(完整版)七年级下学期数学几何难题

合集下载

部编数学七年级下册专题28不等式(组)应用之几何问题(解析版)含答案

部编数学七年级下册专题28不等式(组)应用之几何问题(解析版)含答案

专题27 不等式(组)应用之几何问题【例题讲解】如图,在平面直角坐标系中,////AB CD x 轴,////BC DE y 轴,且4cm,5cm,2cm AB CD OA DE ====,动点P 从点A 出发,以每秒1cm 的速度,沿ABC 路线向点C 运动;动点Q 从点O 出发,以每秒2cm 的速度,沿OED 路线向点D 运动.若,P Q 两点同时出发,其中一点到达终点时,运动停止.(Ⅰ)直接写出,,B C D 三个点的坐标;(Ⅱ)设两点运动的时间为t 秒,用含t 的式子表示运动过程中三角形O PQ 的面积;(Ⅲ)当三角形O PQ 的面积的范围小于16时,求运动的时间t 的范围.【综合解答】1.小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,结果得到的总和是2018°,则少算了这个内角的度数为________.【答案】142°##142度【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.2.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b,已知不等式x△k≥2的解集在数轴上如图表示,则k的值是_____.【答案】-4【分析】根据新运算法则得到不等式2x﹣k≥2,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【详解】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥2,∴2x﹣1≥k+1且2x﹣1≥﹣3,∴k=﹣4.故答案填:﹣4.【点睛】本题考查了在数轴上表示不等式的解集、解一元一次不等式.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.将长为4,宽为a(a大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n次n=时,a的值为___________.操作后,剩下的长方形恰为正方形,则操作终止.当34.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q 两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x的值或取值范围是_________.二、解答题(共0分)5.平面直角坐标系中,点A坐标为(2m-3,3m+2).(1)若点A在坐标轴上,求m的值:(2)若点A在第二象限内,求m的取值范围.6.如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()m a ,宽为()m b .(1)当30a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ££,求b 的取值范围.【答案】(1)10;(2)1216b ££.【分析】(1)根据等量关系“围栏的长度为50”可以列出代数式,再将a =30代入所列式子中求出b 的值;(2)由(1)可得a ,b 之间的关系式,用含有b 的式子表示a ,再结合1826a ££,列出关于b 的不等式组,解不等式组即可求出b 的取值范围.(1)解:由题意,得250a b +=,当30a =时,30250b +=.解得10b =.(2)解:∵250a b +=,∴502a b =-,1826a ££,∴5021850226b b -³ìí-£î解这个不等式组,得1216b ££.答:矩形花园宽的取值范围为1216b ££.【点睛】此题主要考查了列代数式及不等式组的应用,正确理解题意得出关系式及不等式组是解题关键.7.在平面直角坐标系中,点A ,B ,C 的坐标分别为(),0a ,()2,4-,(),0c ,且a ,c 满足方程()243240c a a x y ---+=为二元一次方程.(1)求A ,C 的坐标.(2)若点D 为y 轴正半轴上的一个动点.①如图1,当//AD BC 时,ADO Ð与ACB Ð的平分线交于点P ,求P Ð的度数;②如图2,连接BD ,交x 轴于点E .若ADE BCE S S £△△成立.设动点D 的坐标为()0,d ,求d 的取值范围.【答案】(1)点A 的坐标为()2,0-,点C 的坐标为()5,0;(2)①45°;②05d <£【分析】(1)根据()243240c aa x y ---+=可得,240a -¹,41c -=,231a -=,即可求得a 、c 的值,坐标可求;2)①作PH ∥AD ,根据角平分线的定义、平行线的性质计算,得到答案;②连接AB ,交y 轴于F ,根据点的坐标特征分别求出S △ABC 、S △ABD ,根据题意列出不等式,解8.△ABC在平面直角坐标系内如图1摆放,A、C两点的横坐标都是5,BC∥x轴.已知B点坐标为(-3,m),AB交y轴于点D,且AC=BC.(1) 填空:BC=_____;△ABC的面积为______;用m表示点A的坐标为______.(2) 射线BO交直线AC于点Q,若△ABQ的面积为16,试求m的值(3) 如图2,点D在y轴负半轴上,∠BAC的三等分线AP与∠BOD的角平分线OP交于点P,其中∠BAC=3∠BAP=45°.若∠P>2∠B,试求∠BOD的取值范围.