第6章 频率与概率单元测试题(含答案)-

合集下载

第6章频率与概率单元测试题(含答案)-

第6章频率与概率单元测试题(含答案)-

第六章单元测试题( 时间 :90分钟满分 :100 分 )1.(10 分 ) 某厂生产的日光灯的使用寿命为4000 小时的概率为0.8,而使用寿命为 5000 小时的概率为0.4, 求已使用了 4000 小时的此种日光灯能用到5000小时以上的概率 .2.(10分)袋中有4只红球和 3 只白球 , 从袋中连取两次, 每次任取一只球,取后不放回,求在第一次获得红球时, 第二获得白球的概率.3.(10分)在10个产品中有2 个次品 , 现从中随机地抽取二次, 每次取一个 , 取后不放回 , 求以下事件的概率: (1)两个都是正品; (2)两个都是次品.4.(8分)两人一组,每人在纸上随机写一个不大于 6 的正整数 , 两人所写的正整数恰巧同样的概率是多少?5.(12分)在桌面上扔掷两颗骰子, 计算 : (1)点数的和不超出 4 的概率 ; (2)点数的和不小于 10 的概率 ; (3)点数的和是 3 的倍数的概率.6.(10分)一套书共有上、中、下三册,将它们随意地陈设在书架的同一层上, 各册自左至右或自右至左恰巧成上、中、下序次的概率是多少?7.(10分)某游戏室的通路如图, 汤姆随机地选择一条道路, 应用图中的格子,确立汤姆进入 A 室或 B 室的概率 . ( 此题选自全美数学教师理事会 :《美国学校教课课程与评论标准》第92 页 , 人民教育第一版社 ,1994)通道:上B进口A B(a)中下BAAB(b)8.(10 分 ) 保险企业为了确立人寿保险的价钱, 需要对必定范围内人的寿命进行检查统计,拟订一张生命表 , 现把某地域的生命表的部分摘录以下:年纪活到该年纪的人数在该年纪死亡的人数1010000074915962857352092637723258903271830854417204078106765506980496260579171546703856923918014474209190847385依据上表解以下问题 :(1)某人今年 40 岁 , 他当年逝世的概率是多少 ?他活到 80 岁的概率是多少 ?(2)假如有10000个40岁的人参加人寿保险,当年死亡的人均补偿金为a元,估计保险企业需付的补偿金总数为多少元 ?9.(10 分) 主持人指着三扇封闭的门 , 说 : “此中两扇门里是空的 , 有一扇门里有 1 辆车 , 请你选一扇门 , 假如选中了有车的那一扇 , 便可开走这辆车 . ”于是约翰选了一扇门 , 这时主持人翻开另两扇门中的一扇空门, 问约翰 :“你能否愿意重选另一扇未被翻开的门?”请你帮助约翰出个想法.10.(10分)查找资料,看看当地刊行的体育彩票的中奖号码中有连号( 此中有 2 个或 2 个以上中奖号码数字相邻) 的概率大概是多少, 再利用计算器模拟实验, 看看结果怎样.单元测试题答案 :3.(1) 28 ; (2)145 454. 1;365.(1)1;(2)1 166;(3) .36.1.可能出现的序次有 6 种 :( 上、中、下 ),( 上、下、中 ),( 中、上、下 ),( 中、 下、上 ),( 下、 3上、中 ),( 下、中、上 )7.1 1 1 11 1 26 63 ,66.338.(1) 某人在 40 岁当年逝世的概率是765 0.0098 ; 他活到 80 岁的概率是 14474 ≈78106781060.1853(2)10000 个 40 岁参加人寿保险的人, 当年死亡的约为 98 人 , 估计保险企业需付的补偿金总数为 98a 元 .9. 应当换 , 若不换的话获得车的概率是1; 若换的话获得车的概率是2 .3310. 略 .。

青岛版九年级下册数学第6章 频率与概率含答案(含解析)

青岛版九年级下册数学第6章 频率与概率含答案(含解析)

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、一次数学测试后,某班50名学生的成绩被分为5组,第1-4组的频数分别为12、10、15、8,则第5组的频率是( )A.5B.7C.0.5D.0.12、如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.3、“翻开华东师大版数学九年级上册,恰好翻到第50页”,这个事件是()A.必然事件B.随机事件C.不可能事件D.确定事件4、甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.5、一个不透明的盒子中装有3个红球,2个黄球和1个白球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是红球的概率为()A. B. C. D.6、在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.7、下列说法中错误的是()A.“买一张彩票中奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“投掷一枚骰子点数为8”是确定事件8、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.9、在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是()A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场 C.若这两个队打100场,他这个队会赢60场 D.他这个队必赢10、下图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数)。

