不能合并,此选项错误; B .16x 2-7x 2=9x 2,此选项正确; C .x 8÷x 2=x 6,此选项错误; D .x(-xy)2=x 3y 2,此选项错误. 答案 B2.(原创题)已知整式x 2-52x =6,则12-2x 2+5x 的值为( ) A .0 B .6C .12D .18解析 ∵x 2-52x =6,∴2x 2-5x =12,∴12-2x 2+5x =12-(2x 2-5x)=12-12=0.故选A.答案 A3.(原创题)若2x=61,4y=33,则2x +2y的值为 ( )A .94B .127C .129D .2 013解析 由同底数幂的乘法与幂的乘方的法则可得2x +2y=2x ·22y =2x ·4y=61×33=2 013.故选D.答案 D4.(原创题)已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…依次类推,则a 2 015的值为 ( ) A .-2 015 B .-2 014 C .-1 007D .-1 008解析 由于a 1=0,a 2=-|a 1+1|=-1,a 3=-|a 2+2|=-1,a 4=-|a 3+3|=-2,a 5=-2,a 6=-3,a 7=-3,a 8=-4,a 9=-4,a 10=-5,a 11=-5,a 12=-6,……,所以a 2 015=-2 0142=-1 007,故选C. 答案 C 二、填空题5.(原创题)学校购买了一批图书,共a 箱,每箱有b 册.学校决定将这批图书的一半加一本捐给社会福利院,将剩余图书的一半加一本捐给聋哑学校,则剩余的图书为________册(用含a ,b 的代数式表示).解析 根据题意,得ab -⎝ ⎛⎭⎪⎫ab 2+1-12⎣⎢⎡⎦⎥⎤ab -⎝ ⎛⎭⎪⎫ab 2+1-1=ab -ab 2-1-ab 2+ab 4+12-1=ab 4-32. 答案ab 4-326.(原创题)一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a ,b ,紧随其后的数就是2a -b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为________.解析 根据“从第三个数起,前两个数依次为a ,b ,紧随其后的数就是2a -b”,首先建立方程2×3-x =7,求得x ,进一步利用此规定求得y 即可.∵从第三个数起,前两个数依次为a ,b ,紧随其后的数就是2a -b , ∴2×3-x =7, ∴x =-1,则7×2-y =23,解得y =-9. 答案 -97.(改编题)如图,是一个简单的数值运算程序.若输入5,则y 的值为________.输入x →(x -1)2→×(-3)→输出y解析 把x =5代入-3(x -1)2,得y =-3×(5-1)2=-3×16=-48. 答案 -488.(原创题)有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第2 013个多项式为________.解析 ∵对比发现a 的指数与多项式序号相同,系数为1;b 的指数是多项式序号的2倍,第奇数个系数为1,第偶数个系数为-1,∴第2 013个是a 2 013+b4 026.答案 a2 013+b4 026三、解答题9.(原创题)计算:[x(x 2y 2-xy)-y(x 2-x 3y )]÷x 2y.解 原式=[x 2y(xy -1)-x 2y(1-xy)]÷x 2y =[x 2y(2xy -2)]÷x 2y =2xy -2.10.(原创题)小刚在解答“求代数式(a +2b)(a -2b)+(a +2b)2-4ab 的值,其中a =1,b =-110.”时,把b 错抄为b =110,但仍然得出正确结果,为什么呢?请说明理由.解 ∵原式=a 2-4b 2+a 2+4ab +4b 2-4ab =2a 2, ∴原式的值与b 无关.2019-2020学年数学中考模拟试卷一、选择题1.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个2.矩形、菱形、正方形都具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直D .对角线平分对角3.小明总结了以下结论:①a(b+c)=ab+ac ;②a(b ﹣c)=ab ﹣ac ;③(b ﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( ) A .1 B .2C .3D .44.方程的解是( )A.B.C.D.5.如图,从一块直径为24cm 的圆形纸片上,剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A.3 cmB.2cmC.6cmD.12cm6.在Rt △ABC 中,∠ACB =90°,AB =2,AC =1,则cosA 的值是( )A .12B C D 7.河南省某地区今年3月份第一周的最高气温分别为:1C ︒,0C ︒,5C ︒,7C ︒,4C ︒,4C ︒,7C ︒,关于这组数据,下列表述正确的是( ) A .中位数是7B .众数是4C .平均数是4D .方差是68.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A .105B .115C .120D .1359.如图,Rt △OAB 直角顶点为坐标原点O,∠A=30°,若点A 在反比例函数y=6x(x>0)的图象上,则经过点B 的反比例函数解析式为( )A .2y x=-B .4y x=-C .6y x=-D .2y x=10.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,AB =4,BC =6,点O 是边BC 上一点,以O 为圆心,OC 为半径的⊙O ,与边AD 只有一个公共点,则OC 的取值范围是( )A.4<OC ≤133B.4≤OC≤133C.4<OC 143≤D.4≤OC 143≤11.如果方程x 2﹣8x+15=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为( ) A.34B.35C.45D.34或3512.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23π B.23π-C.1112π-D.23π﹣1 二、填空题13.直角三角形纸片的两直角边BC ,AC 的长分别为6,8,现将△ABC 如下图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为_____.14.已知a ,b 为两个连续的整数,且a b ,则a+b=______. 15.2016年南京实现约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .16.如图,点A 1,A 2在射线OA 上,B 1在射线OB 上,依次作A 2B 2∥A 1B 1 ,A 3B 2∥A 2B 1 , A 3B 3∥A 2B 2 , A 4B 3∥A 3B 2 , ….若△A 2B 1B 2和△A 3B 2B 3的面积分别为1、9,则△A 1007B 1007A 1008的面积是________.17.已知:()521x x ++=,则x =______________.18.某市从2017年开始大力发展旅游产业.据统计该市2017年旅游收入约为2亿元,预计2019旅游收入达到2.88亿元,据此估计该市2018年、2019年旅游收入的年平均增长率约为____. 三、解答题19.如图,AB ∥DE ,点F 、C 在AD 上,AB =DE ,且AF =FC =CD . (1)求证:△ABC ≌△DEF ;(2)延长EF 与AB 相交于点G ,G 为AB 的中点,FG =4,求EG 的长.20.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为 ; (2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.21.为支持国货,郑州格东律师事务所准备购买若干台华为电脑和华为手机奖励优秀员工.如果购买1台电脑,2部手机,一共需要花费10200元;如果购买2台电脑,1部手机一共需要花费13200元. (1)求每台华为电脑和每部华为手机的价格分别是多少元?(2)财务张经理交代会记小李,购买华为电脑和手机一共50台/部,并且手机部数不少于电脑台数的4倍,那么小李最多应准备多少钱?22.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润. (3)如何安排工人,可获得的总利润W (元)的最大值及相应的x 值.23.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了 名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度. (3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.24.如图,在△ABC 中,∠BAC =90°,以AC 为直径的⊙O 交BC 于点D ,点E 在AB 上,连接DE 并延长交CA 的延长线于点F ,且∠AEF =2∠C .(1)判断直线FD 与⊙O 的位置关系,并说明理由; (2)若AE =2,EF =4,求⊙O 的半径.25.对于实数a ,b ,我们定义运算“◆”:a ◆b=,a b ab a b≥<⎪⎩,例如3◆2,因为3>2,所以3◆=x ,y 满足方程组2353210x y x y +=⎧⎨+=⎩,求(x ◆y )◆x 的值.【参考答案】*** 一、选择题二、填空题 13.x =7414.11 15.05×104 16.20113 17.-5或-1或-3 18.20%. 三、解答题19.(1)详见解析;(2)12. 【解析】 【详解】(1)要证△ABC ≌△DEF ,只要证AC=DF ,∠A=∠D 即可;(2)由(1)可得EF=BC ,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG 计算即可. (1)证明:∵AB ∥DE , ∴∠A =∠D , ∵AF =FC =CD ∴AC =DF , 在△ABC 和△DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ), (2)解:∵AF =FC , ∴F 为AC 中点, 又∵G 为AB 中点, ∴GF 为△ABC 的中位线, ∴BC =2GF =8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点睛】本题考查平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.20.(1) 200;72°;(2)见解析;(3)1 3【解析】【分析】(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解.【详解】解:(1)(50+45+15)÷(1﹣15%﹣30%)=200,所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=72°;故答案为200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3,所以两人恰好选择同一种付款方式的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.21.(1)每台华为电脑的价格是5400元,每部华为手机的价格是2400元;(2)小李最多应准备150000元钱. 【解析】 【分析】(1)设每台华为电脑的价格是x 元,每部华为手机的价格是y 元,根据“如果购买1台电脑,2部手机,一共需要花费10200元;如果购买2台电脑,1部手机一共需要花费13200元”,列出关于x 和y 的二元一次方程组,解之即可;(2)设购买华为电脑m 台,则购买华为手机(50﹣m )部,购买手机和电脑总共需要W 元钱,根据“手机部数不少于电脑台数的4倍”,列出关于m 的一元一次不等式,解之,根据题意列出W 关于a 的一次函数表达式,根据一次函数的增减性,结合m 的取值范围,即可得到答案. 【详解】(1)设每台华为电脑的价格是x 元,每部华为手机的价格是y 元,根据题意得:210200213200x y x y +=⎧⎨+=⎩解得:54002400x y =⎧⎨=⎩.答:每台华为电脑的价格是5400元,每部华为手机的价格是2400元.(2)设购买华为电脑m 台,则购买华为手机(50﹣m )部,购买手机和电脑总共需要W 元钱,根据题意得: 50﹣m≥4m 解得:m≤10.W=5400m+2400(50﹣m )=3000m+120000,即W 是m 的一次函数.∵k=3000>0,∴W 随m 增大而增大而增大,∴当m=10时,W 取到最大值,W (最大)=150000. 答:小李最多应准备150000元钱. 【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,根据题意中的数量关系列出方程组、不等式、一次函数关系式是解决问题的关键.22.(1)65﹣x ;130﹣2x ;130﹣2x ;(2)110元;(3)安排25名工人生产甲产品获得利润最大,为3200元. 【解析】 【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可; (3)根据题意用x 表示总利润利用二次函数性质讨论最值. 【详解】解:(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65﹣x )人,共生产甲产品2(65﹣x )130﹣2x 件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为120﹣2(x ﹣5)=130﹣2x .