(3)如图,AP与y轴交于点N,点M在y轴上,∵OP是∠BOD的角平分线,∴∠BOP=∠POD,∵∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAC=3∠BAP=45°∴∠BAP=15°, ∠CAP=30°,∵OM∥AC,∴BDM=∠BAC=45°, ∠PNM=∠PAC=30°,设∠BOP=∠POD=α,∵∠BDM=∠B+∠BOD,∴∠B=∠BDM-∠BOD=45°-2α,∵∠PNM=∠POM+∠P,∴∠P=∠PNM-∠POM=30°-α,∵∠P>2∠B,∴30°-α>2(45°-2α)解得,α>20°∴∠BOD>40°∵∠BDM >∠BOD,∴∠BOD<45°∴40°<∠BOD<45°.【点睛】本题考查平面直角坐标系坐标与图形,理解点坐标的意义,将坐标转化线段长是解答此类问题的关键;同时利用外角定理表示角之间的关系,也是解答此题的关键之处.9.如图,长方形AOCB 的顶点A(m ,n)和C(p ,q)在坐标轴上,已知x m y n =ìí=î和x p y q =ìí=î都是方程326x y +=的解,点B 在第一象限内.(1)求点B 的坐标(2)将线段AB 沿着y 轴负半轴方向向下平移6个单位长度到线段EF ,点P 从点O 出发以每秒1个单位长度沿O A B C ®®®的路线做匀速运动,同时点Q 也从点O 出发以每秒2个单位长度沿O E F C ®®®的路线做匀速运动.当点Q 运动到点C 时,两动点均停止运动,设运动的时间为t 秒,四边形OPCQ 的面积为S .①当2t =时,求S 的值;②若5S <时,求t 的取值范围.【答案】(1)B (2,3);(2)①5;②02t £<或3<t≤4.【分析】(1)根据坐标轴上的点得出m=q=0,再根据二元一次方程的解分别求出n 和p ,得到A 和C 的坐标,从而得到点B 坐标;(2)①当t=2时,得到OP 和OQ 的坐标,再计算结果;②根据运动过程分当t≤3时,当3<t≤4时,当4<t≤5时和当t >5时,四种情况分别求解.【详解】解:(1)∵A(m ,n)和C(p ,q)在坐标轴上,∴m=0,q=0,代入326x y +=中,10.如图,正方形ABCD 的边长是2厘米,E 为CD 的中点,Q 为正方形ABCD 边上的一个动点,动点Q 以每秒1厘米的速度从A 出发沿A B C D ®®®运动,最终到达点D ,若点Q 运动时间为x 秒.(1)当1x =时,AQE S D = 平方厘米;当32x =时,AQE S D = 平方厘米;(2)在点Q 的运动路线上,当点Q 与点E 相距的路程不超过14厘米时,求x 的取值范围;(3)若AQE D 的面积为13平方厘米,直接写出x 值.11.如图,某农场准备用80米的护栏围成一块靠墙的矩形花园,设矩形花园的长为x 米,宽为y 米.(1)当y =22时,求x 的值;(2)由于受场地条件的限制,y 的取值范围为16≤y ≤26,求x 的取值范围.【答案】(1)x =29;(2)27≤x ≤32【分析】(1)由题意得2x +y =80,再将y =22代入即可求x ;(2)由题意可得16≤80﹣2x ≤26,求出x 的范围即可.【详解】解:(1)由题意得2x +y =80,当y =22时,2x +22=80,∴x =29;(2)∵16≤y ≤26,y =80﹣2x ,8021680226x x -³ì\í-£î,∴27≤x ≤32.【点睛】本题考查列代数式,代数式求值,一元一次不等式组,能够根据题意列式是解题关键.12.在平面直角坐标系中,我们规定:点(),P a b 关于“k 的衍生点”,()',P a kb a b ka ++-,其中k 为常数且0k ¹,如:点Q (1,4)关于“5的衍生点”,即()'15Q +´4,1+4-5´1,即()'21,0Q .(1)求点()3,4M 关于“2的衍生点” 'M 的坐标;(2)若点N 关于“3的衍生点” ()'4,1N -,求点N 的坐标;(3)若点P 在x 轴的正半轴上,点P 关于“k 的衍生点” 1P ,点1P 关于“1-的衍生点” 2P ,且线段1PP的长度不超过线段OP 长度的一半,请问:是否存在k 值使得2P 到x 轴的距离是1P 到x 轴距离的2倍?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)'(11,1)M ;(2)()1,1;(3)存在;1k =-.【分析】(1)根据已知条件,直接按规定计算即可得解;(2)设点N 的坐标为(),x y ,根据已知条件,列出二元一次方程组,解得即可;(3)根据题意,得出()()()12,0,,,,3P a P a a ka P ka a ka --,即可判定2P 到x 轴的距离和1P到x 轴的距离的关系,从而得出存在满足条件的k 值,然后列出一元一次方程,即可得解.【详解】解:(1)根据已知条件,可得'(324,3423)M +´+-´,即'(11,1)M ;(2)设点N 的坐标为(),x y ,则有3431x y x y x +=ìí+-=-î解得11x y =ìí=î即点N 的坐标为()1,1;(3)由题意,可得()()()12,0,,,,3P a P a a ka P ka a ka --2P 到x 轴的距离是3a ka -,1P 到x 轴的距离是a ka -,若存在k 值使得2P 到x 轴的距离是1P 到x 轴距离的2倍即322a ka a ka-=-()10k a +=∵点P 在x 轴的正半轴上,∴0a >∴10k +=即1k =-∴存在k 值使得2P 到x 轴的距离是1P 到x 轴距离的2倍, 1k =-.【点睛】此题主要考查平面直角坐标系中新规定下的点坐标的求解,熟练运用,即可解题.。