已知该班只有5位同学的心跳每分钟75次。

请观察下图,指出下列说法中错误的是( )A.数据75落在第2小组B.第4小组的频率为0.1C.心跳为每分钟75次的人数占该班体检人数的D.数据75一定是中位数11、从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A. B. C. D.12、一个袋子中只装有两种颜色的球,这些球的形状、质地等完全相同,其中白色球有4个,黑球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后,放回袋中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为()A.2B.3C.4D.613、崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()A.①④B.②④C.①③④D.①②③④14、下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品15、一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为( )A. B. C. D.二、填空题(共10题,共计30分)16、从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为________17、李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤,若任意组合穿着,则李玲穿着“衣裤同色”的概率是________.18、在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为________19、今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________20、抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是________ .21、若从-2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a, b)恰好落在x轴上的概率是________。

青岛版九年级下册数学第6章 频率与概率含答案(易考题)

青岛版九年级下册数学第6章 频率与概率含答案(易考题)

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、下列事件中是确定事件的是()A.小王参加光明半程马拉松,成绩是第一名B.小明投篮一次得3分 C.一个月有31天 D.正数大于零2、将一个有40个数据的样本统计分成6组,若某一组的频率为0.15,则该组的频数约是()A.1B.0.9C.6.67D.63、将一批数据分成5组列出频数分布直方图,其中第一组频率是0.1,第4组与第5组的频率之和是0.3,那么第2组与第3组的频率之和为()A.0.3B.0.4C.0.5D.0.64、小文同学统计了某小区部分居民每周使用共享单车的时间,并绘制了统计图,如图所示.下面有四个推断:①小文此次一共调查了位小区居民②每周使用时间不足分钟的人数多于分钟的人数③每周使用时间超过分钟的人数超过调查总人数的一半④每周使用时间在分钟的人数最多根据图中信息,上述说法中正确的是( )A.①④B.①③C.②③D.②④5、一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球6、某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为()A. B. C. D.7、小明在做一道正确答案是2的计算题时,由于运算符号(“+”、“﹣”、“×”或“÷”)被墨迹污染,看见的算式是“8█4”,那么小明还能做对的概率是()A. B. C. D.8、某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率是()A.0.12B.0.4C.0.8D.0.69、在一个不透明的袋子中装有两个黑球、两个白球,这些球除颜色外都相同.若从中随机摸出一个球,记下颜色,放回袋中摇匀,再随机摸出一个,两次都摸到黑球的概率是().A. B. C. D.10、下列说法正确的是()A.“明天降雨的概率是75%”表示明天有75%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有1次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在左右D.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖11、已知实数a<0,则下列事件中是必然事件的是()A.3a>0B.a-3<0C.a+3<0D.a 3>012、在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中,通过大量的重复摸球实验后发现,摸到红球的频率稳定在,因此可以推算出m 的值大约是()A.8B.12C.16D.2013、下列事件为不可能事件的是()A.掷一枚质地均匀的正方体骰子,掷得的点数不是奇数就是偶数B.从一副扑g牌中任意抽出一张,花色是黑桃C.抛一枚普通的硬币,正面朝上 D.从装满红球的袋子中摸出一个白球14、已知粉笔盒里有4支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是( )A.4B.6C.8D.1015、在一个不透明的盒子里装有6个分别写有数字-1,0,1,2,3,5的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在抛物线y=x2+1上的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、从-2,-8,5, 中任取两个不同的数作为点的横纵坐标,该点在第三象限的概率为________.17、把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是________.18、“任意打开一本100页的书,正好是第30页”,这是________事件(选填“随机”或“必然”或“不可能”).19、从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是________.20、若小明5分钟内共投篮50次,进球20个,则小明进球的频率是________.21、某批次100个防护口罩中有2个不合格,从这100个口罩中随机抽取1个,恰好取到不合格口罩的概率是________.22、在一个不透明的布袋中装有12个白球和6个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是________.23、某射手在同一条件下进行射击,结果如下表所示:射击次数()10 20 50 100 200 500 …击中靶心次数8 17 45 92 182 453 …( )击中靶心频率0.80 0.85 0.90 0.92 0.91 0.905 …()由此表估计这个射手射击1次,击中靶心的概率是________.(保留一位小数)24、如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.25、在中,给出以下4个条件:⑴ ;⑵ ;⑶ ;⑷ ;从中任取一个条件,可以判定出是直角三角形的概率是________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B 盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止,请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和大于4的概率.28、如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.29、用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?]30、有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:①分别转动转盘;②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止).用列表法或树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、A6、D7、A8、B9、C10、C11、B12、C13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、。