故答案为:65﹣x ;130﹣2x ;130﹣2x ;(2)由题意15×2(65﹣x )=x (130﹣2x )+550 ∴x 2﹣80x+700=0解得x 1=10,x 2=70(不合题意,舍去) ∴130﹣2x =110(元)答:每件乙产品可获得的利润是110元. (3)根据题意得:w =15(130﹣2x )+x (130﹣2x )=﹣2(x ﹣25)2+3200, 所以安排25名工人生产甲产品获得利润最大,为3200元. 【点睛】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.23.(1)本次共调查了50名学生;(2)72°;(3)补全条形统计图见解析;(4)该校2000名学生中最喜爱小品的人数为640人; 【解析】 【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数; (3)先计算出最喜欢舞蹈类的人数,然后补全条形统计图; (4)用2000乘以样本中最喜爱小品类的人数所占的百分比即可; 【详解】(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×1050=72°; (3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人), 补全条形统计图为:(4)2000×1650=640, 估计该校2000名学生中最喜爱小品的人数为640人; 【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(1)直线FD与⊙O相切,理由详见解析;(2)⊙O的半径为【解析】【分析】(1)连接OD,根据已知条件得到∠AEF=∠AOD,等量代换得到∠AOD+∠AED=180°,求得∠ODF=90°,于是得到结论;(2)解直角三角形得到∠F=30°,AF=OF=2OD,于是得到OD=FA,即可得到结论.【详解】解:(1)直线FD与⊙O相切;理由:连接OD,∵∠AEF=2∠C,∠AOD=2∠C,∴∠AEF=∠AOD,∵∠AEF+∠AED=180°,∴∠AOD+∠AED=180°,∵∠BAC=90°,∴∠ODF=90°,∴直线FD与⊙O相切;(2)∵∠BAC=90°,AE=2,EF=4,∴∠F=30°,AF=,∵∠ODF=90°,∴OF=2OD,∴OD=FA,∴⊙O的半径为【点睛】本题利用了切线的判定和性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25【解析】【分析】先解方程组得到x、y的值,再根据新定义进行运算即可.【详解】解:2x+3y=53x+2y=10⎧⎨⎩①②①×3得6x+9y=15 ③,②×2得6x+4y=20 ④,③-④得5y=-5,解得y=-1 将y=-1代入①中得x=4∵a◆b=,a bab a b≥<⎪⎩,且x>y∴◆x y==4<,∴(x◆y)◆◆4=【点睛】本题考查的是解二元一次方程组及新定义运算,能正确解方程组并读懂新定义的含义并根据新定义进行运算是关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为()A.32B.3 C.94D.1542.已知抛物线y=ax2+bx+c中,4a-b=0,a-b+c>0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是()A.abc > 0B.c < 3aC.4a > cD.a+b+c > 03.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则DE的长为()A.13πB.23πC.76πD.43π4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b=0;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论的个数是()A.1B.2C.3D.45.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C .这些运动员的平均成绩是 2.25D .这些运动员成绩的方差是 0.07256.2018年,淮南市经济运行总体保持平稳增长,全年GDP 约为1130亿元,GDP 在全省排名第十三.将1130亿用科学记数法表示为( ) A .11.3×1010B .1.13×1010C .1.13×1011D .1.13×10127.下列关系式中,y 不是自变量x 的函数的是( ) A .y =xB .y =x 2C .y =|x|D .y 2=x8.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m 2,广告牌所占的面积是 30m 2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m 2,设矩形面积是xm 2,三角形面积是ym 2,则根据题意,可列出二元一次方程组为( )A .430(4)(4)2x y x y +-=⎧⎨---=⎩B .26(4)(4)2x y x y +=⎧⎨---=⎩C .430(4)(4)2x y y x +-=⎧⎨---=⎩D .4302x y x y -+=⎧⎨-=⎩9.下列说法中正确的是( ) A .两条对角线互相垂直的四边形是菱形 B .两条对角线互相平分的四边形是平行四边形 C .两条对角线相等的四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形10.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( ) A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册11.下列运算正确的是( ) A .235a a a +=B .235(2)2a a -=- C .236a a a ⋅=D .624a a a ÷=12.下列运算中,正确的是( ) A .a 6÷a 3=a 2 B .(﹣a+b )(﹣a ﹣b )=b 2﹣a 2 C .2a+3b =5ab D .﹣a (2﹣a )=a 2﹣2a二、填空题13.把多项式3mx ﹣6my 分解因式的结果是_____.14.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=_____.15.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________.16.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了__s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.17.已知174a2+10b2+19c2﹣4ab=13a﹣2bc﹣19,则a﹣2b+c=_____.18.关于x的函数y=(k﹣1)x2﹣2x+1与x轴有两个不同的交点,则实数k的取值范围是_____.三、解答题19.国家“一带一路”倡议提出以后,得到全世界的广泛参与,助推我国界经济的发展,某校数学兴趣小组为了解所在城市市民对“一带一路”倡议的关注情况,在本市街头随机调查了部分市民,并根据调查结果制成了如下尚不完善的统计图表(1)填空:此次调查人数为,m=,n=(2)请补全条形统计图.(3)根据调查结果,可估计本市120万市民中,高度关注“一带一路”倡议的有多少人?20.如图,AC 为∠BAM 平分线,AB =10,以AB 的长为直径作⊙O 交AC 于点D ,过点D 作DE ⊥AM 于点E . (1)求证:DE 是⊙O 的切线. (2)若DE =4,求AD 的长.21.如图,AB 是⊙O 的直径,AE 交⊙O 于点F ,且与⊙O 的切线CD 互相垂直,垂足为D . (1)求证:∠EAC =∠CAB ;(2)若CD =4,AD =8,求AB 的长和tan ∠BAE 的值.22.如图,已知OA 是⊙O 的半径,AB 为⊙O 的弦,过点O 作OP ⊥OA ,交AB 的延长线上一点P ,OP 交⊙O 于点D ,连接AD ,BD ,过点B 作⊙O 的切线BC 交OP 于点C (1)求证:∠CBP =∠ADB ;(2)若O4=4,AB =2,求线段BP 的长.23.先化简2(1)(2)xx x x x--÷++,然后从-2,-1, 0, 1中选取一个你认为合适的数作为x 的值代入求值.24.如图,已知⊙O 是以BC 为直径的△ABC 的外接圆,OP ∥AC ,且与BC 的垂线交于点P ,OP 交AB 于点D ,BC 、PA 的延长线交于点E .(1)求证:PA是⊙O的切线;(2)若sinE=35,PA=6,求AC的长.25.某市礼乐中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成加图所示的两幅不完整的统计图.(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,α∠的度数是________;(2)通过计算补全条形统计图;(3)请你估计全校师生共捐赠了多少本文学类书籍.【参考答案】***一、选择题二、填空题13.3m(x﹣2y)14.115.60°16..17.-14.18.k<2且k≠1三、解答题19.(1) 200,20,0.15;(2)见解析;(3) 12万人【解析】【分析】(1)由B种关注情况的频数及其频率可得样本容量,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果可补全条形图;(3)总人数乘以样本中A种关注情况的频率即可得.【详解】(1)此次调查的人数为100÷0.5=200(人),m=200×0.1=20,n=30÷200=0.15,故答案为:200,20,0.15;(2)补全条形图如下:(3)可估计本市120万市民中,高度关注“一带一路”倡议的有120×0.1=12(万人).【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)见解析;(2)【解析】【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点D作DF⊥AB于点F,即可证得DE=DF=4,在RT△ADF中利用射影定理求得AF,然后利用勾股定理求出AD.【详解】解:(1)证明:连接OD,∵AC为∠BAM平分线,∴∠BAC=∠MAC,∵OA=OD,∴∠BAC=∠ADO,∴∠MAC=∠ADO∴AE∥OD,∵DE⊥AM,∴OD⊥DE,∴DE是⊙O 的切线;(2)连接BD,过点D作DF⊥AB于点F,∵AC为∠BAM平分线,DE⊥AM,∴DF=DE=4,∵AB是直径,∴∠ADB=90°,∴DF2=AF•BF,即42=AF(10﹣AF),∴AF=8或AF=2(舍去)∴AD==【点睛】本题考查切线的判定和性质,圆周角定理、射影定理以及勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.21.(1)见解析(2)4 3【解析】【分析】(1)连接OC,在利用切线性质即可解答(2)连接BC在证明△ACD∽△ABC,再利用勾股定理进行解答【详解】(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB;(2)连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°,∵∠1=∠2,∴△ACD∽△ABC,∴AD AC AC AB=,∵AC2=AD2+CD2=42+82=80,∴AB=2ACAD=10,∴⊙O的半径为10÷2=5.连接CF与BF.∵四边形ABCF是⊙O的内接四边形,∴∠ABC+∠AFC=180°,∵∠DFC+∠AFC=180°,∴∠DFC=∠ABC,∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,∴∠2=∠DCF,∵∠1=∠2,∴∠1=∠DCF,∵∠CDF=∠CDF,∴△DCF∽△DAC,∴CD DF AD CD=,∴DF=2CDAD=2,∴AF=AD﹣DF=8﹣2=6,∵AB是⊙O的直径,∴∠BFA=90°,∴BF=8,∴tan∠BAD=BFAF=43.【点睛】此题考查了切线的性质和勾股定理,要合理的作好辅助线,在利用三角形相似来解答22.(1)证明见解析;(2)BP的长为14.【解析】【分析】(1)连接OB,根据切线的性质得到OB⊥BC,根据等腰三角形的性质得到∠OAB=∠ABO,得到2∠OAB+∠AOB =180°,于是得到结论;(2)延长AO交⊙O于E,连接BE.由圆周角定理得到∠ABE=90°,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OB,∵BC为⊙O的切线,∴OB⊥BC,∴∠ABO+∠CBP=180°﹣∠CBO,=180°﹣90°=90°,∵OB=OA,∴∠OAB=∠ABO,∵∠OAB+∠ABO+∠AOB=180°∴2∠OAB+∠AOB=180°,∵∠AOB=2∠ADB,∴∠ABO+∠ADB=90°,∴∠CBP=∠ADB;(2)解:延长AO交⊙O于E,连接BE.∵AE为直径,∴∠ABE=90°,∵OP⊥AO,∴∠AOP=90°在Rt△ABE和Rt△AOP中,∵∠EAB=∠PAO,∴Rt△ABE∽Rt△AOP,∴OA AP AB AF=,∵AB=2,AO=4,AE=8,∴428AP =,解得,AP=16.∴BP=AP﹣AB=16﹣2=14.所以BP的长为14.【点睛】本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.23.-12.【解析】【分析】首先对括号内的分式的分母分解因式,把除法转化为乘法,然后进行分式的加法计算即可化简,然后代入使原式有意义的x 的值计算即可【详解】原式=11[(1)]12x x x -+⋅++ =21211()12x x x x ---⋅++ =(2)112x x x x -+⋅++ =1x x -+ 只能选x =1,当x =1时, 原式=-11112=-+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键24.