人教版七下数学几何难题

人教版七下数学几何难题

1.如图,已知直线 m∥ n,直线 m,n 和直线 AB 分别交于 A、B 两点,直线 m,n 和直线 CD 分别交于 C、D 两点 . 点P 在直线 AB 上。

∠ 1 是线段 CP 与 CA 的夹角,∠ 2 是线段 DP 与 DB 的夹角,∠ 3 是线段 PC 与 PD 的夹角。

( 1)如下图点P 在线段 AB 上,且不与A, B 两点重合。

试找出∠1、∠ 2、∠ 3 之间的关系式 , 并证明。

m C A ( 2)如果点 P 运动到直线 m 上方时,请画出图形,找出∠1、∠ 2、∠ 3 之间的1关系式 , 并证明。

3 PnD 2B( 3)如果点 P 运动到直线 n 下方时,请画出图形,找出∠1、∠ 2、∠ 3 之间的关系式 ,不用证明。

2.( 12 分)如图,已知直线 l ∥ l ,l. l4和 l .l分别交于点 A 、B、C、D ,点 P 在直线 l或 l4上且不与点 A123123、B、 C、 D 重合.记∠ AEP =∠ 1,∠ PFB =∠ 2,∠ EPF =∠ 3.( 1)若点 P 在图( 1)位置时,求证:∠3=∠ 1+∠ 2;( 2)若点 P 在图( 2)位置时,请直接写出∠1、∠ 2、∠ 3 之间的关系;( 3)若点 P 在图( 3)位置时,写出∠1、∠ 2、∠ 3 之间的关系并给予证明;( 4)若点 P 在 C、D 两点外侧运动时,请直接写出∠1、∠ 2、∠ 3 之间的关系.3、如图:已知AB∥ CD,∠ ABE 与∠ CDE 两个角的角平分线相交于F。