青岛版九年级下册数学第6章 频率与概率含答案

青岛版九年级下册数学第6章 频率与概率含答案

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、已知样本数据个数为30,且被分成4组,各组数据个数之比为2∶4∶3∶1,则第二小组和第三小组的频率分别为 ( )A.0.4和0.3B.0.4和9C.12和0.3D.12和92、下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件。

其中,正确的说法是()A.①②③B.①②④C.①③④D.②③④3、学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.4、下列说法正确的是()A.“蒙上眼睛射击正中靶心”是必然事件B.“抛一枚硬币,正面朝上的概率为”说明掷一枚质地均匀的硬币10次,必有5次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是3的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是3”这一事件发生的频率稳定在附近 D.为了解某种节能灯的使用寿命,应选择全面调查5、一个容量为50的样本中,数据的最大值是123,最小值是45,若取每组终点值与起点值的差为10,则该样本可以分()A.5组或6组B.6组或7组C.7组或8组D.8组或9组6、如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A. B. C. D.7、下列事件是随机事件的是()A.太阳东升西落B.水中捞月C.明天会下雨D.人的生命有限8、下列成语所描述的事件是必然事件的是()A.水中捞月B.守株待兔C.画饼充饥D.水涨船高9、商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是().A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖10、下列说法正确的是().①抛一枚硬币,正面一定朝上;②“明天的降水概率为80%”,表示明天会有80%的地方下雨.③为了解一种灯泡的使用寿命,宜采用普查的方法;④掷一颗骰子,点数一定不大于6.A.1个B.2个C.3个D.4个11、袋中装有a个白球,b个红球,c个黄球,则任意摸出一个球是红球的机会是()A. B. C. D.12、在一个不透明的布袋里装有4个小球,其中2个红球,1个白球,1个黄球,它们除颜色外其它完全相同.那么一次性摸出两个小球恰好都是红球的概率是()A. B. C. D.13、下列判断正确是()A.高铁站对旅客的行李的检查应采取抽样调查B.一组数据5、3、4、5、3的众数是5C.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上D.甲,乙组数据的平均数相同,方差分别是S甲2=4.1,则乙组数据更稳定2=4.3,S乙14、一个家庭有两个孩子,两个都是女孩的概率是()A. B. C. D.无法确定15、下列事件中,属于随机事件的是()A.掷一枚硬币10次,仅有1次正面朝上B.三角形的三个内角之和等于C.从装有5个红球的袋子里摸出一个白球D.在地面向上抛出一个篮球还会下落二、填空题(共10题,共计30分)16、桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为________.17、从-1,2,-3,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数,则这些反比例函数中,其图象在二、四象限的概率是________.18、某设计运动员在相同的条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000射中9环以上次数15 33 78 158 321 801根据频率的稳定性,估计这名运动员射击一次“射中9环以上”的概率是________.19、已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8则第三组的频率为________.20、一个不透明的布袋中分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于4的概率为________ .21、下列事件:①检查生产流水线上的一个产品,是合格品;②三条线段组成一个三角形;③a是实数,则|a|<0;④一副扑g牌中,随意抽出一张是红桃K;⑤367个人中至少有2个人生日相同;⑥一个抽奖活动的中奖率是1%,参与抽奖100次,会中奖.其中属于确定事件的是________.(填序号)22、从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是________23、在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是________.24、一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=________.25、“五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为________.三、解答题(共5题,共计25分)26、一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.27、如图,有一个可以自由转动的转盘被平均分成五个扇形,五个扇形内部分别标有数字.﹣2、3、﹣4、5.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为m,n(当指针指在边界线时视为无效,重转),从而确定一个点的坐标为A(m,n).请用列表或者画树状图的方法求出所有可能得到的点A的坐标,并求出点A在第一象限内的概率.28、学校食堂每天中午为学生提供,,三种不同套餐.用列举法分析甲乙两人选择同款套餐的概率.29、在一个箱子中放有三张完全相同的卡片,卡片上分别标有数字1,2,3.从箱子中任意取出一张卡片,用卡片上的数字作为十位数字,然后放回,再取出一张卡片,用卡片上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.(1)按这种方法能组成哪些两位数?(2)组成的两位数是3的倍数的概率是多少?30、除夕夜,父母给自己的一双儿女发压岁钱,先每人发了200元,然后在三个红包里面分别装有标有100元,300元,500元的卡片,每个红包和卡片除数字不同外,其余均相同,妹妹从三个红包中随机抽取了一个红包,记录数字后放回洗匀,哥哥再随机抽取一个红包,请用列表法或画树状图的方法,求父母给自己的一双儿女发压岁钱总和大于800元的概率.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、D6、B7、C8、D9、C10、A11、B12、C13、D14、C15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