(1)见解析;(2)AC =. 【解析】【分析】(1)先利用平行线的性质得到∠ACO=∠POB ,∠CAO=∠POA ,加上∠ACO=∠CAO ,则∠POA=∠POB ,于是可根据“SAS”判断△PAO ≌△PBO ,则∠PAO=∠PBO=90°,然后根据切线的判定定理即可得到PA 是⊙O 的切线;(2)先由△PAO ≌△PBO 得PB=PA=6,在Rt △PBE 中,利用正弦的定义可计算PE=10,则AE=PE-PA=4,再在Rt △AOE 中,由sinE=35OA OE =,可设OA=3t ,则OE=5t ,由勾股定理得到AE=4t ,则4t=4,解得t=1,所以OA=3;接着在Rt △PBO 中利用勾股定理计算出EAC ∽△EPO ,再利用相似比可计算出AC .【详解】(1)证明:连接OA ,如图,∵AC ∥OP ,∴∠ACO =∠POB ,∠CAO =∠POA ,又∵OA =OC ,∴∠ACO =∠CAO ,∴∠POA =∠POB ,在△PAO 和△PBO 中,PO PO POA POB 0A 0B =⎧⎪∠=∠⎨⎪=⎩,∴△PAO ≌△PBO (SAS ),∴∠PAO =∠PBO ,又∵PB ⊥BC ,∴∠PBO =90°,∴∠PAO =90°,∴OA ⊥PE ,∴PA 是⊙O 的切线;(2)解:∵△PAO ≌△PBO ,∴PB =PA =6,在Rt △PBE 中,∵sinE =35PB PE = ∴635PE =,解得PE =10, ∴AE =PE ﹣PA =4, 在Rt △AOE 中,sinE =35OA OE =, 设OA =3t ,则OE =5t ,∴AE4t ,∴4t =4,解得t =1,∴OA =3,在Rt △PBO 中,∵OB =3,PB =6,∴OP=∵AC ∥OP ,∴△EAC ∽△EPO , ∴AC EA PO EP=410=, ∴AC. 【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了全等三角形的判定与性质.25.(1)200,40,36︒;(2)见解析;(3)估计全校师生共捐赠了900本文学类书籍.【解析】【分析】(1)用A的本数÷A所占的百分比,即可得到抽取的本数;用C的本数÷总本数,即可求得m;计算出D 的百分比乘以360°,即可得到圆心角的度数;(2)计算出B的本数,即可补全条形统计图;(3)根据文学类书籍的百分比,即可解答.【详解】解:(1)40÷20%=200(本),80÷200×100%=40%,20÷200×360=36°故答案为:200,40,36°;(2)40÷20%=200(本),200-40-80-20=60(本)补全图形如图所示;(3)603000900200⨯=(本).答:估计全校师生共捐赠了900本文学类书籍.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
江苏省扬州市2019届中考数学一轮复习导学案(41套)
第1课时实数概念及运算姓名班级学习目标:1.理解平方根与立方根的意义,能估算一个数的平方根(立方根)的大致范围。
2.了解无理数和实数的概念,认识实数与数轴上的点一一对应,会求一个数的相反数与绝对值,会比较实数大小,了解近似数与有效数字概念,会按要求取近似值。
3.会进行实数的简单混合运算,并能用运算简化运算。
学习重难点:实数的概念,无理数的定义,科学计数法,实数的混合运算。
学习过程:一、知识梳理(一)实数概念1.整数和统称有理数;叫无理数;有理数和无理数统称.2.数轴的三要素为、和 . 数轴上的点与构成___对应.3.实数a的相反数为________. 若a,b互为相反数,则ba+= .4.非零实数a的倒数为______. 若a,b互为倒数,则ab= .5.绝对值_______ (0)_______ (0)_______ (0)aa aa>⎧⎪==⎨⎪<⎩6.把一个数表示成10na⨯的形式,其中a满足______,n是整数. 7.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到_____.(二)实数的有关运算8. 实数加法法则:(1)同号两数相加,取_____符号,并把________相加;(2)异号两数相加,绝对值相等时,和为_____;绝对值不等时,取_____较大的数的符号,并用_______减去_______.9. 实数减法法则:减去一个数,等于加上这个数的_________.10. 实数的乘法法则:两数相乘,同号得_____,异号得_____,并把________相乘.11. 实数的除法法则:两数相除,同号得_____,异号得_____,并把________相除.12.如果一个数的平方等于a,那么这个数叫做a的.a的平方根用符号表示为.其中正的平方根又叫做a 的,记作.13.如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .14.求一个数的平方根的运算叫做 ;求一个数的立方根的运算叫做 . 与乘方互为逆运算.三、精典题例例1 实数120.3π7--、、中,无理数的个数是( )A .2B .3C .4D .5 例2 估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间例3 如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A .0a b +<B .a b —<—C .1212a b ﹣>﹣D .0a b ﹣>四、课堂练习1.银原子的直径为0.0003微米,把0.0003这个数用科学记数法表示应为( ).A .30.310⨯-B .4310⨯C .5310⨯-D .4310⨯-2.下列运算正确的是( ).A 3=±B .33-=-C .3=-D .239-=3.在-5,30sin ︒,30tan ︒,3π,..0.23这六个实数中,无理数的个数为( ). A.1 B.2 C.3D.44.若21(2)0x y -++=,则xyz =( ).A .-6B .6C .0D .25.计算:301()20162-+= .6.如果2a =,1b =-,比较大小:b a a b (填“<”、“=”或“>”).7.定义2a b a b =※-,则()123※※=______.8.若1(1)0n n +-=,则(1)n -= .9.计算:(1)212552⨯+--. (2)1sin 30π+32-0°+()(3)()2517 2.458612⎛⎫-+-+⨯- ⎪⎝⎭ (4)2324(3)25--÷++-10.观察下面的规律:1=11122⨯-;111=2323⨯-;111=3434⨯-;…… 解答下面的问题:(1)若n 为正整数,请你猜想1(1)n n ⨯+= ; (2)求和:1111++++12233420152016⨯⨯⨯⨯= . 整式姓名 班级学习目标:1.了解幂的意义,会进行幂的运算,注意“符号”问题和区分各种运算时指数的不同运算。
中考数学第一轮复习导学案:整式及其运算
实 用 文 档 - 6 - 整式及其运算
◆课前热身
1.受甲型H1N1流感影响,猪肉价格下降了30%,设原来的猪肉价格为a 元/千克,则现在的猪肉价格为____________元/千克. 2.已知22x =,则2
3x +的值是 . 3.计算25
(3)a a ·= . 4. a ,b 两数的平方差用代数式表示为( )
A.22a b -
B.2()a b -
C.2a b +
D.2
a b + 【参考答案】1.0.7a (或70%a 或710
a ) 2.5 3.97a 4.A ◆考点聚焦
知识点
代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式.
大纲要求
1.代数式
①在现实情境中进一步理解用字母表示数的意义.
②能分析简单问题的数量关系,并用代数式表示.。
2019年中考数学一轮复习导学案(全套精华版)
中考数学一轮复习导学案第一章 数与式§1.1 实数的运算(1)一、知识要点有理数,相反数,倒数,绝对值,数轴,无理数,实数及大小比较,实数的分类. 二、课前演练1.-5的相反数是 ;若a 的倒数是-3,则a = .2.某药品说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度 ℃. 3. 小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A .4℃ B .9℃ C .-1℃ D .-9℃ 4.在3.14,7,π和9这四个实数中,无理数是( ) A .3.14和7 B .π和9 C .7和9 D .π和7三、例题分析例1 (1)将(-5)0、(-3)3、(-cos30°)-2,这三个实数按从小到大的顺序排列,正确的顺序是___________________________.(2)已知数轴上有A 、B 两点,且这两点之间的距离为42,若点A 在数轴上表示的数为32, 则点B 在数轴上表示的数为 .例2 (1) 如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .ab >0B .a-b >0C .a+b >0D .|a|-|b|>0(2)有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于(A .2B .8C .3 210 -1 a b四、巩固练习1.把下列各数分别填入相应的集合里:38,3,-3.14159,π3,227,-32,-78,0,-0.••02,1.414,-7,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)有理数集合:{ …}; (3)无理数集合:{ …}; (4)实数集合:{ …}.2.(2011陕西)计算:|3-2| = (结果保留根号). 3.设a 为实数,则| a | - a 的值 ( )A .可以是负数B .不可能是负数C .必是正数D .正数、负数均可4.(2011贵阳)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) A .2.5 B .2 2 C . 3 D . 55.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .15B .25C .55D .12256. (2011玉林)一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A .1011升 B .19升 C .110升 D .111升图2图11694110631§1.2 实数的运算(2)一、知识要点平方根,算术平方根,立方根,乘方运算,开方运算,科学记数法,实数的运算. 二、课前演练1.(2011玉林)近似数0.618有__________个有效数字.2.(2012钦州)黄岩岛是我国的固有领土,中菲黄岩岛事件成了各大新闻网站的热点话题. 某天,小芳在“百度”搜索引擎中输入“黄岩岛事件最新进展”,能搜索到相关结果约7050000个,7050000这个数用科学记数法表示为( ) A .7.05×105B .7.05×106C .0.705×106D .0.705×107A .1和2B .2和3C .3和4D .4和54 4.计算:(1)18+2-1-6sin60°; (2)8+(2010-3)0-(12)-1.三、例题分析例1 计算:(1) 2×(-5)+23-3÷12; (2) |-2|+(12)-1-2cos60°+(3-2π)0;(3) |-2|-2sin30°+ 4+(2-π)0; (4) 2-1+ 3cos30°+|-5|-(π-2011)0.例2 (1) 已知b =a 3+2c ,其中b 的算术平方根为19,c 的平方根是±3,求a 的值.(2)(2011孝感)对实数a 、b ,定义运算☆如下:a ☆b =⎩⎨⎧a b (a >b ,a ≠0)a -b (a ≤b ,a ≠0),例如2☆3=2-3=18,计算[2☆(-4)]×[(-4)☆(-2)]的值.四、巩固练习1.已知a、b为实数,则下列命题中,正确的是 ( )A.若a>b,则a2>b2 B.若a>b,则a2>b2 C.若a<b,则a2>b2 D.若a3>3,则a2<b2 2.对于两个不相等的实数a、b,定义一种新的运算如下:a*b=a+ba-b(a+b>0),如:3*2=3+23-2=5,那么6*(5*4)= .3.计算:(1)2-1+(π-3.14)0+sin60°-|-cos30°|;(2) -(-19)-38×(13)-2-8+|-4sin45°|.4.已知9x2-16=0,且x是负数,求32-3x的值.5.设2+7的小数部分是a,求a(a+2)的值.6.已知a、b、c满足|a-2|+b-3+(c-4)2=0,求a2+b2-4+2c的值.§1.3 幂的运算性质、整式的运算、因式分解一、知识要点幂的运算,整式的运算,乘法公式,因式分解.二、课前演练1.计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A.-2 B.2 C.-4 D.42.下列等式一定成立的是()A.a2+a3=a5B.(a+b)2=a2+b2 C.(2ab2)3=6a3b6 D.(x-a)(x-b)=x2-(a+b)x+ab 3.计算:2x3·(-3x)2=.4.(1)分解因式:-a3+a2b-14ab2= .(2)计算:20002-1999×2001= .三、例题分析例1分解因式:(1)m2n(m-n)2-4mn(n-m);(2)(x+y)2+64-16(x+y);(3)(x2+y2)2-4x2y2;例2 (1) 计算:①[-(a2)3]2·(ab2)3·(-2ab);②(-3x2y)2+(2x2y)3÷(-2x2y);③(a-1)(a2-2a+3);④(x+1)2+2(1-x)-x2.