( 1)如图 1,若∠ E= 80°,求∠ BFD 的度数。

( 4 分)( 2)如图 2:若∠ ABM=1∠ ABF , ∠CDM =1∠CDF, 写出∠ M 和∠E 之间图 1 33的数量关系并证明你的结论。

(5 分)(3)∠ ABM=1∠ABF, ∠CDM=1∠CDF, 设∠ E=m°,n m°图 2直接用含有,n n的代数式写出∠ M=(不写过程 )( 3 分)4.同一平面内的两条直线有相交和平行两种位置关系.( 1)如图 1,若 AB ∥ CD,点 P 在 AB 、 CD 内部,∠ BPD 、∠ B 、∠ D 之间的数量关系为_______________,不必说明理由;( 2)如图 2,将直线 AB 绕点 B 逆时针方向旋转一定角度交直线CD 于点 Q,利用( 1)中的结论(可以直接套用)求∠ BPD ﹑∠ B﹑∠ D﹑∠ BQD 之间有何数量关系?并证明你的结论;(3)设 BF 交 AC 于点 M, AE 交 DF 于点 N.已知∠ AMB =140°,∠ ANF =105°,利用( 2)中的结论直接写出∠ B+∠ E+∠ F 的度数为 _______度,∠ A 比∠ F 大 ______度.MA’N图 25.如图,在下面直角坐标系中,已知A( 0,a), B( b, 0),C( b,c)三点,其中a、 b、 c 满足关系式 |a -2|+ b - 3 =0,(c-4) 2≤ 0.(1)求 a、 b、c 的值;( 2)如果在第二象限内有一点P( m,1),请用含m 的式子表示四边形ABOP 的面积;( 3)在( 2)的条件下,是否存在点P,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.6.三角形ABC 在平面直角坐标系中的位置如图所示,三个顶点 A ,B ,C 的坐标分别是(﹣1,4)(﹣4,﹣ 1)( 1,1).( 1)将三角形ABC 向右平移 5 个单位长度,再向上平移 1 个单位长度,得到三角形A′B′C′,请画出平移后的三角形A′B′C′,并写出A′, B ′, C′的坐标.( 2)若在第四象限内有一点M ( 4, m),试用含m 的式子表示四边形AOMB ′的面积.(3)在( 2)的条件下,是否存在点 M,使得四边形 A′OMB ′的面积与三角形 A ′B′C′的面积相等?若存在,请求出点 M 的坐标;若不存在,请说明理由.7、如图建立平面直角坐标系,长方形OABC 中 A( 8, 0),点 C(0, 10),点 P 从原点出发,以每秒 1 个单位长度的速度沿着O— C— B— A— O 的路线运动到点O 停止,设点P 运动时间为t 秒 .(1)写出点 B 的坐标(,),当t=13时点P坐标为(,).( 2)在移动过程中,当点P 到 x 轴距离为 4 个单位长度时,则点P 运动的时间为秒。

(完整版)七年级下册期末几何压轴题数学试题及解析(一)

(完整版)七年级下册期末几何压轴题数学试题及解析(一)