青岛版九年级下册数学第6章 频率与概率含答案(全优)

青岛版九年级下册数学第6章 频率与概率含答案(全优)

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、现有A、B两枚均匀的骰子(骰子的每个面上分别标有数字1,2,3,4,5,6).以小莉掷出A骰子正面朝上的数字为x、小明掷出B骰子正面朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P在已知抛物线y=﹣x2+5x上的概率为()A. B. C. D.2、在一个口袋中装有4个完全相同的小球,它们的标号分别为1、2、3、4,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率为()A. B. C. D.3、下表记录了一名球员在罚球线上罚篮的结果:投篮次数n 100 150 300 500 800 1000投中次数m 58 96 17.4 302 484 601投中频率n/m 0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是()A.0.58B.0.6C.0.64D.0.554、从箱子中摸出红球的概率为,已知口袋中红球有个,则袋中共有球( )个A. B. C. D.5、下列说法正确的是( )A.为了解我国中学生课外阅读的情况,应采用全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上”D.甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6、从-2,3,-4,6,5中任意选两个数,记做a和b,那么点(a,b)在函数y= 的图象上的概率是()A. B. C. D.7、在投掷一枚硬币100次的试验中,“正面朝下”的频数48,则“正面朝下”的频率为( )A.52B.48C.0.52D.0. 488、一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A. B. C. D.9、下列说法正确的是A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B.为了解某品牌灯管的使用寿命,可以采用普查的方式C.一组数据6、8、7、8、9、10的众数和平均数都是8D.若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定10、下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设中奖概率为,则购买100张彩票就一定会中奖1次C.某地会发生地震是必然事件 D.若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.2,则甲组数据比乙组波动性小11、对八年级200名学生的体重进行统计,在频率分布表中,40kg—45kg这一组的频率是0.4,那么八年级学生体重在40kg—45kg的人数是()A.8人B.80人C.4人D.40人12、把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A. B. C. D.13、“买一张福利彩票,开奖后会中奖”这一事件是( )A.不可能事件B.必然事件C.随机事件D.确定事件14、下列事件中,属于随机事件的是()A.袋中只有5个黄球,摸出一个球是白球B.从分别写有2,4,6的三张卡片中随机抽出一张,卡片上的数字能被2整除C.用长度分别是2cm,3cm,6cm的细木条首尾相连组成一个三角形D.任意买一张电影票,座位号是偶数15、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只。

第六章 频率与概率单元测试(含答案)

第六章 频率与概率单元测试(含答案)

第六章 频率与概率单元检测(时间:100分钟 满分:100分)一、选择题(每题3分,共30分) 1、下列事件中,属于随机事件的是( )A.掷一枚普通正六面体骰子所得点数不超过6 ;B.买一张体育彩票中奖;C.太阳从西边落下;D.口袋中装有10个红球,从中摸出一个白球. 2、下列说法正确的是( )A 、可能性很大的事件必然发生;B 、可能性很小的事件也可能发生;C 、如果一件事情可能不发生,那么它就是必然事件;D 、如果一件事情发生的机会只有百分之一,那么它就不可能发生。