(2)先化简,再求值:(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.四、巩固练习1.已知两个单项式12a 3b m 与-3a n b 2是同类项,则m -n = .2.若实数x 、y 、z 满足(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,则下列式子一定成立的是( )A .x +y +z =0B .x +y -2z =0C .y +z -2x =0D .z+x -2y =0 3.因式分解:(1) a 3-6a 2b +9ab ; (2) 2x 3-8x 2y +8xy 2; (3)-4(x -2y )2+9(x +y )2;4.化简:(1)-(m -2n )+5(m +4n )-2(-4m -2n ); (2)3(2x +1)(2x -1)-4(3x +2)(3x -2).5.(2011大庆)已知a 、b 、c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2, 判断△ABC 的形状.6.(1)计算.①(a -1)(a +1); ②(a -1)(a 2+a +1);③(a -1)(a 3+a 2+a +1); ④(a -1)(a 4+a 3+a 2+a +1).(2)根据(1)中的计算,你发现了什么规律?用字母表示出来.(3)根据(2)中的结论,直接写出下题的结果:①(a -1)(a 9+a 8+a 7+a 6+a 5+a 4+a 3+a 2+a +1)= ; ②若(a -1)·M =a 15-1,则M = ; ③(a -b )(a 5+a 4b +a 3b 2+a 2b 3+ab 4+b 5)= ;④(2x -1)(16x 4+8x 3+4x 2+2x +1)= .§1.4 分式的运算一、知识要点分式的概念,分式有意义、无意义、值为0的条件,分式的基本性质,分式的运算. 二、课前演练1.若使分式xx -2意义,则x 的取值范围是( )A .x ≠2B .x ≠﹣2C .x >﹣2D .x <22.若分式x2x 2+2x -3的值为0,则( )A .x =±3B .x =3C .x =-3D .x 取任意值3.下列等式从左到右的变形正确的是( )A .11++=a b a bB .am bm a b =C .2aaba b = D .23a b a b =4.把分式xyx 2-y2中的x 、y 的值都扩大到原来的2倍,则分式的值( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12三、例题分析例1 先化简,再求值. a 2a 2+2a - a 2-2a +1a +2÷a 2-1a +1 其中a =2-2.例2 先化简(aa +2 + 2a -2)÷1a 2-4,然后选取一个合适的a 值,代入求值.四、巩固练习1.当x 时,分式13-x有意义.2.已知分式x -3x 2-5x +a ,当x =2时,分式无意义,则a =________;当x <6时,使分式无意义的x 的值共有________个.3.化简(x y - y x )÷x -yx 的结果是( )A. 1yB. x +y yC.x -yyD .y4. 计算或化简: (1)x 2x -1 -x -1 ; (2))11(122b a b a b a -++÷-.5.先化简,再求值:(1+ x -2x +2)÷2xx 2-4,并代入你喜欢且有意义的x 的值.6.先化简,再求值:1a +1-a +3a 2-1·a 2-2a +1a 2+4a +3 ,其中a 满足a 2+2a -1=0.§1.5 二次根式一、知识要点二次根式的概念,二次根式的性质,最简二次根式,同类二次根式,二次根式的加、减、乘、除运算. 二、课前演练1. 使式子x -4 有意义的条件是 .2. 计算:(48 - 327 )÷ 3 = .3. 与a 3b 不是同类二次根式的是( )A. ab 2B. ab C.1abD.ba 34. 下列式子中正确的是( )A. 5 + 2 =7B. a 2-b 2 =a -bC. a x -b x =(a -b )xD. 6+82 =3+4=3+2三、例题分析例1 计算:48 -54 ÷2+(3-3)(1+13).例2 已知:a +1a =1+10,求a 2+1a 2的值.变式:已知:x 2-3x+1=0,求x 2+1x 2-2的值.四、巩固练习1.若最简二次根式a =______,b =_______.22x =-,则x 的取值范围是 .3.若1a b -+2013()a b - =____________.4.计算或化简:(1)2a (2)21418122-+-.5. 计算或化简:(1)(0,0)a b -≥≥; (2)2(71)+-- ;(3)2213224132÷⨯; (4)20102009)12()12(-+.6. 先化简,再求值:(1x-y -1x+y )÷2y x 2+2xy+y 2 ,其中x=3+2 ,y=3-第二章 方程与不等式§2.1 一元一次方程、二元一次方程(组)的解法一、知识要点一元一次方程的概念及解法,二元一次方程(组)及其解法,解方程组的基本思想. 二、课前演练1.(2012重庆)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( ) A .2 B .3 C .4 D .52.(2011枣庄)已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的解,则a -b = .3.(2012连云港)方程组326x y x y +=⎧⎨-=⎩的解为 . 4.已知:132=--+yx y x ,用含x 的代数式表示y ,得 .三、例题分析例1解下列方程(组):(1)3(x +1)-1=8x ; (2)⎩⎨⎧=+=-1732623y x y x .例2(1)m 为何值时,代数式2m - 5m -13的值比代数式7-m2的值大5?(2)若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,求a 的值.四、巩固练习1.若⎩⎨⎧x =1,y =2.是关于x 、y 的方程ax -3y -1=0的解,则a 的值为______.2.已知(x-2)2+|x-y-4|=0,则x+y= .3.定义运算“*”,其规则是a*b=a-b 2,由这个规则,方程(x+2)*5=0的解为 . 4.如图,已知函数y=ax+b 和y=kx 的图象交于点(-4,-2),则方程组⎩⎨⎧y=ax+b ,y=kx的解是 .5.若关于x 、y 的方程组⎩⎨⎧x+y=5k ,x -y=9k的解也是方程2x +3y =6 的解,则k 的值为( )A .- 34B .34C .43D .- 436.解下列方程(组):(1)2(x +3)-5(1-x )=3(x -1); (2)1432312=---x x ;(3)(2012南京)31328x y x y +=-⎧⎨-=⎩ ; (4)⎩⎨⎧-=+-=+1)(258y x x y x .§2.2 一元二次方程的解法及其根的判别式一、知识要点一元二次方程的概念及解法,根的判别式,根与系数的关系(选学). 二、课前演练1.(2011钦州)下列方程中,有两个不相等的实数根的是 ( )A .x 2+1=0B .x 2-2x +1=0C .x 2+x +2=0D .x 2+2x -1=02.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A .(x -2)2=2 B .(x +2)2=2 C .(x -2)2=-2 D .(x -2)2=63.已知关于x 的方程250x mx +-=的一个根是5,那么m = ,另一根是 . 4.若关于x 的一元二次方程kx 2-3x +2=0有实数根,则k 的非负整数值是 . 三、例题分析例1 解下列方程:(1) 3(x +1)2=13; (2) 3(x -5)2=2(x -5);(3) x 2+6x -7=0; (4) x 2-4x +1=0(配方法).例2 关于x 的一元二次方程2(4)210k x x ---= . (1)若方程有两个不相等的实数根,求k 的取值范围;(2)在(1)的条件下,自取一个整数k 的值,再求此时方程的根.四、巩固练习1.下列方程中有实数根的是( )A .x 2+2x +3=0B .x 2+1=0C .x 2+3x +1=0 D .x x -1= 1x -12.若关于x 的方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a <2 B .a >2 C .a <2且a ≠1 D .a <-2 3.若直角三角形的两条直角边a 、b 满足(a 2+b 2)(a 2+b 2+1)=12,则此直角三角形的斜边长为 .4.阅读材料:若一元二次方程ax 2+bx+c =0(a ≠0)的两个实数根为x 1、x 2,则两根与方程系 数之间有如下关系:x 1+x 2=-b a ,x 1x 2=ca.根据上述材料填空:已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则1x 1+1x 2= .5.解下列方程:(1)(y +4)2=4y ; (2)2x 2+1=3x (配方法);(3)2x (x -1)=x 2-1; (4)4x 2-(x -1)2=0.6.先阅读,然后回答问题:解方程x 2-|x |-2=0,可以按照这样的步骤进行:(1)当x ≥0时,原方程可化为x 2-x -2=0,解得x 1=2,x 2=-1(舍去). (2)当x ≤0时,原方程可化为x 2+x -2=0,解得x 1=-2,x 2=1(舍去). 则原方程的根是_____________________. 仿照上例解方程:x 2-|x -1|-1=0.§2.3 一元一次不等式(组)的解法一、知识要点不等式的性质,一元一次不等式(组)的解法及应用. 二、课前演练1.用适当的不等号表示下列关系:(1)x 的5倍大于x 的3倍与9的差: ; (2)b 2-1是非负数: ; (3)x 的绝对值与1的和不大于2: .2.已知a >b ,用“<”或“>”填空:(1)a -3 b -3; (2)-3a -3b ; (3)1-a 1-b ; (4)m 2a m 2b (m ≠0).3.(1)不等式-5x <3的解集是 ;(2)不等式3x -1≤13的正整数解是 ;(3)不等式x ≤2.5的非负整数解是 .4.(2012江西)把不等式组⎩⎨⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D 三、例题分析例1 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32 +1≤3x -14,并把它的解集在数轴上表示出来.例2 已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.四、巩固练习1.(1)不等式-5x <3的解集是_________;(2)不等式3x -1≤13的正整数解是 ; (3)不等式x ≤2.5的非负整数解是 .2. (2012苏州)不等式组⎩⎨⎧2x -1<3,1-x ≥2的解集是 .3.不等式组⎩⎨⎧x -1≤0,-2x <3的整数解...是 . 4.如图,直线y =kx+b 过点A (-3,0),则kx+b >0的解集是_________.5.(1) (2012温州)不等式组⎩⎨⎧x+4>3,x ≤1的解集在数轴上可表示为( )(2)已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限A .一B .二C .三D .四6.(1)解不等式组:⎩⎪⎨⎪⎧5x -12≤2(4x -3),3x -12 <1,并把它的解集在数轴上表示出来.(2)若直线y =2x +m 与y =-x -3m -1的交点在第四象限,求m 的取值范围.A B C D§2.4 不等式(组)的应用一、知识要点能够根据具体问题中的数量关系,建立不等式(组)模型解决实际问题.二、课前演练1.已知:y1=2x-5,y2=-2x+3.如果y1<y2,则x的取值范围是()A.x>2 B.x<2 C.x>-2 D.x<-2 2.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题()A.18题 B.19题 C.20题 D.21题3.某公司打算至多用1200元印刷广告单,已知制版费50元,每印一张广告单还需支付0.3 元的印刷费,则该公司可印刷的广告单数量x(张)满足的不等式为_____________.4.关于x的方程kx-1=2x的解为正实数,则k的取值范围是_______________.三、例题分析例1 已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米,做一套N型号时装需用A种布料1.1米,B种布料0.4米.X |k |B| 1 . c|O |m(1)若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装有几种方案?(2)销售一套M型号时装可获利润45元,销售一套N型号时装可获利50元,请你设计一个方案使利润P最大,并求出最大利润P.(用函数知识解决).例2(2010宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元;(2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲、乙两种花木,若培育乙种花木的株数是甲种花木株数的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的四、巩固练习1.若点P(4a-1,1-3a)关于x轴的对称点在第四象限,则a的取值范围是_______.2.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,则这个两位数为_____________.3.