一、解答题1.在平面直角坐标系xOy 中,对于给定的两点P ,Q ,若存在点M ,使得△MPQ 的面积等于1,即S △MPQ =1,则称点M 为线段PQ 的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy 中,点P 的坐标为(1,0).(1)在点A (1,2),B (﹣1,1),C (﹣1,﹣2),D (2,﹣4)中,线段OP 的“单位面积点”是 ;(2)已知点E (0,3),F (0,4),将线段OP 沿y 轴向上平移t (t >0)个单位长度,使得线段EF 上存在线段OP 的“单位面积点”,直接写出t 的取值范围 .(3)已知点Q (1,﹣2),H (0,﹣1),点M ,N 是线段PQ 的两个“单位面积点”,点M 在HQ 的延长线上,若S △HMN ≥2S △PQN ,求出点N 纵坐标的取值范围.2.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.3.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.∠的度数;(1)若点P,F,G都在点E的右侧,求PCG∠的度数;(2)若点P,F,G都在点E的右侧,30∠-∠=︒,求CPQEGC ECG(3)在点P的运动过程中,是否存在这样的情形,使:4:3∠∠=?若存在,求出EGC EFC∠的度数;若不存在,请说明理由.CPQ4.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).5.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.6.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 7.阅读材料:求值:2342017122222+++++⋯+,解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-.请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)8.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)9.请观察下列等式,找出规律并回答以下问题.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++. ②若a 30b -=,求:()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++. 10.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值. 11.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭ ; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 12.对于实数a ,我们规定:用符号⎡⎤⎣⎦a 表示不大于a 的最大整数,称⎡⎤⎣⎦a 为a 的根整数,例如:93⎡⎤=⎣⎦,10⎡⎤⎣⎦=3.(1)仿照以上方法计算:4⎡⎤⎣⎦=______;26⎡⎤⎣⎦=_____.(2)若1x ⎡⎤=⎣⎦,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次103⎡⎤=⎣⎦→3⎡⎤⎣⎦=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 13.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t 为多少秒时,三角形PEA 的面积为2,求此时P 的坐标14.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.15.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.16.在平面直角坐标系xOy 中,对于任意两点()111,P x y ,()222,P x y ,如果1212x x y y d -+-=,则称1P 与2P 互为“d -距点”.例如:点1(3,6)P ,点2(1,7)P ,由|31||67|3d =-+-=,可得点1P 与2P 互为“3-距点”.(1)在点()2,2D --,(5,1)E -,(0,4)F 中,原点O 的“4-距点”是_____(填字母); (2)已知点(2,1)A ,点(0,)B b ,过点B 作平行于x 轴的直线l .①当3b =时,直线l 上点A 的“2-距点”的坐标为_____;②若直线l 上存在点A 的“2-点”,求b 的取值范围.(3)已知点(1,2)M ,(3,2)N ,(,0)C m ,C 的半径为22,若在线段MN 上存在点P ,在C 上存在点Q ,使得点P 与点Q 互为“5-距点”,直接写出m 的取值范围.17.如图,在平面直角坐标系xOy 中,对于任意两点A (x 1,y 1)与B (x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点A 与点B 的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点A 与点B 的“非常距离”为|y 1﹣y 2|.(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为;(2)已知点C(﹣1,2),点D为y轴上的一个动点.①若点C与点D的“非常距离”为2,求点D的坐标;②直接写出点C与点D的“非常距离”的最小值.18.如图1,已知,点A(1,a),AH⊥x轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足2-+-=.a b4(3)0(1)填空:①直接写出A、B、C三点的坐标A(________)、B(________)、C(________);②直接写出三角形AOH的面积________.(2)如图1,若点D(m,n)在线段OA上,证明:4m=n.(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动.若经过t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标.19.如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(t•km),铁路运价1.2元/(t•km).这两次运输支出公路运费4200元,铁路运费26280元.(1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?20.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?21.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.22.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数.23.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值. 24.如图,平面直角坐标系中,已知点A (a ,0),B (0,b ),其中a ,b 满足323390a b a b --+--=.将点B 向右平移24个单位长度得到点C .点D ,E 分别为线段BC ,OA 上一动点,点D 从点C 以2个单位长度/秒的速度向点B 运动,同时点E 从点O 以3个单位长度/秒的速度向点A 运动,在D ,E 运动的过程中,DE 交四边形BOAC 的对角线OC 于点F .设运动的时间为t 秒(0<t <10),四边形BOED 的面积记为S 四边形BOED (以下面积的表示方式相同).(1)求点A 和点C 的坐标;(2)若S 四边形BOED ≥32S 四边形ACDE ,求t 的取值范围; (3)求证:在D ,E 运动的过程中,S △OEF >S △DCF 总成立.25.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)13x ≤≤的“湘一代数式”.(2)若关于x 的代数式12a x -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围. 26.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x ] .例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x =[x ]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]= ,[-6.5]= ;(2)如果[x ]=3,那么x 的取值范围是 ;(3)如果[5x -2]=3x +1,那么x 的值是 ;(4)如果x =[x ]+a ,其中0≤a <1,且4a = [x ]+1,求x 的值.27.如图所示,在平面直角坐标系xOy 中,点A ,B ,C 的坐标为()0,a ,(),0b ,(),b c ,其中a ,b ,c 满足()23210a b a b -+-+=,40c -≤.(1)求a ,b ,c 的值;(2)若M 在x 轴上,且12COM ABC S S =△△,求M 点坐标; (3)如果在第二象限内有一点()1,1P m -,m 在什么取值范围时,AOP 的面积不大于ABC 的面积?求出在符合条件下,AOP 面积最大值时点P 的坐标.28.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.30.如图①,在平面直角坐标系中,点(0,)A a ,(,0)C b ,其中,a 是16的算术平方根,38b =,线段GO 由线段AC 平移所得,并且点G 与点A 对应,点O 与点C 对应.(1)点A 的坐标为 ;点C 的坐标为 ;点G 的坐标为 ;(2)如图②,F 是线段AC 上不同于AC 的任意一点,求证:OFC OAF AOF ∠∠∠=+;(3)如图③,若点F 满足FOC FCO ∠=∠,点E 是线段OA 上一动点(与点O 、A 不重合),连CE 交OF 于点H ,在点E 运动的过程中,2OHC ACE OEC ∠∠∠+=是否总成立?请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)A ,C ;(2)12t ≤≤或56t ≤≤;(3)见解析【分析】(1)分别根据三角形的面积计算△OPA ,△DPB ,△DPC ,△OPD 的面积即可; (2)分线段OP 在线段EF 下方和线段OP 在线段EF 上方分别求解;(3)画出图形,根据S △PQN =1,得到S △HMN ,分当x N =0时,当x N =2时,分别结合S △HMN N 点纵坐标的范围.