3、下列说法正确的是 ( )A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001 次一定抛掷出5点;B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖; C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨; D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等.4、如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是 ( )A. B. C. D. 5、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .36. 小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是 ( ) A 两次摸到红色球 B. 两次摸到白色球C. 两次摸到不同颜色的球D. 先摸到红色球,后摸到白色球7. 广告牌上“京都大酒店”几个字是霓虹灯,几个字一个接一个亮起来,直至全部亮起来再循环,当路人一眼望去,能够看到全亮的概率是( ).A .B .C .D .奖金(元) 1000 500 10050 10 21214161814151617109876543口袋数8、 某市民政部门:“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项:如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是( )A 、B 、C 、D 、 9、在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是( ) A.B.C.D.10、小张外出旅游时带了两件上衣(一件蓝色,一件黄色)和3条长裤(一件蓝色,一件黄色,一件绿色),他任意拿出一件上衣和一条长裤,正好是同色上衣和长裤的概率是 ( ) A. B. C. D. 二、填空题(每题3分共30分)11、根据天气预报,明天降水概率为20%,后天降水概率为80%,假如你准备明天或后天去放风筝,你选择 天为佳.12、如图,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______.13、在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为 。

第六章 频率与概率单元水平测试(含答案)

第六章 频率与概率单元水平测试(含答案)

第六章 《 频率与概率》水平测试一、选择题(每小题4分,共32分)1.关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率;B 、当实验次数很大时,频率稳定在概率附近;C 、当实验次数很大时,概率稳定在频率附近;D 、实验得到的频率与概率不可能相等 2. 下面事件发生的概率为50%的为( )A .将一幅中国象棋反面朝上放在棋盘上,随意拿一枚棋子正好是红色;B .小刚的姨妈刚生了一对双胞胎,两个都是男孩;C .分别标有1,2,3,4数字的四张卡片,闭上眼睛任取一张正好是“1”;D .一个瓶盖抛向空中,落地时里面朝上3.袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是 A .251B .201C .101D .514. 如图所示的两个圆盘中,指针落在每个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A 、255 B 、256 C 、2510 D 、25195.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是( ) A 、100001 B 、1000050 C 、10000100 D 、100001516. 从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定7. 今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,贝贝晶晶欢欢迎迎妮妮准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为 A .136000B .11200C .150D .1308.两个同心圆,大圆半径是小圆半径的2倍,把一粒大米抛在圆形区域内,则大米刚好落在小圆内的概率为( ) A .12 B .13 C .14D .无法确定 二、填空题(每小题3分,共24分)9.有两个完全相同的抽屉和3个完全相同的白色球,要求抽屉不能空着.那么第一个抽屉中有2个球的概率是10.在一次摸球实验中,一个袋子中有黑色和红色和白色三种颜色除外,其他都相同.若从中任意摸出一球,记下颜色后再放回去,再摸,若重复这样的实验400次,98次摸出了黄球,则我们可以估计从口袋中随机摸出一球它为黄球的概率是11.某城镇共有10万人,随机调查2500人,发现每天早上买“城市早报”这种报纸的人为400人,请问在这个城镇中随便问一个人,他早上买乡“城市早报”的概率是 这家报纸的发行量大约是每天 份.12.一水塘里有鲤鱼、卿鱼、链鱼共1000尾,一渔民通过多次捕捞实验后发现,鲤鱼、卿鱼出现的频率是31%和42%,则这个水塘里有鲤鱼 尾,卿鱼 尾、链鱼 尾。

青岛版九年级下册数学第6章 频率与概率含答案

青岛版九年级下册数学第6章 频率与概率含答案

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.天气预报说“我市明天的降水概率为70%”,意味着该市明天一定下雨 B.“买中奖率为的奖券10张,中奖”是必然事件 C.“汽车累计行驶10 000km,从未出现故障”是随机事件 D.甲、乙两人的10次数学测试成绩,方差越小的成绩越好2、为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是().A.袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B.用计算器随机地取不大于10的正整数,计算取得奇数的概率 C.随机掷一枚质地均匀的硬币,计算正面朝上的概率 D.如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率3、某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A. B. C. D.4、池塘里,一只青蛙刚从水里钻出来,同学们开始议论:①青蛙可能会再次钻入水底;②青蛙一定会爬上岸;③青蛙可能会飞上天。

这些说法中正确的有()A.1个B.2个C.3个D.4个5、下列各事件中,是随机事件的是()A. 是实数,则.B.某运动员跳高的最好成绩是10.1m.C.从装有多个白球的箱子里取出2个红球.D.从车间刚生产的产品中任意抽一个,是次品.6、王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.4 0.35 0.1 0.15A.16人B.14人C.4人D.6人7、从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为无理数的概率为()A. B. C. D.8、某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大 D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生9、下列事件是随机事件的是( )A.太阳从东方升起B.任意画一个三角形内角和是360°C.掷一枚硬币,正面朝上 D.若a为实数,则a 2≥010、下列说法错误的是()A.“对顶角相等”的逆命题是真命题B.通过平移或旋转得到的图形与原图形全等C.“经过有交通信号灯的路口,遇到红灯”是随机事件D.函数的图象经过点11、如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.12、小球从A点入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等。

