最大吸收波长的计算(教学内容)
(完整版)紫外—可见分光光度法教案
第五章紫外—可见分光光度法一.教学内容1.紫外-可见吸收光谱的产生(分子的能级及光谱、有机物及无机物电子能级跃迁的类型和特点)2.吸收定律及其发射偏差的原因3.仪器类型、各部件的结构、性能以及仪器的校正4.分析条件的选择5.应用(定性及结构分析、定量分析的各种方法、物理化学常数的测定及其它方面的应用二.重点与难点1.比较有机化合物和无机化合物各种电子跃迁类型所产生吸收带的特点及应用价值2.进行化合物的定性分析、结构判断3.定量分析的新技术(双波长法、导数光谱法、动力学分析法)4.物理化学常数的测定三.教学要求1.较为系统、深入地掌握各种电子跃迁所产生的吸收带及其特征、应用2.熟练掌握吸收定律的应用及测量条件的选择3.较为熟练仪器的类型、各组件的工作原理4.运用各种类型光谱及的经验规则,判断不同的化合物5.掌握定量分析及测定物理化学常数的常见基本方法6.一般掌握某些新的分析技术四.学时安排5学时研究物质在紫外、可见光区的分子吸收光谱的分析方法称为紫外-可见分光光度法。
紫外—可见分光光度法是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。
第一节紫外—可见吸收光谱一、分子吸收光谱的产生在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。
这三种运动能量都是量子化的,并对应有一定能级。
在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。
若用△E电子、△E振动、△E转动分别表示电子能级、振动能级转动能级差,即有△E电子>△E振动>△E转动。
处在同一电子能级的分子,可能因其振动能量不同,而处在不同的振动能级上。
当分子处在同一电子能级和同一振动能级时,它的能量还会因转动能量不同,而处在不同的转动能级上。
所以分子的总能量可以认为是这三种能量的总和:E分子=E电子+ E振动+ E转动当用频率为ν的电磁波照射分子,而该分子的较高能级与较低能级之差△E恰好等于该电磁波的能量hν时,即有△E= hν(h为普朗克常数)此时,在微观上出现分子由较低的能级跃迁到较高的能级;在宏观上则透射光的强度变小。
最大吸收波长的计算 - 副本
5
例1 计算下面化合物的 λmax
C9H19
O O H3C
同环共轭二烯母体基本值 253nm 增加共轭双键(2×30) + 60nm 环外双键(3×5) + 15nm 环基取代(5×5) + 25nm 酰氧基取代 + 0nm λmax计算值 353nm (实测值:356nm)
6
R
异环共轭二烯母体基本值: 214nm 增加共轭双键(1×30) + 30nm 环外双键(3×5) + 15nm 环基取代(5×5) + 25nm λmax计算值 284nm (实测值:283nm)
7
链状共轭双键基本值 4个烷基取代
217nm +20nm
2个环外双键
λmax计算值
+10nm
247nm
(实测值:247nm)8来自OAB
C
4
(3)计算时应将共轭体系上的所有取代基及所有环外 双键均考虑在内,对“身兼数职”的基团应按实际
“兼职”次数计算增加值,同时应准确判断共轭体系
的起点与终点,防止将与共轭体系无关的基团计算在
内;
(4)该规则不适用于共轭体系双键多于四个的体系,
也不适用于交叉共轭体系,典型的交叉共轭体系骨架
结构如下:
2
表2-8 环状共轭二烯波长计算法
3
•应用此规则的注意事项: (1)当有多个母体可供选择时,应优先选择较长波 长的母体,如共轭体系中若同时存在同环二烯与异 环二烯时,应选择同环二烯作为母体; (2)环外双键在这里特指 C=C 双键中有一个 C 原
子在该环上,另一个 C 原子不在该环上的情况(如
结构式 A),而结构式 B 和 C 则不是;
不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定-电子.