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?4. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友.5.某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B 两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克;生产一件B种产品需要甲种原料2.5千克,乙种原料3.5千克,该化工厂现有的原料能否保证生产顺利进行?若能的话,有几种方案?请你设计出来.6.(2011鄂州)今年我省干旱灾情严重,甲地需要抗旱用水15万吨,乙地需用水13万吨,现有A、B两水库各调出14万吨支援甲、乙两地抗旱,从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.(1(2)§2.5 分式方程及其应用一、知识要点分式方程的概念及解法,增根的概念,分式方程的应用.二、课前演练1. 如果方程2a(x-1)=3的解是x=5,则a=.2.(2012赤峰)解分式方程1x-1=3(x-1)(x+2)的结果为()A.1 B.-1 C.-2 D.无解3. 如果分式2x-1与3x+3的值相等,则x的值是()A.9 B.7 C.5 D.34. 已知方程xx-3=2-33-x有增根,则这个增根一定是()A.2 B.3 C.4 D.5 三、例题分析例1解下列方程:(1)(2011常州)2x+2=3x-2; (2)3x-1=5x+1;(3)32x-5+55-2x=1;(4)x-2x+2-1=16x2-4.例2某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元?四、巩固练习1. 方程x x -2+12-x =12的解是_______.2.(2012白银)方程x 2-1x +1=0的解是 ( )A .x =±1 B.x =1 C .x =-1 D .x =03. 若关于x 的方程m -1x -1-xx -1=0有增根,则m 的值是( )A .3B .2C .1D .-14. 解下列方程:(1)(2011盐城)xx -1 - 31-x = 2; (2)1x -1+42-x =0;(3)x +1x -1 - 4x 2-1=4; (4)5x -42x -4=2x +53x -6-12.5.(2012锦州)某部队要进行一次急行军训练,路程为32km.大部队先行,出发1小时后,由特种兵组成的突击小队才出发,结果比大部队提前20分钟到达目的地.已知突击小队的行进速度是大部队的1.5倍,求大部队的行进速度.6. 根据方程300x-300(1+20%)x=1,自编一道应用题,说明这个分式方程的实际意义,并解答.§2.6 方程(组)的应用一、知识要点一元一次方程、二元一次方程组、一元二次方程的应用.二、课前演练1.有一个三位数,个位数字是x,十位数字是y,百位数字是z,则此三位数是____________.2.家具厂生产一种餐桌,1m3木材可做5张桌面或30条桌腿.现在有25 m3木材,应生产桌面____张,生产桌腿_____条,使生产出来的桌面和桌腿恰好配套(一张桌面配4条桌腿).3.某电器进价为250元,按标价的9折出售,利润率为15.2﹪,则此电器标价是元.4.有一块长方形的铁皮,长为24cm,宽为18cm,在四角都截去相同的小正方形,折起来做成一个无盖的盒子,使底面面积是原来的一半,则盒子的高为_________cm.三、例题分析例1(2012娄底)体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?例2(2012乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.四、巩固练习1.(2012莱芜)为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经费3600万元.已知2011年至2013年的教育经费投入以相同的百分率逐年增长,则2012年该市要投入的教育经费为万元.2.(2012江苏南通)甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.3.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,这两个正方形面积之和的最小值为 cm2.4.(2012咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需_____________ 元.5.(2012济宁)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?6.(2012山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加2千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少呢?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢得市场,该店应该按原售价的几折出售?第三章 图形与证明§3.1 平面图形的认识、三角形一、知识要点平面图形的认识(点、线、面、角有关概念,图形的平移,直线平行条件和性质);三角形的有关概念. 二.课前演练1.已知线段AB ,反向延长AB 到C ,使AC=13BC ,D 为AC 中点,若CD=2cm ,则AB= cm.2.已知∠α的补角是1300,则∠α= 度.3.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A .1个B .2个C .3个D .4个 4.下图能说明∠1>∠2的是( )三、例题分析例1 如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37º,求∠D 的度数.例2 (2012乐山)如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点A n. 设∠A =θ.则(1)求1A ∠、∠2A 的度数; (2)猜想n A ∠= °. 12)A.21)D.12 ))B.12 )) C.A 2A 1AABCDE四、巩固练习1.如图,长方形网格中每个小长方形的长为2,宽为1,点A 、B 都在网格格点上,若点C也在格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2 B .3C .4D .52.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______°.3.(2012盐城)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,∠B=50°.先将△ADE沿DE 折叠,点A 落在三角形所在平面内的点为A 1,则∠BDA 1=______ °. 4.(2012德州)不一定在三角形内部的线段是( )A .三角形的角平分线B .三角形的中线C .三角形的高D .三角形的中位线5.如图,三角形纸片ABC 中,将纸片的一角折叠,使点C 落在△ABC 内(1)若∠A=65°,∠B=75°,∠1=20°,求∠2的度数.(2)若∠C=n °,求∠1+∠2的度数.6.如图1,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DFE 的平分线相交于点P .试解答下列下列问题: (1)求证:∠P=90°.(2)如图2,过上述点P 任作一直线分别交AB 、CD 于点G 、H ,PG 与PH 有何关系,为什么? (3)如图3,以上述的点P 为圆心作⊙P 切AB 于点M ,则①EF 、CD 与⊙P 有何位置关系?说说你的理由.②若EM=5cm ,EF=13cm ,求⊙P 的半径.P AB CD(第1题图) (第2题图) (第3题图)ABC DE A 1A FB D CE P PECDBF AHG§3.2 全等三角形一、知识要点全等三角形性质及判定方法.二、课前演练1.如图1,AB=AC ,要说明△ADC ≌△AEB ,需添加的条件不能..是( ) A .∠B=∠C B .AD=AE C .∠ADC=∠AEB D .DC=BE2.如图2,∠E=∠F=90°,∠B=∠C ,AE=AF ,结论:①EM=FN ;②CD=DN ;③∠FAN=∠EAM ;④△ACN ≌△ABM .其中正确的有 ( )A .1个B .2个C .3个D .4个3.如图3,AB=DB ,∠1=∠2,只需添加一个条件 ,就可得到△ABC ≌△DBE . 4.如图4,AB=DC ,AD=BC ,点E 、F 在AC 上,且AF=CE ,若∠CEB=110°,∠BAC=30°, 则∠CDF= °. 三、例题分析例1(2012漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中B 、F 、C 、E 在同一直线上),并写出四个条件:①AB=DE , ②BF=EC , ③∠B=∠E , ④∠1=∠2. 请你从这四个条件中选出三个作为题设,另一个作为结论.组成一个真命题,并给予证明. 题设: ;结论______.(均填写序号) 证明:例2(2012绍兴)如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于EF 长的一半为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD=114°,求∠MAB 的度数;(2)若CN⊥AM,垂足为N ,求证:△ACN≌△MCN. 图321A BC D EA B 图4C D E F A E F B C D M N 图1 图2 D C B A EF 21A B C DEFCF AE(第3题图)O(第2题图)BA P (第4题图)DBACABCDE四、巩固练习1.下列命题中,真命题是( )A .周长相等的锐角三角形都全等;B .周长相等的直角三角形都全等;C .周长相等的钝角三角形都全等;D .周长相等的等腰直角三角形都全等 2.如图,OP 平分∠AOB ,PA ⊥OA ,PB ⊥OB .下列结论中不一定成立的是( ) A .PA=PB B .PO 平分∠APB C .OA=OB D .AB 垂直平分OP3.如图,在Rt △ABC 中,∠A=90°,AB=AC=86,点E 为AC 的中点,点F 在底边BC 上,且FE ⊥BE ,则△CEF 的面积是 .4.如图,△ABC 中,∠C =900,∠BAC 的平分线交BC 于点D ,若CD=4,则点D 到AB 的距离是 .5.如图在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.6.(2012泰安)如图,在△A BC 中,∠ABC=45°,CD⊥AB 于D ,BE⊥AC 于E ,F 为BC 中点,BE 与DF 、DC 分别交于点G 、H ,∠ABE=∠CBE.(1)线段BH 与AC(2)求证:BG 2-GE 2=EA 2. C§3.3 等腰三角形一、知识要点等腰三角形的性质和判定,线段垂直平分线、角平分线的性质定理和逆定理.二、课前演练1.等腰三角形的一边长为10,另一边长为5,则它的周长是 .2.如图1,在△ABC 中,AB=AC=32cm ,DE 是AB 的垂直平分线, 分别交AB 、AC 于点D 、E.(1)若∠C=700,则∠CBE= °,∠BEC= °. (2)若BC=21cm ,则△BCE 的周长是 cm.3. 如右图,在△ABC 中,D ,E 分别是边AC 、AB 的中点,连接BD .若BD 平分∠ABC,则下列结论错误的是( )A .BC=2BEB .∠A =∠EDAC .BC=2AD D .BD⊥AC 4.如右图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA=PB .下列确定P 点的方法正确的是( ) A .P 为∠A 、∠B 两角平分线的交点B .P 为∠A 的角平分线与AB 的垂直平分线的交点C .P 为AC 、AB 两边上的高的交点D .P 为AC 、AB 两边的垂直平分线的交点 三、例题分析例1 如图,△ABC 中,AB=AC ,角平分线BD 、CE 相交于点O. (1)OB 与OC 相等吗?请说明你的理由;(2)若连接AO ,并延长AO 交BC 于点F.你有哪些发现?请写出两条,并就其中的一条发现写出你的发现过程. (由课本P29例2改编)例2 (2011日照)如图,已知点D 为等腰直角△ABC 内一点, ∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE=CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM ,求证:ME=BD .AB C DE(第2题图) C AD E (第3题图) A B(第4题图) OA BC DE四、巩固练习1. 在△ABC 中,∠C=90,AC 的垂直平分线交AB 于点D ,AD=2,则BD= . 2.如图1,∠A=90°,BD 是△ABC 的角平分线,AC=10,DC=6.则D 到BC 的距离为___ .3.如图2,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论: (1)∠PBC=15°;(2)AD ∥BC ;(3)直线PC 与AB 垂直;(4)四边形ABCD 是轴对称图形. 其中正确结论个数是( )A . 1 B. 2 C. 3 D. 44.如图,在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( )A.(1)(2)(3)B. (1)(2)(4)C. (2)(3) (4)D. (1)(3)(4)5.(2011乐山)如图,在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于点D ,若DE 垂直平分AB ,求∠B 的度数.6. 如图,AD 是△ABC 的中线,且∠ADC=60°,BC=4. 把△ADC 沿直线AD 折叠后,点C 落在C ′的位置上,求BC ′的长.900 B •A C1080 B •A CB •B •A C360 A C450 (1)(2)(3)(4)图1 图2PDAB CABCDC 'E DBAC§3.4 直角三角形和勾股定理一、 知识要点直角三角形的性质;勾股定理和勾股定理的逆定理及其应用。