【详解】解:(1)S △OPA =11112⨯⨯=,则点A 是线段OP 的“单位面积点”, S △OPB =111122⨯⨯=,则点B 不是线段OP 的“单位面积点”, S △OPC =11212⨯⨯=,则点C 是线段OP 的“单位面积点”, S △OPD =11422⨯⨯=,则点D 不是线段OP 的“单位面积点”, (2)设点G 是线段OP 的“单位面积点”,则S △OPG =1,∵点E 的坐标为(0,3),点F 的坐标为(0,4),且点G 在线段EF 上,∴点G 的横坐标为0,∵S △OPG =1,线段OP 为y 轴向上平移t (t >0)个单位长度,当E 为单位面积点时,32,t -=1,5,t t ∴==当F 为单位面积点时,42,t -=2,6,t t ∴==综上所述:1≤t ≤2或5≤t ≤6;(3)∵M ,N 是线段PQ 的两个单位面积点,∴S △PQM =1,S △PQN =1,∵P (1,0),Q (1,-2),∴PQ =2,∴M ,N 的横坐标为0或2,∵点M 在HQ 的延长线上,∴点M 的横坐标为x M =2,∵S△HMN △PQN ,∴S△HMN当x N =0时,S △HMN =122HN HN ⨯⨯=,则H N y y - ∴1N y ≤-1N y ≥-当x N =2时,S △HMN =122MN MN ⨯⨯=,则M N y y - ∴3N y ≤-3N y ≥-【点睛】本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解.2.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.3.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.4.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 5.(1)∠APC =α+β,理由见解析;(2)∠APC =α-β或∠APC =β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P ,Q 分别作PE ∥AB ,QF ∥AB ,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =α,∠CPE =β,∴∠APC =∠APE +∠CPE =α+β.(2)如图,在(1)的条件下,如果点P 在线段MN 的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°, ∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF , ∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°, ∴∠AQC =58°. 【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.6.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q=∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒, EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ; (2)180FMN GHF ∠+∠=︒; 理由:由(1)得//AB CD ,MNF PME ∴∠=∠, MGH MNF ∠=∠, PME MGH ∴∠=∠,//GH PN ∴, GHM FMN ∴∠=∠, 180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠;理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠,PER PFQ ∴∠=∠, //ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x Ry x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 7.(1)2121-;(2)()n 11312+-. 【解析】 【分析】()1设23420S 122222=+++++⋯+,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;()2同理即可得到所求式子的值.【详解】解:()1设23420S 122222=+++++⋯+,将等式两边同时乘2得:2345212S 222222=++++⋯+, 将下式减去上式得:212S S 21-=-,即21S 21=-, 则234202112222221+++++⋯+=-;()2设234n S 133333=+++++⋯+①,两边同时乘3得:234n n 13S 333333+=++++⋯++②, -②①得:n 13S S 31+-=-,即()n 11S 312+=-, 则()234nn 11133333312++++++⋯+=-. 【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题. 8.(1)2-,2;(2)①图见解析,5;②见解析 【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数 (2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N . 【详解】(1)由图1知,小正方形的对角线长是2, ∴图2中点A 表示的数是2-,点B 表示的数是2, 故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是5, 如图所示:故答案是:5; ②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.9.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式; (2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果. 【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =,原式111111324354698100=+++++⨯⨯⨯⨯⨯, 11111111111111(1)()()+()()23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-, 1111111111(1)2324354698100=⨯-+-+-+-++-, 1111(1)2299100=⨯+--, 1465119800=. 【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键. 10.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14.【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解;(3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可.【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+=111n -+ =1nn +; 故答案是:111n n -+;1nn +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+.( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.11.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3故答案为:5,3; (2)有正格数对.将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+,得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,,解得,2b =, ∴()32L x y x y =+,, 则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键. 12.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】(1 (2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】解:(1)∵22=4, 62=36,52=25, ∴56,∴,, 故答案为2,5;(2)∵12=1,22=4,且=1, ∴x=1,2,3, 故答案为1,2,3;(3)第一次:,第二次:,第三次:, 故答案为3;(4)最大的正整数是255,理由是:∵,,, ∴对255只需进行3次操作后变为1, ∵,,,, ∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.13.(1)(-2,0);(2)①4秒;②(0,43)或(-3,43)【分析】(1)根据BC =AE =3,OA =1,推出OE =2,可得结论. (2)①判断出PB =CD ,即可得出结论;②根据△PEA 的面积以及AE 求出点P 到AE 的距离,结合点P 的路线可得坐标. 【详解】解:(1)∵C (-3,2),A (1,0), ∴BC =3,OA =1, ∵BC =AE =3, ∴OE =AE -AO =2, ∴E (-2,0);(2)①∵点C 的坐标为(-3,2) ∴BC =3,CD =2,∵点P 的横坐标与纵坐标互为相反数; ∴点P 在线段BC 上, ∴PB =CD =2, 即t =(2+2)÷1=4;∴当t =4秒时,点P 的横坐标与纵坐标互为相反数; ②∵△PEA 的面积为2,A (1,0),E (-2,0), ∴AE =3,设点P 到AE 的距离为h ∴1322h ⨯⨯=, ∴h =43,即点P 到AE 的距离为43,∴点P 的坐标为(0,43)或(-3,43).【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.14.(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.15.(1)55°或35°;(2)①;②.【解析】【分析】(1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵点在第二象限的角平分线上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延长CB,交直线l于点E,。