《仪器分析》教案技能点2 不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定能点2:学时2学时教学内容不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定教学重点吸收工作曲线绘制教学难点吸收工作曲线绘制参考资料仪器分析(第二版) 中国环境出版社仪器分析技术华中科技大学出版社现代仪器分析技术及应用中国石化出版社一、高锰酸钾溶液的配制1、理论知识市售的KMnO4试剂中常含有少量的MnO2和其它杂质,高锰酸钾在制备和贮存过程中,常混入少量的杂质,蒸馏水中常含有微量还原性的物质,它们可与MnO4-反应而析出MnO(OH)2沉淀,这些生成物以及光、热、酸、碱等外界条件的改变均会促进KMnO4的分解,因此KMnO4标准溶液不能直接配制。
为了配制较稳定的KMnO4溶液,常采用下列措施:(1)称取稍多于理论量的KMnO4溶液,溶解在规定体积的蒸馏水中。
(2)将配制好的KMnO4溶液加热至沸,并保持微沸1h,然后放置2~3天,使溶液中可能存在的还原性的物质完全氧化。
(3)用微孔玻璃漏斗过滤,除去析出的沉淀。
(4)将过滤后的KMnO4溶液贮存于棕色试剂瓶中,并寸放在暗处,以待标定。
如需要浓度较稀的KMnO4溶液,可用蒸馏水将KMnO4稀释和标定后使用,但不宜长期贮存。
标定KMnO4标准溶液的基准物很多,如Na2C2O4、As2O3、H2C2O4·2H2O铁丝等。
其中以Na2C2O4较为常用,因为它容易提纯,性质稳定,不含结晶水。
Na2C2O4在105~110℃烘干2h后冷却,即可。
在H2SO4溶液中,MnO4-与C2O4-的反应如下:2 MnO4- + 5 C2O4- +16H+=2Mn2+ + 10CO2↑+ 8H2O为了使这个反应能够定量地较快地进行,应注意下列滴定条件:(1)温度:在室温下,这个反应的速率缓慢,因此常将溶液加热至70~85℃时进行滴定。
但温度过高,若高于90℃,会使部分H2C2O4发生分解:H 2C2O4→ CO2+ CO + H2O(2)酸度:酸度过低,KMnO4易分解为MnO2;酸度过高,会促使H2C2O4分解,一般滴定开始时的酸度应控制在0.5~1mol/L。
紫外最大吸收波长的计算方法
紫外最大吸收波长的计算方法紫外最大吸收波长的计算方法___________________________紫外(Ultraviolet)光的特性是与可见光不同的,它的波长比可见光更短,能够激发物质的电子进行激发态,因此有着重要的作用。
紫外光吸收谱中最大吸收波长是描述该物质对紫外光的吸收能力的重要参数,它主要取决于物质的分子结构,分子团及其环境。
本文主要介绍紫外最大吸收波长的计算方法。
一、紫外最大吸收波长的原理--------------------------------紫外最大吸收波长的计算主要是基于光谱学原理。
物质的分子具有一定的电子结构,当入射的光照射到物质分子时,分子中的电子会受到入射光的激发,由低能态跃迁到高能态,从而使物质分子发生变化,从而使物质产生吸收光谱。
其中,最大吸收波长表明该物质对紫外光的最强吸收能力。
二、紫外最大吸收波长的计算方法---------------------------------1. 通过仪器测量法来计算仪器测量法是一种常用的方法,它能够直接测量出物质对紫外光的最大吸收波长。
常用仪器如分光光度计、吸收光度计、旋光仪、衍射仪、偏振仪等,通过调整入射光波长,在发射或吸收光强度上变化的斜率可以计算出物质的最大吸收波长。
2. 通过理论计算方法来计算理论计算方法是通过物质的分子结构、电子能量层次、电子分子态、电子-电子相互作用和其它因素来对物质的吸收光谱进行理论模拟,从而估算出物质的最大吸收波长。
理论计算方法不仅能够准确地估算出物质的最大吸收波长,而且还可以准确地得到物质的其它吸收光谱特性,如共振强度、共振宽度、吸收强度和其它信息。