九年级下册数学单元测试卷-第6章 频率与概率-青岛版(含答案)

九年级下册数学单元测试卷-第6章 频率与概率-青岛版(含答案)

九年级下册数学单元测试卷-第6章频率与概率-青岛版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.打开电视看CCTV—5频道,正在播放NBA篮球比赛是必然事件B.某一种彩票中奖概率是,那么买1000张这种彩票就一定能中奖C.度量一个三角形的内角和是360°,这是不可能事件D.小李掷一硬币,连续5次正面朝上,则他第6次掷硬币时,正面朝上的概率是12、下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设中奖概率为,则购买100张彩票就一定会中奖1次C.某地会发生地震是必然事件 D.若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.2,则甲组数据比乙组波动性小3、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1B.0.17C.0.33D.0.44、下列说法正确是()A.“明天的降水概率为30%”是指明天下雨的可能性是30%;B.连续抛一枚硬币50次,出现正面朝上的次数一定是25次;C.连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数;D.某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖.5、一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A. B. C. D.6、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A. B. C. D.7、一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别为﹣2,﹣1,0,1.卡片除数字不同外其他都相同,从中随机抽取两张卡片,其数字之和为负数的概率为()A. B. C. D.8、同时掷两枚质地均匀的骰子,至少有一枚骰子的点数是2的概率是()A. B. C. D.9、一个事件发生的概率不可能是()A.0B.1C.D.10、下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环 C.明天会下雨 D.度量三角形的内角和,结果是360°11、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的须数分布直方图.根据图示计算,仰卧起坐次数在15-20次之间的频率是( )A.0.1B.0.17C.0.33D.0.412、以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑g牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是13、学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A. B. C. D.14、已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的15、把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A. B. C. D.二、填空题(共10题,共计30分)16、把某养鸡场的一次重量抽查情况作为样本,样本数据落在1.5~2.0(单位:kg)之间,频率为0.28,于是估计这个养鸡场里重量在1.5~2.0kg之间的鸡占总数的________%.17、黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.18、某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有________是次品.19、在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 ________.20、在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有________ 个.21、从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是:________ 。