备战2019年中考数学一轮专题复习整式的运算导学案
备战2019年中考数学一轮专题复习整式的运算考点解读:能够分清哪些项是同类项.考点1:整式的有关概念基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同.注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】如果x a+2y3与﹣3x3y2b﹣1是同类项,那么a、b的值分别是()A. B. C. D.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可分别求得a和b的值.【解答】解:由同类项的定义,得,解得.故选A.【变式1】与﹣125a3bc2是同类项的是()A.a2b3c B. ab2c3 C.0.35ba3c2 D.13a3bc3【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,进行判断.【解答】解:A、a2b3c与﹣125a3bc2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误;B、ab2c3与﹣125a3bc2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误;C、0.35ba3c2与﹣125a3bc2所含的相同字母的指数相同,所以它们是同类项.故本选项正确;D、13a3bc3与﹣125a3bc2所含的相同字母c的指数不相同,所以它们不是同类项.故本选项错误;故选C.考点2:幂的运算基础知识归纳:(1)同底数幂相乘:a m·a n=a m+n(m,n都是整数,a≠0)(2)幂的乘方:(a m)n=a mn(m,n都是整数,a≠0)(3)积的乘方:(ab)n=a n·b n(n是整数,a≠0,b≠0)(4)同底数幂相除:a m÷a n=a m-n(m,n都是整数,a≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.【例2】(2018•温州)计算a6•a2的结果是()A.a3 B.a4 C.a8 D.a12【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解:a6•a2=a8,故选:C.【变式2】(2018•南京)计算a3•(a3)2的结果是()A.a8 B.a9 C.a11 D.a18【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.考点3:整式的运算基础知识归纳:1.整式的加减法:,实质上就是合并同类项1.整式乘法①单项式乘多项式:m(a+b)=ma+mb;②多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd③乘法公式:平方差公式:(a+b)(a-b)=a2-b2;完全平方公式:(a±b)2=a2±2ab+b2.3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【变式3】(2018•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)【变式4】(2018•乌鲁木齐)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=+1.【分析】先去括号,再合并同类项;最后把x的值代入即可.【解答】解:原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,把x=+1代入,得:原式=(+1)2﹣2(+1)=3+2﹣2﹣2=1.☞真题连接:一、选择题:1. (2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b2. 有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n﹣10)厘米3. (2018•资阳)下列运算正确的是()A.a2+a3=a5 B.a2×a3=a6 C.(a+b)2=a2+b2 D.(a2)3=a64. (2018•云南)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n5. 若(x﹣2)2+|y+1|+z2=0,则x3﹣y3+z3+3xyz=()A.7 B.8 C.9 D.106. (2018•绍兴)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③ D.④二、填空题:7. (2018•株洲)单项式5mn2的次数.8. (2018•大庆)若2x=5,2y=3,则22x+y= .9. (2018•玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= .10. (2018•安顺)若x2+2(m﹣3)x+16是关于x的完全平方式,则m= .三、计算与解答:11. (2018•淄博)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.12. (2018•宜昌)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.13. (2018•河北)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?14. (2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34= .☞参考答案:一、选择题:1. (2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.2. 有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n﹣10)厘米【分析】本题的关键是弄清n块石棉瓦重叠了(n﹣1)个10厘米,再依题意列代数式求出结果.【解答】解:根据题意,得:n块石棉瓦重叠了(n﹣1)个10厘米,故n(n为正整数)块石棉瓦覆盖的宽度为:60n﹣10(n﹣1)=(50n+10)厘米,故选C.3. (2018•资阳)下列运算正确的是()A.a2+a3=a5 B.a2×a3=a6 C.(a+b)2=a2+b2 D.(a2)3=a6【分析】根据合并同类项的法则,幂的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2+a3=a2+a3,错误;B、a2×a3=a5,错误;C、(a+b)2=a2+2ab+b2,错误;D、(a2)3=a6,正确;故选:D.4. (2018•云南)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.5. 若(x﹣2)2+|y+1|+z2=0,则x3﹣y3+z3+3xyz=()A.7 B.8 C.9 D.10【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】根据几个非负数的和为0的性质得到x﹣2=0,y+1=0,z=0,解得x=2,y=﹣1,z=0,然后把x、y、z的值代入x3﹣y3+z3+3xyz计算即可.【解答】解:∵(x﹣2)2+|y+1|+z2=0,∴x﹣2=0,y+1=0,z=0,∴x=2,y=﹣1,z=0,∴x3﹣y3+z3+3xyz=23﹣(﹣1)3+03﹣3×2×(﹣1)×0=9.故选C.6. (2018•绍兴)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③ D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.二、填空题:7. (2018•株洲)单项式5mn2的次数.【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5mn2的次数是:1+2=3.故答案是:3.8. (2018•大庆)若2x=5,2y=3,则22x+y= .【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75.故答案为:75.9. (2018•玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= .【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.10. (2018•安顺)若x2+2(m﹣3)x+16是关于x的完全平方式,则m= .【分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.三、计算与解答:11. (2018•淄博)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.12. (2018•宜昌)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.13. (2018•河北)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.14. (2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464 ;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34= 1 .【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M•N)=log a M+log a N和log a=log a M﹣log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵m﹣n=log a M﹣log a N,∴log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为:1.。
2019中考数学一轮综合复习同步讲义(第2课整式)
中考一轮数学复习第02课 整式(整式的加减乘除及因式分解)知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧公式变形:完全平方公式:平方差公式:乘法公式:十字相乘:多项式乘多项式:单项式乘多项式:单项式乘单项式:多项式乘多项式幂的乘方:积的乘方:同底数幂相乘:积的乘方与幂的乘方:整式的乘法多项式加减法则:合并同类项法则:两个无关:两个有关:定义:同类项:升幂排列:降幂排列:读法:定义:多项式次数:定义:单项式整式包括:整式 ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分组分解法:十字相乘法:完全平方公式:平方差公式:公式法:字母或因式:系数:定义:提公因式法:分解方法:定义:因式分解例1.已知多项式6x 21-xy y x 65-322m 2+++是六次四项式,单项式z y x 32m -5n 3的次数与这个多项式的次数相同,求n 的值。
例2.当k= 时,多项式8313322-+--xy y kxy x 中不含xy 项。
例3.当x=1时,代数式20143++bx ax 等于2019,则当x=-1时,代数式20143++bx ax 值为多少?例4.若多项式y x xy x 32642-+-与by ax bxy ax 232-++的和不含二次项,求a 、b 的值。
例5.填空:(1)x x x x ⋅+⋅22= (2)y y y y ⋅-⋅⋅-425)(= (3)()432a = ; (4)10001001)21()2(-⨯-= (5)8x =)(2)(x =)(x x ⋅2=)(x x ⋅3 ;(6)12x =)(2)(x =)(x x ⋅2=)(x x ⋅7=)(3)(x例6.已知:2,3==n m x x ,求n m x 23+与n m x 3-2。
2019中考数学第一轮复习 第1章第2讲整式及其运算(共18张PPT)
典型例题运用 类型1 同类项的定义
1
【例1】 [2018·凉山州中考]若- 2 xm+3y与2x4yn+3是同类 项,则(m+n)2017=____.
1 -1 ∵- 2 xm+3y 与 2x4yn+3 是同类项,∴m+3=4,n+3=1,解得 m=1,n=-2.
∴(m+n)2017=(1-2)2017=-1.
同底数幂相除
底数不变,指数 am÷an=⑩__am-n__(a≠0,m,n都为
相减
整数)
注意
在进行计算时,一定要先弄清运算顺序,再确定所运用的运算法则,最 后按照法则正确计算.运算时要注意其公式的逆向运用,这样在解决某些 特殊结构的幂的问题时就能避繁就简.
3.整式的乘法
单项式相乘,把它们的系数相乘,字母部分的 单项式与单项 同底数幂分别相乘,对于只在一个单项式中含
得分要领►对一个多项式进行因式分解,如果有公因式首 先提取公因式,然后再利用公式法因式分解,因式分解要 彻底,直到不能分解为止.
3.下列运算正确的是( B )
A. (-5)2 -5
B. (- 1)-2 16
4
C.x6÷x3=x2
D.(x3)2=x5
链接第4讲六年真题全练第1题.
猜押预测►下列运算中,结果是a4的是( D )
A.a2·a3
B.a12÷a3
C.(a2)3
D.(-a)4
得分要领►幂的运算问题,要注意两点:(1)同底数幂的 乘除,积的乘方,幂的乘方,很容易混淆,一定要记准法 则才能做题;(2)注意符号不能出错.