三、紫外最大吸收波长的应用---------------------------紫外最大吸收波长对于很多领域都具有重要的意义,如化学、材料、生物学、生态学、医学、农学、气候学等都有广泛的应用。
在化学方面,它可以帮助我们识别物质分子中包含哪些元素;在材料方面,它可以帮助我们识别材料中是否存在有害物质;在生物学方面,它可以帮助我们识别生物体中存在哪些物质;在医学方面,它可以帮助我们识别人体中是否存在某些有害物质。
最大吸收波长的计算
最大吸收波长的计算最大吸收波长是指物质吸收光的最大波长。
在化学和物理学中,吸收光的现象是当物质吸收光能量时,其分子或原子的能级发生跃迁所致。
每种物质具有其特定的吸收光谱,即其对不同波长的光的吸收程度不同。
在这个过程中,通过计算最大吸收波长的值,可以理解物质的分子或原子的结构和一些性质。
计算最大吸收波长的方法根据不同物质和情况的不同而不同。
以下是一种常用的计算最大吸收波长的方法:考虑到电子跃迁在吸收光的过程中是最常见的,我们将主要关注电子能级跃迁的情况。
2.利用分子的HOMO-LUMO能级差估算吸收波长:HOMO(最高占据分子轨道)和LUMO(最低未占据分子轨道)两个能级之间的能量差可以近似用来估计分子的最大吸收波长。
这种方法也称为HOMO-LUMO能隙法。
3. 应用Lambert-Beer定律:Lambert-Beer定律是描述光通过物质和物质吸收光的关系的定律。
根据此定律,可以利用吸收系数和物质的浓度来计算吸光度。
吸收系数与物质对特定波长光的吸收能力有关。
4.利用最大吸收波长的定义:最大吸收波长是使吸光度达到最大值的波长。
通过测量物质在不同波长下的吸光度,可以找到吸光度最大的波长,即最大吸收波长。
需要注意的是,上述方法仅是其中一种常用的计算最大吸收波长的方法。
不同的物质和情况可能需要使用不同的计算方法。
此外,实际测量最大吸收波长时可能还需要考虑到其他因素的影响,例如溶剂的选择、温度等。
总之,计算物质的最大吸收波长是理解物质结构和性质的重要手段之一、通过了解物质的分子结构和电子能级分布,应用适当的计算方法和定律,可以估算和测量物质的最大吸收波长,并进一步揭示物质的性质和相应的光谱特征。
最大吸收波长的计算
随着温度的升高,分子间的碰撞加剧,导致分子振动能级间的跃迁增加,吸收光谱的峰 值向长波方向移动。此外,温度变化还可能影响溶液的粘度和扩散系数,进一步影响最
大吸收波长。
溶剂的影响
总结词
溶剂的极性和粘度对最大吸收波长具 有显著影响。随着溶剂极性的增加, 最大吸收波长通常会发生蓝移。
详ห้องสมุดไป่ตู้描述
溶剂的极性影响分子间的相互作用和 电子跃迁,从而导致光谱的最大吸收 波长发生变化。此外,溶剂的粘度也 会影响分子的扩散和振动,进而影响 最大吸收波长的位置。
试管
用于盛放待测溶液。
滤纸
用于过滤待测溶液 中的杂质。
分光光度计
用于测量不同波长 下的吸光度。
移液管
用于准确移取一定 量的待测溶液。
光源
提供不同波长的光 线。
实验步骤与操作
3. 设定分光光度计
2. 过滤待测溶液
使用滤纸将待测溶液中的杂质过 滤掉。
打开分光光度计,设定测量波长 范围,并校准仪器。
4. 测量吸光度
通过量子化学计算分子的电子结构和能量,可以预测最大吸收波长。
详细描述
量子化学计算是一种基于量子力学原理的计算方法,可以精确地模拟分子的电子结构和能量。通过这种方法,可 以预测分子的吸收光谱,从而确定最大吸收波长。这种方法对于复杂分子和未知化合物的光谱预测特别有效。
03 最大吸收波长的实验测定
实验设备与材料
在生物学研究中的应用
生物大分子分析
最大吸收波长可用于分析生物大 分子如蛋白质、核酸等,了解其 结构与功能特性。
细胞与组织分析
通过测量细胞或组织中的特定成 分在最大吸收波长的吸光度,可 以研究细胞或组织的生理状态和 病理变化。