青岛版九年级下册数学第6章 频率与概率 含答案

青岛版九年级下册数学第6章 频率与概率 含答案

青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、下列事件是必然事件的是( )A.抛出的篮球会下落B.抛掷一个均匀硬币,正面朝上C.打开电视机,正在播广告D.买一张电影票,座位号是奇数号2、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件.B.想了解某种饮料中含色素的情况,宜采用抽样调查.C.数据1,1,2,2,3的众数是3. D.一组数据的波动越大,方差越小.3、在一个上面有洞口的正方体箱子里,放有5个除颜色外其他都相同的球,分别有3个红球,2个黄球,小明现在从中摸出一个球,是黄球的概率为()A. B. C. D.4、如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人 B.九(1)班外出步行的学生有8人 C.在扇形图中,步行学生人数所占的圆心角的度数为82° D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人5、一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.6、不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.7、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()实验次数100 200 300 500 800 1000 2000频率0.365 0.328 0.330 0.334 0.336 0.332 0.333g牌洗匀后,从中任抽一张牌的花色是红桃 C.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5 D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球8、下列说法正确的是()A.篮球队员在罚球线上投篮一次,则“投中”是随机事件B.明天的降水概率为,则“明天下雨”是确定事件C.任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是必然事件D. 是实数,则“”是不可能事件9、下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次10、为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1B.0.15C.0.2D.0.311、小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25B.60C.0.26D.1512、在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是()A. B. C. D.13、一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球,下列说法正确的是()A.摸到黄球是不可能事件B.摸到黄球的概率是C.摸到红球是随机事件D.摸到红球是必然事件14、“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.15、某口袋里现有6个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有25个红球,估计绿球个数为()A.6B.12C.13D.25二、填空题(共10题,共计30分)16、在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0、b、c,记为G=(a, b, c).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为Gn =(an, bn,c n ).小明发现:若G=(4,8,18),则游戏永远无法结束,那么G2016=________.17、某校在七年级入学时抽取了部分男生测量身高,结果统计身高(单位:m )在1.35~1.42这一小组的频数为40人,频率为0.2,则抽取的男生共有________人.18、从一副扑g牌里任意抽取一张,抽到“王”(“大王”或“小王”)的概率是________.19、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为________.20、某灯泡厂的一次质量检查,从个灯泡中抽查了个,其中有个不合格,则出现不合格灯泡的频率为________,在这个灯泡中,估计有________个为不合格产品.21、如果有两组牌,它们牌面数字分别为1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的牌概率是________.22、一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有________.23、在平面直角坐标系中,作OOAB,其中三个顶点分别是O(0,0),B(1,1),A( , ),其中点A,O,B不在同一直线上且-2≤≤2,-2≤≤2, , 均为整数,则所作OOAB为直角三角形的概率是________.24、一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________.25、从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是________.三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.28、四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.29、在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图(或列表)的方法求出两次取出小球上的数字之和为偶数的概率.30、剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、B5、D6、B7、D9、A10、C11、A12、B13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章单元测试题
(时间:90分钟满分:100分)
1.(10分)某厂生产的日光灯的使用寿命为4000小时的概率为0.8,而使用寿命为5000小时的概率为0.4,求已使用了4000小时的此种日光灯能用到5000小时以上的概率.
2.(10分)袋中有4只红球和3只白球,从袋中连取两次,每次任取一只球, 取后不放回,求
在第一次取得红球时,第二取得白球的概率.
3.(10分)在10个产品中有2个次品,现从中随机地抽取二次,每次取一个,取后不放回,求
下列事件的概率: (1)两个都是正品; (2)两个都是次品.
4.(8分)两人一组,每人在纸上随机写一个不大于6的正整数,两人所写的正整数恰好相同的概率是多少?
5.(12分)在桌面上投掷两颗骰子,计算: (1)点数的和不超过4的概率; (2)点数的和不小于10的概率; (3)点数的和是3的倍数的概率.
6.(10分)一套书共有上、中、下三册,将它们任意地陈列在书架的同一层上,各册自左至右或自右至左恰好成上、中、下次序的概率是多少?
7.(10分)某游戏室的通路如图,汤姆随机地选择一条道路,应用图中的格子, 确定汤姆进入A 室或B 室的概率. (本题选自全美数学教师理事会:《美国学校教学课程与评价标准》第92页, 人民教育出版社,1994)
(b)
(a)入口下中上通道:B B B
A
A A
B
8.(10分)保险公司为了确定人寿保险的价格, 需要对一定范围内人的寿命进行调查统计,制定一张生命表,
根据上表解下列问题:
(1)某人今年40岁,他当年去世的概率是多少?他活到80岁的概率是多少?
(2)如果有10000个40岁的人参加人寿保险,当年死亡的人均赔偿金为a元, 预计保
险公司需付的赔偿金总额为多少元?
9.(10分)主持人指着三扇关闭的门,说:“其中两扇门里是空的, 有一扇门里有1辆车,请你选一扇门,如果选中了有车的那一扇,就可开走这辆车. ”于是约翰选了一扇门,这时主持人打开另两扇门中的一扇空门,问约翰: “你是否愿意重选另一扇未被打开的门?”请你帮助约翰出个主意.
10.(10分)查找资料,看看当地发行的体育彩票的中奖号码中有连号(其中有2个或2个以
上中奖号码数字相邻)的概率大约是多少,再利用计算器模拟实验,看看结果如何.
单元测试题答案: 1.0.5 2.0.5
3.(1)28
45
; (2)
1
45
4.1 36
;
5.(1)1
6
;(2)
1
6
;(3)
1
3
.
6. 1
3
.可能出现的次序有6种:(上、中、下),(上、下、中),(中、上、下),(中、下、上),(下、
上、中),(下、中、上)
7.111
663
+=,
1112
3663
++=.
8.(1)某人在40岁当年去世的概率是
765
0.0098
78106
≈; 他活到80 岁的概率是
14474
78106

0.1853
(2)10000个40岁参加人寿保险的人,当年死亡的约为98人,预计保险公司需付的赔偿
金总额为98a元.
9.应该换,若不换的话得到车的概率是1
3
;若换的话得到车的概率是
2
3
.
10.略.。

相关文档
最新文档