考点4 因式分解
把一个多项式化成①__几个整式的乘积__的形式,叫 概念 做因式分解.因式分解的对象是多项式,过程是恒等
变形,结果是整式的乘积的形式
2019中考数学第一轮复习导学案
中考数学第一轮复习导学案第一章 实数课时1.实数的有关概念【课前热身】1.2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .3.2的相反数是 .4.3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题. 【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴2--的倒数是( )A .2 B.12C.12-D.-2 ⑵若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 ⑶如图,数轴上点P 表示的数可能是( )A.7B. 7-C. 3.2-D. 10-例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,14,0,32,364,0.31,227,2π,2.161 161 161…,(-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.51-的倒数是 ( ) 3- 2- 1- O 1 2 3 PA .51-B .51 C .5- D .58.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.如果□+2=0,那么“□”内应填的实数是( )A .21 B .21- C .21± D .2 10.下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11.16的算术平方根是( )A.4B.-4C.±4D.16 12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数o baA BO-3课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(晋江)计算:=-13_______.3.(贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.【典例精析】 例1 计算:⑴20080+|-1|-3cos30°+ (21)3; ⑵ 232(2)2sin 60---+.输入x输出y平方乘以2 减去4若结果大于0否则例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--. 3.计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 12 4. 下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴4245tan 21)1(10+-︒+--;⑵201()(32)2sin 3032---+︒+-;⑶ 01)2008(260cos π-++-.﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】1. 31-x 2y 的系数是 ,次数是 .2.计算:2(2)a a -÷= . 3.下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. 计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a 万元【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23 D .32例2按下列程序计算,把答案写在表格内:⑴ 填写表格:输入n 3 21 —2 —3 … 输出答案11…⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7n 平方 +n ÷n -n 答案4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中2a =,1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .1 1 11 2 1 1 3 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++课时4.因式分解【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:⑴(聊城)33222ax y axy ax y +-=__________________.⑵3y 2-27=___________________. ⑶244x x ++=_________________. ⑷ 221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-. 2.分解因式:=-x x 422____________________.3.分解因式:=-942x ____________________.4.分解因式:=+-442x x ____________________.5.分解因式2232ab a b a -+= .6.将3214x x x +-分解因式的结果是 . 7.分解因式am an bm bn +++=_____ _____;8. 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.ba11.计算:(1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ①()()()2222222b a c b a ba -=-+ ② 即222cb a =+ ③∴△ABC 为Rt △。
阳泉市2019年中考数学一轮复习导学案(专题5整式)
5.整 式题组练习一(问题习题化)1. x 2•x 3=( )A.x 5B. x 6C. x 8D.x 92.下列算式能用平方差公式计算的是( )A.(2x +y )(2y -x )B.)121)(121(--+x xC.(3x -y )(-3x +y )D.(-x -y )(-x +y )3.若a 2+ma+16是一个完全平方式,则m=( )A .4B .-4C .9D .8或-84.﹣4a 2b 的次数.系数分别是( )A.3,-4B. -4,3 C .4,2 D.2,﹣45.如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=﹣1时,代数式2ax 3+3bx+4的值是 .6.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1 和S 2;(2)请写出上述过程所揭示的乘法公式.7.先化简,再求值:22(2)(2)a a b a b +-+,其中1a =-,b =.◆ 知识梳理8.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n的值是( ) A .2 B .0C -1D .19.若x 2+mx -15=(x+3)(x+n ),则m ,n 的值为( )A .-5,2B .5,-2C .-2,-5D .2,510.已知x 2﹣2x ﹣3=0,则2x 2﹣4x 的值为( )11.如果(2a+2b+1)(2a+2b-1)=63,那么a+b 的值是 .12.若x 2﹣2x=3,则代数式2x 2﹣4x+3的值为 .13.若a 2+b 2=5,ab=2,则(a+b )2=_______.14. 某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是_________元.15.已知当x=-2时,代数式ax 3+bx+1的值为6,那么当x =2时,代数式ax 3+bx+1的值为_______.16.若(px+1)(2x -p )的乘积中x 2项的系数是1且不含x 项,则p=_____,q=______.17.有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 ,依次继续下去…,第2019次输出的结果是 .题组练习三(中考考点链接)18.下列运算,结果正确的是( )A. 224m m m +=B. 22211( )m m m m+=+ C. 2224(3)6mn m n =D. 2222m m n mn n÷=19. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20cm 2的矩形空地,则原正方形空地的边长为( ) A.7m B.8m C.9m D.10m20.定义[x ]为不超过x 的最大整数,如[3.6]=3, [0.6]=0, [-3.6]=-4.对于任意实数x,下列式子中错误的是( )A.[x]=x (x 为整数)B.0≤x -[x] <1C.[x +y]≤[x]+[y]D.[n +x]=n +[x](n 为整数)21.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 .(用a 、b 的代数式表示).22.已知x 是有理数,y 是无理数,请先化简下面的式子,再选择你喜欢的数代入求值:(x-y)2+y(2x-y).有理数:1,-3,1.2,32,12; 无理数:2 ,-3,-33,21,π.答案: 1.A ;2.D ;3.D ;4.A ; 5.3;6. (1)221S a b =-; 21(22)()()()2S b a a b a b a b =+-=+-;(2)22()()a b a b a b +-=-.7.原式()[()]()()22222224a b a a b a b a b a b =+-+=+-=- 把,1a =-b =原式=)3()1(224⨯--=-118. d ; 9. C ; 10. 6; 11.±4 ;12.9;13.9; 14. 0.99a 15.-4; 16.p=12,q=4; 17.3,3; 18. D ; 19.A 20.C 21. ab22.略2019-2020学年数学中考模拟试卷一、选择题1.如图,在△ABC 中,AB =AC ,BC =4,tanB =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取( )A.2B.3C.4D.52.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是( )A .a 8÷a 4=a 2B .a 3•a 4=a 12C .a 5+a 5=a 10D .2x 3•x 2=2x 53.如图,已知△ABC 的三个顶点均在正方形网格的格点上,则tanA 的值为( )A .12B .5C .5D .54.2018年我省生产总值首度突破3万亿大关,其中3万亿用科学记数法表示为( )A .3×1010B .3×1011C .3×1012D .3×10135.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 26.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( )A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =87.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A.12a -B.1(1)2a -+C.1(1)2a --D.1(3)2a -+ 8.下列图形既是中心对称图形又是轴对称图形的有( )A .1个B .2个C .3个D .4个9.一元二次方程24x x =的解为( )A .4x =B .10x =,24x =C .12x =,22x =-D .10x =,24x =-10.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为( )A .30°B .45°C .60°D .90°11.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。
2019届中考数学一轮复习教学案:第2课时整式与因式分解
第2课时整式与因式分解1.了解单项式、多项式、整式、代数式的有关概念;能在现实情境中进一步体会用字母表示数的意义;能分析简单问题的数量关系,并用代数式表示;会根据已知条件求出代数式的值.2.了解整数指数幂的意义和基本性质,会进行整式的加、减、乘、除运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘).3.了解乘法公式的几何背景,会推导乘法公式(平方差公式和完全平方公式),并能用公式进行简单的计算.4.了解因式分解的意义;理解因式分解与整式乘法的区别和联系;会用提公因式法、公式法(直接用公式不超过两次)进行因式分解.【知识梳理】1.代数式的概念:(1)用_______把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或字母也是代数式.(2)单项式:由数与字母的_______叫单项式.其中_______叫做单项式的系数,系数不能用带分数表示.一个单项式中,所有字母的_______叫做这个单项式的次数.单独的一个数或字母也是单项式.(3)多项式:几个单项式的_______叫做多项式.其中每个_______叫做这个多项式的项,不含字母的项叫做_______,多项式中次数最高的项的次数,叫做这个多项式的_______.(4)单项式和多项式统称为_______.(5)用数值代替代数式中的字母,计算出结果,叫做代数式的_______.(6)同类项:所含字母相同,并且相同字母的_______也相同的项叫做同类项.2.整式的运算:(1)整式加减的实质就是_______.(2)整式的乘法包括:单项式乘以单项式,________,_______.(3)整式的除法:单项式除以单项式,把_______和_______分别相除,作为商的因式.对于只在被除式里含有的字母,则连同它的指数作为_______.多项式除以单项式时,先把多项式的每一项除以这个单项式,再把_______.(4)幂的运算法则(m,n是整数,a≠0):①a m·a n=_______;②(a m)n=_______;③(ab)n=________;④a m÷a n=_______.3.乘法公式:(1)平方差公式:(a+b)(a-b)=_______.(2)完全平方公式:(a±b)2=_______.4.因式分解:(1)定义:把一个多项式化成几个整式_______的形式叫做把这个多项式因式分解.(2)方法:①提公因式法:ma+mb+mc=_______.②公式法:a2-b2=_______;a2±2ab+b2=_______.【考点例析】考点一列代数式例1某企业今年3月份的产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元提示已知原有量为a,增加(减少)为x%,则现有量为a(1+x%)[或a(1-x%)].考点二求代数式的值例2 已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为________.提示本题用到整体思想,将(2a+b)看成一个整体,代入4a+2b中,便顺利得到其值.考点三同类项例3如果单项式-12x a y2与13x3y b是同类项,那么a、b的值分别为( )A.2、2 B.-3、2 C.2、3 D.3、2 提示根据同类项的定义即可求解.考点四整数指数幂与幂的运算例4计算2-2的结果为( )A.14B.2C.-14D.4提示根据负整数指数幂法则解题,例5下列计算正确的是( )A.2a2+a2=3a4 B.a6÷a2=a3C.a6·a2=a12D.(-a6)2=a12提示根据幂的有关运算法则进行运算,注意“对号入座”.考点五整式的运算例6化简:(1) 3(2x2-y2)-2(3y2-2x2);(2) (a-b)2+6(2a+b).提示(1)先去括号再合并同类项,要注意括号前面的因数要与括号内各项相乘,切忌“漏乘”现象;(2)先根据单项式乘以多项式法则以及完全平方公式进行计算,再合并同类项.例7先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=12.提示本题先运用平方差公式、完全平方公式化简式子,然后把a、b的值代入化简后的结果中求值.考点六因式分解例8(1)分解因式:x3-9x=________;(2)分解因式:nm2+6nm+9m=________.提示(1)先提取公因式x,提取后剩余x2-9,满足平方差公式;(2)先提取公因式m,提取后剩余n2+6n+9,满足完全平方公式.考点七图形中的整式乘除运算例9 如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积为( )A.2 cm2B.2a cm2C.4a cm2D.(a2-1)cm2提示由图可知,所求矩形的面积为边长为(a+1) cm的正方形剪去边长为(a-1)cm的正方形后剩余部分的面积,利用正方形的面积之差便可求得.【反馈练习】1.下列运算,正确的是( )A.3x2-2x2=x2B.(-2a)2=-2a2C.(a+b)2=a2+b2D.-2(a-1)=-2a-12.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列式子变形是因式分解的是( )A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)4.如图①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A.2mn B.(m+n)2C.(m-n)2D.m2-n25.某校艺术班同学每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有_______人(用含有m的代数式表示).6.若代数式-4x6y与x2n y是同类项,则常数n的值为_______.7.已知2a-3b2=5,则10-2a+3b2的值是________.8.因式分解:(1) 2x2-10x=________;(2) 2x2-8=________;(3) a-6ab+9ab2=________.9.化简:(1) (x+1)2-x(x+2);(2) 3(x2+2)-3(x+1) (x-1).10.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.。
2019中考数学一轮综合复习同步讲义(第2课整式)
中考一轮数学复习第02课 整式(整式的加减乘除及因式分解)知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧公式变形:完全平方公式:平方差公式:乘法公式:十字相乘:多项式乘多项式:单项式乘多项式:单项式乘单项式:多项式乘多项式幂的乘方:积的乘方:同底数幂相乘:积的乘方与幂的乘方:整式的乘法多项式加减法则:合并同类项法则:两个无关:两个有关:定义:同类项:升幂排列:降幂排列:读法:定义:多项式次数:定义:单项式整式包括:整式⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分组分解法:十字相乘法:完全平方公式:平方差公式:公式法:字母或因式:系数:定义:提公因式法:分解方法:定义:因式分解例1.已知多项式6x 21-xy y x 65-322m 2+++是六次四项式,单项式z y x 32m -5n 3的次数与这个多项式的次数相同,求n 的值。
例2.当k= 时,多项式8313322-+--xy y kxy x 中不含xy 项。
例3.当x=1时,代数式20143++bx ax 等于2019,则当x=-1时,代数式20143++bx ax 值为多少?例4.若多项式y x xy x 32642-+-与by ax bxy ax 232-++的和不含二次项,求a 、b 的值。
例5.填空:(1)x x x x ⋅+⋅22= (2)y y y y ⋅-⋅⋅-425)(= (3)()432a = ; (4)10001001)21()2(-⨯-=(5)8x =)(2)(x =)(xx ⋅2=)(xx ⋅3 ;(6)12x =)(2)(x =)(xx ⋅2=)(xx ⋅7=)(3)(x例6.已知:2,3==n m x x ,求n m x 23+与n m x 3-2。
(江西专用)2019中考数学总复习第一部分教材同步复习第一章数与式第3讲代数式、整式与因式分解课件
知识点二 整式的相关概念
由数或字母的②___积_____组成的代数式叫做单项式 概念
(单独的一个数或一个③__字_母_____也是单项式)
单项式中的④__数__字____因数
系数
单项式
叫做这个单项式的系数
ቤተ መጻሕፍቲ ባይዱ
单项式中所有字母的⑤
次数 __指__数_的__和____叫做这个单项
式的次数
6
多项式
整式 同类项
8
知识点三 整式的运算
• 1.整式的加减运算
名称
定义与性质
定义:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项
添(去)括 号法则
性质:合并同类项后,所得项的系数是合并前各同类项的系数的和, 且字母连同它的⑬___指_数____不变 括号前是“-”号,添(去)括号时,括号里的各项都⑭_改__变_____ 符号;括号前是“+”号,添(去)括号时,括号里的各项都不改变 符号
叫做同类项,所有的⑫_常__数_____项都是同类项,如 3 和12,a 和-3a
7
4.单项式 5x2y 的系数为_____5___,次数为___3_____. 5.多项式-5a2b+ab-1 是____三____次___三____项式,最高次项是_-__5_a2_b___,常 数项是__-__1____. 6.在式子-1,3x+2,1a,x3-y3,-5a6bc中,整式共有____4 ____个.