最大吸收波长的计算演示文稿
环外双键(3×5)
+ 15nm
环基取代(5×5)
+ 25nm
λmax计算值
284nm (实测值:283nm)
链状共轭双键基本值 217nm
4个烷基取代
+20nm
2个环外双键
+10nm
λmax计算值
247nm
(实测值:247nm)
链状共轭双键基本值 217nm
4个环残基或烷基取代 +20nm
1个环外双键
最大吸收波长的计算演示文稿பைடு நூலகம்
表2-7 链状共轭多烯类化合物的波长计算法
共轭二烯骨架基本值
217nm
每增加一个共轭双键
+30nm
烷基或环基取代
+5nm
环外双键
+5nm
卤素取代
+17nm
表2-8 环状共轭二烯波长计算法
•应用此规则的注意事项: (1)当有多个母体可供选择时,应优先选择较长波 长的母体,如共轭体系中若同时存在同环二烯与异 环二烯时,应选择同环二烯作为母体; (2)环外双键在这里特指 C=C 双键中有一个 C 原 子在该环上,另一个 C 原子不在该环上的情况(如 结构式 A),而结构式 B 和 C 则不是;
延长2个共轭双键
+30×2nm
同环共轭双键
+39nm
1个烷基β位取代
+12 nm
3个烷基γ位以远取代
+18×3 nm
1个环外双键
+5 nm
385 nm
(乙醇中实测值 388 nm)
2.α,β-不饱和羧酸、酯、酰胺 α,β-不饱和羧酸和酯的波长较相应的α,β-不饱
紫外—可见分光光度法教案
紫外—可见分光光度法教案第一篇:紫外—可见分光光度法教案第五章紫外—可见分光光度法一.教学内容1.紫外-可见吸收光谱的产生(分子的能级及光谱、有机物及无机物电子能级跃迁的类型和特点)2.吸收定律及其发射偏差的原因3.仪器类型、各部件的结构、性能以及仪器的校正4.分析条件的选择5.应用(定性及结构分析、定量分析的各种方法、物理化学常数的测定及其它方面的应用二.重点与难点1.比较有机化合物和无机化合物各种电子跃迁类型所产生吸收带的特点及应用价值2.进行化合物的定性分析、结构判断3.定量分析的新技术(双波长法、导数光谱法、动力学分析法)4.物理化学常数的测定三.教学要求1.较为系统、深入地掌握各种电子跃迁所产生的吸收带及其特征、应用 2.熟练掌握吸收定律的应用及测量条件的选择 3.较为熟练仪器的类型、各组件的工作原理4.运用各种类型光谱及的经验规则,判断不同的化合物5.掌握定量分析及测定物理化学常数的常见基本方法6.一般掌握某些新的分析技术四.学时安排5学时研究物质在紫外、可见光区的分子吸收光谱的分析方法称为紫外-可见分光光度法。
紫外—可见分光光度法是利用某些物质的 1 分子吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。
第一节紫外—可见吸收光谱一、分子吸收光谱的产生在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。
这三种运动能量都是量子化的,并对应有一定能级。
在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。
若用△E电子、△ E振动、△ E转动分别表示电子能级、振动能级转动能级差,即有△ E电子>△ E振动>△ E转动。
处在同一电子能级的分子,可能因其振动能量不同,而处在不同的振动能级上。
当分子处在同一电子能级和同一振动能级时,它的能量还会因转动能量不同,而处在不同的转动能级上。
最大吸收波长的计算
A
B
C
4
(3)计算时应将共轭体系上的所有取代基及所有环外 ) 双键均考虑在内, 双键均考虑在内,对“身兼数职”的基团应按实际 身兼数职” “兼职”次数计算增加值,同时应准确判断共轭体系 兼职”次数计算增加值, 的起点与终点, 的起点与终点,防止将与共轭体系无关的基团计算在 内; (4)该规则不适用于共轭体系双键多于四个的体系, )该规则不适用于共轭体系双键多于四个的体系, 也不适用于交叉共轭体系, 也不适用于交叉共轭体系,典型的交叉共轭体系骨架 结构如下: 结构如下:
16
2.羧酸及其衍生物 (如—NR2,—OH,—OR,—NH2,—X) , , ) 这些基团都属于助色基团, 这些基团都属于助色基团,羰基的 n→π* 跃迁吸 收较醛、酮发生较明显的蓝移, 变化不大。 收较醛、酮发生较明显的蓝移,但 ε 变化不大。 这是 诱导效应和共轭效应的综合结果。 诱导效应和共轭效应的综合结果。
2.α,β-不饱和羧酸、酯、酰胺 . , 不饱和羧酸 不饱和羧酸、 α,β-不饱和羧酸和酯的波长较相应的 ,β-不饱 , 不饱和羧酸和酯的波长较相应的 不饱和羧酸和酯的波长较相应的α, 不饱 和醛、酮要短。计算规则如下表 和醛、酮要短。计算规则如下表2-10。 。
25
表2-10 α,β-不饱和羧酸和酯的K带λmax计算规则(EtOH为溶剂) 基本值/nm 烷基单取代羧酸和酯(α或β) 208 烷基双取代羧酸和酯(α,β或β,β) 217 烷基三取代羧酸和酯(α,β,β) 225 环外双键 +5 双键在五元或七元环内 +5 延长1个共轭双键 +30 γ位或δ位烷基取代 +18 α位OCH3,OH,Br,Cl取代 +15~20 β位OR取代 +30 β位NR2取代 +60
紫外-可见分子吸收光谱法
NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共轭二烯骨架基本值
217nm
每增加一个共轭双键
+30nm
烷基或环基取代
+5nm
环外双键
+5nm
卤素取代
+17nm
相关知识
2
表2-8 环状共轭二烯波长计算法
相关知识
3
•应用此规则的注意事项: (1)当有多个母体可供选择时,应优先选择较长波 长的母体,如共轭体系中若同时存在同环二烯与异 环二烯时,应选择同环二烯作为母体; (2)环外双键在这里特指 C=C 双键中有一个 C 原 子在该环上,另一个 C 原子不在该环上的情况(如 结构式 A),而结构式 B 和 C 则不是;
相关知识
5
例1 计算下面化合物的 λmax
C9H19
O
O
H3C
同环共轭二烯母体基本值 253nm
增加共轭双键(2×30) + 60nm
环外双键(3×5)
+ 15nm
环基取代(5×5)
+ 25nm
酰氧基取代
+ 0nm
λmax计算值
353nm (实测值:356nm)
相关知识
6
R
异环共轭二烯母体基本值: 214nm
15
283
20
300
18
291
15
291
14
相关知识
16
2.羧酸及其衍生物 (如—NR2,—OH,—OR,—NH2,—X)
这些基团都属于助色基团,羰基的 n→π* 跃迁吸 收较醛、酮发生较明显的蓝移,但 ε 变化不大。
这是 诱导效应和共轭效应的综合结果。
相关知识
17
相关知识
18
(二)不饱和羰基化合物 1.α,β-不饱和醛、酮 Woodward,Fieser和Scott总结共轭醛,酮K带的λmax的计算规则:
2.伍德沃德-费泽(Woodward-Fieser)规则 共轭双键的数目,共轭体系上取代基的种类、数
目和立体结构等因素都对共轭多烯体系的紫外光谱 产生影响。
Woodward-Fieser 总结出共轭烯烃最大吸收波长 的计算方法,用于估算共轭多烯体系 K 带的 λmax:
相关知识
1
表2-7 链状共轭多烯类化合物的波长计算法
= 453.3nm 实测值为453nm(在氯仿中)
相关知识
11
2 计算番茄红素的λmax值。
λmax=114+5M+n(48.0-1.7n)-16.5Rendo-10Rexo =114 + 5×7 + 11(48.0-1.7×11)-16.5×0 -10×0
= 471.3nm 实测值为472nm
相关知识
相关知识
21
O
直链α,β-不饱和酮的基本值 215 nm
延长1个共轭双键
+30 nm
1个烷基γ位取代
+18 nm
1个烷基δ位取代
+18 nm
281 nm
(实测值 281 nm)
相关知识
溶剂 甲醇 氯仿 二氧六环 乙醚 己烷 环己烷 水
Δλ/nm 0 +1
+5
+7 +11 +11 -8
相关知识
20
例1 计算下列化合物的λmax
O
六元环α,β-不饱和酮的基本值 215nm
1个烷基α取代
+10 nm
2个烷基β取代
+12×2 nm
2个环外双键
+5×2 nm
259 nm
(实测值258 nm)
增加共轭双键(1×30) + 30nm
环外双键(3×5)
+ 15nm
环基取代(5×5)
+ 25nm
λmax计算值
284nm (实测值:283nm)
相关知识
7
链状共轭双键基本值 217nm
4个烷基取代
+20nm
2个环外双键
+10nm
λmax计算值
247nm
(实测值:247nm)
相关知识
8
链状共轭双键基本值 217nm
母体
取代 基位 置
α β γ δ
直链和六或七元环α,β-不饱和酮的基本值 五元环α,β-不饱和酮的基本值 α,β-不饱和醛的基本值
取代基位移增量/nm
烷基 OAc OR OH SR Cl Br
10 6 35 35
15 25
12 6 30 30 85 12 30
18 6 17 30
18 6 31 50
(一般酮在270~285nm;醛在280~300nm附近)
相关知识
15
表2-6 某些脂肪族醛和酮的吸收特征
化合物
甲醛 乙醛 丙酮 2-戊酮 4-甲基-2-戊酮 环戊酮 环己酮 环辛酮
溶剂
蒸汽 蒸汽 蒸汽 己烷 异辛烷 异辛烷 异辛烷 异辛烷
n→π*
λmax/nm
ε
304
18
310
5
289
12.5
278
12
相关知识
13
四、羰基化合物
羰基: 一对 σ 电子, 一对 π 电子和
两对 n 电子
π→π* 跃迁产 生的强吸收带 (ε>104)
n→σ* 跃迁产 生的强吸收带 (ε ≈104)
相关知识
n→π* 跃迁产 生的弱吸收带 (ε<100)R带
14
(一)饱和羰基化合物
1.对于饱和醛、酮来讲,这三个谱带分别位于: π→π* 跃迁 → 约160nm; n→σ* 跃迁 → 约190nm; n→π* 跃迁 → 约270nm~300nm
式中 n----共轭双键数目 M----共轭体系上取代烷基和环基数目 Rendo----共轭体系上环内双键数目 Rexo----共轭体系上环外双键数目
相关知识
10
例1 计算全反式 β-胡萝卜素的λmax值
λmax=114+5M+n(48.0-1.7n)-16.5Rendo-10Rexo =114 + 5×10 + 11(48.0-1.7×11)-16.5×2
OAB源自C相关知识4
(3)计算时应将共轭体系上的所有取代基及所有环外 双键均考虑在内,对“身兼数职”的基团应按实际 “兼职”次数计算增加值,同时应准确判断共轭体系 的起点与终点,防止将与共轭体系无关的基团计算在 内; (4)该规则不适用于共轭体系双键多于四个的体系, 也不适用于交叉共轭体系,典型的交叉共轭体系骨架 结构如下:
4个环残基或烷基取代 +20nm
1个环外双键
+5nm
λmax计算值
243nm
(实测值:243nm)
相关知识
9
3. 费泽-库恩(Fieser-Kuhn)规则 如果一个共轭分子中含有四个以上的共轭双键,
则其 λmax: λmax=114 + 5M + n(48.0-1.7n) -16.5Rendo-10Rexo
相关知识
215 nm 202 nm 207 nm
NR2 苯环 95 63
19
* 应用该规则计算时应注意以下两点: a. 环上的羰基不作为环外双键看待,例如在结构 O中无环外双键; b. 该规则仅适用于乙醇或甲醇溶剂,溶剂改变对实
测值影响较大,需将计算值进行溶剂校正,见下表:
表 2-9 α,β-不饱和醛、酮λmax的溶剂校正