14
• ⑧a2·(-a)=__-_a_3 ____;
• ⑨(-x2y)2÷xy2=__x_3 _____;
• ⑩(m+3)2=__m_2+_6_m_+_9________.
• 8.化简-2(m-n)的结果为-_2_m_+_2_n _______.
《中考大一轮数学复习》课件 课时3 整式及其运算
中考大一轮复习讲义◆ 数学
2
夯实基本
中考大一轮复习讲义◆ 数学 知识结构梳理
知已知彼
1 2
3
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
基础知识回顾 1. 代数式:用运算符号 ( 加、减、乘、除、乘方、开方 ) 把 ________ 或表示 ____________连接而成的式子叫做代数式. 2. 代数式的值:用__________代替代数式里的字母,按照代数式里的运算关 系,计算后所得的__________叫做代数式的值. 3. 整式 (1) 单项式:由数与字母的 ________ 组成的代数式叫做单项式 ( 单独一个数或 ________ 也是单项式 ) .单项式中的 __________ 叫做这个单项式的系数;单项式 中的所有字母的____________叫做这个单项式的次数. (2)多项式:几个单项式的________叫做多项式.在多项式中,每个单项式叫 做多项式的________,其中次数最高的项的________叫做这个多项式的次数.不 含字母的项叫做__________. (3)整式:________与__________统称整式.
1 2
10
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
热点三 整式的化简 热点搜索 在求整式的值时,应先将整式进行化简,即去括号、合并同类 项,然后再把整式中字母的值代入计算,可化繁为简,使运算简便.
典例分析 3 (2013·湖南娄底 )先化简,再求值: (x+y)(x-y)- (4x3y- 3 . 3
1 2
7
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
点对点训练 1. 某班共有x个学生,其中女生人数占45%,用代数式表示该班的男 0.55x . 生人数是________ 2. (2014·吉林)如图,矩形ABCD的面积为 ________(用含x的代数式 表示). (x+3)(x+2)(或写为x2+5x+6的形式)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式及其运算◆课前热身1.受甲型H1N1流感影响,猪肉价格下降了30%,设原来的猪肉价格为a 元/千克,则现在的猪肉价格为____________元/千克.2.已知22x =,则23x +的值是 . 3.计算25(3)a a ·= .4. a ,b 两数的平方差用代数式表示为( )A.22a b -B.2()a b -C.2a b +D.2a b + 【参考答案】1.0.7a (或70%a 或710a ) 2.5 3.97a 4.A ◆考点聚焦 知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式. 大纲要求 1.代数式①在现实情境中进一步理解用字母表示数的意义. ②能分析简单问题的数量关系,并用代数式表示. ③能解释一些简单代数式的实际背景或几何意义.④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算. 2.整式①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示). ②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘). ③会推导乘法公式:()()22b a b a b a -=-+;()2222b ab a b a ++=+,了解公式的几何背景,并能进行简单计算. 考查重点与常见题型1、 考查列代数式的能力。
题型多为选择题,如: 下列各题中,所列代数错误的是( )(A ) 表示“比a 与b 的积的2倍小5的数”的代数式是2ab -5 (B ) 表示“a 与b 的平方差的倒数”的代数式是1a -b2(C ) 表示“被5除商是a ,余数是2的数”的代数式是5a+2 (D ) 表示“数的一半与数的3倍的差”的代数式是a2-3b2、 考查整数指数幂的运算、零指数。
题型多为选择题,在实数运算中也有出现,如: 下列各式中,正确的是( )(A )a 3+a 3=a 6 (B)(3a 3)2=6a 6 (C)a 3•a 3=a 6 (D)(a 3)2=a 6整式的运算,题型多样,常见的填空、选择、化简等都有. ◆备考兵法理解用字母表示数的意义,掌握用代数式表示简单问题的数量关系,灵活运用求代数式的值,掌握整式的加减乘法运算,灵活运用乘法公式.【注意】1.求代数式的值一般有三种途径:(1)直接代入;(2)整体代入,运用整体代入需将欲求值的代数式适当变形为可用已知条件整体代入的式子,然后整体代入;(3)化简求值 2.几个单项式的和仍为单项式,其隐含条件是这几个单项式为同类项,同类项不仅所含字母相同,而且相同字母的指数也相同;3.幂的运算一要注意运算符号,二要注意指数的运算,同底数幂相乘除指数相加减,幂的乘方指数相乘,反之亦然;4. 整式的加、减、乘、除和乘方的混合运算,这方面应注意的是化简过程中的符号问题. ◆考点链接 1.代数式的分类:2.整式:叫做整式. 3.整式的运算:⑴整式的加减:实质上就是合并同类项.代数式整式分式有理式无理式⑵整式的乘除: ①幂的运算法则:=∙n m a a ;=÷n m a a ;()=nm a ;()=n ab .②乘法公式:平方差公式: ()()=-+b a b a ; ◆典例精析 【例1】填空:(1)-2343ab c 的系数是_________,是__________次单项式.(2)已知与2x 3y 2与-x 3m y n的和是单项式,则代数式4m -2n 的值是__________. (3)计算:(a 3b) 2÷a 4=_________,a (-2a 2) 3___________.(4)(黑龙江齐齐哈尔)已知102103m n ==,,则3210m n+=____________.【解】(1)-43,6 (2)0 (3) a 2b 2,-8a 7(4)72 【解析】 (1)单项式的次数应是所有字母指数的和,特别是字母a 的指数是1而不是0; (2)几个单项式的和仍为单项式,其隐含条件是这几个单项式为同类项,同类项不仅所含字母相同,而且相同字母的指数也相同;(3)幂的运算一要注意运算符号,二要注意指数的运算,同底数幂相乘除指数相加减,幂的乘方指数相乘,反之亦然.【例2】(陕西太原)下列计算中,结果正确的是( )A .236a a a =· B .()()26a a a =·3 C .()326aa = D .623a a a ÷=【答案】C【解析】本题考查整式的有关运算,235a a a =,选项A 是错的,()()226a a a =·3,选项B是错的,624a a a ÷=,选项D 是错的,()326aa =,选项C 是正确的,故选C .【例3】(浙江宁波)先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-. 【答案】解:原式2242a a a =--+ 24a =-.当1a =-时,原式2(1)4=⨯--【解析】整式运算应注意按步骤规范作答,去括号时括号前有系数应注意不要漏乘,括号前是负号括号内各项应改变符号.求值计算时应先化简再代入求值. ◆迎考精炼 一、选择题1.(山西太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x + 2.(四川南充)化简123()x x -的结果是( ) A .5xB .4xC .xD .1x3.(广西桂林)下列运算正确的是( ).A .22a b ab +=B . 222()ab a b -=C .2a ·2a =22a D . 422a a ÷= 4.(内蒙古包头)下列运算中,正确的是( ) A .2a a a +=B .22a a a =C .22(2)4a a =D .325()a a =5.(湖北襄樊)下列计算正确的是( )A .236a a a = B .842a a a ÷= C .325a a a += D .()32628aa =6.( 年广东佛山)数学上一般把n aa a a a 个···…·记为( ) A .na B .n a + C .na D .an 7.(重庆)计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x二、填空题1.(湖南株洲)孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花了 元.2.(湖北恩施)某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.3.(吉林长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).4.(山东烟台)若523m x y +与3n x y 的和是单项式,则mn = . 5.(宁夏) 已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 三、解答题1.(山东威海)先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.2.(北京市)已知2514x x -=,求()()()212111x x x ---++的值3.(山西省)计算:()()()2312x x x +---…【参考答案】 一、选择题1. A2. C3. B4.C解析:本题考查合并同类项和幂的运算性质,2a a a +=,显然A 不正确;2123.a a a a +==,选项B 中误把a 的指数当作零.()23236aa a ⨯==,故D 不正确.5. D 解析:本题考查整式的有关运算,通过计算可知()32628a a =是正确的,故选D.6. C7.B 二、填空题1.0.42m n +2.0.55x3.2n+24.145.2 三、解答题1.解:22()()(2)3a b a b a b a ++-+-22222223a ab b a ab b a ab=+++---=当2a =-2b 时,原式22(22)(2)1=-=--=2.解:()()()212111x x x ---++ =22221(21)1x x x x x --+-+++ =22221211x x x x x --+---+ =251x x -+ 当2514x x -=时,原式=2(5)114115x x -+=+=3.解:原式=()226932x x x x ++--+=226932x x x x ++-+- =97x +.。