七年级下学期几何专题(附参考答案)

七年级下学期几何专题(附参考答案)

七年级下学期几何专题一、精心选一选,慧眼识金!1.过五边形的一个顶点可作()条对角线A.1B.2C.3D.42.三角形的三个内角( )A、至少有两个锐角B、至少有一个直角C、至多有两个钝角D、至少有一个钝角3.下列图形中具有稳定性的是( )A、菱形B、钝角三角形C、长方形D、正方形4.下列图形中,是属于轴对称图形的是()A. B. C. D.●5.如图:BE、CF是ABC∆的角平分线,0∠,A=40则=∠BDC( D )11065 C. 095 D. 0A.050 B. 06.以下列长度的三条线段为边,不能组成三角形的是()A.4,4,5 B.3,2,5 C.3,12,13 D.6,8,107. 下列说法:①等边三角形是等腰三角形;②在三角形中至少有二个锐角;③三角形的一个外角等于两个内角的和;④钝角三角形的三条高相交于三角形外一点,其中正确的个数有()A、1个B、2个C、3个D、4个8. 下列图形:①角;②线段;③等腰三角形;④等边三角形;⑤平行四边形中是轴对称图形的个数是()A、1个B、2个C、 3个D、4个9.平面内三条直线最少有()个交点A.3B.2C.1D.0●10.已知Rt△ABC,∠A=30°,则∠B=( C )A.60°B.90°C.60°或90°D.30°11.如图,由AB∥CD,能推出正确结论的是( B ) A 、∠1=∠2 B 、∠3=∠4 C 、∠A=∠C D 、AD∥BC12.下列命题为真命题的是( D ) A.内错角相等B.点到直线的距离即为点到直线的垂线段C.如果∠A+∠B+∠C=180°,那么∠A 、∠B 、∠C 互补D.同一平面内,垂直于同一直线的两直线平行。

13.用同一种下列形状的图形地砖不能进行平面镶嵌的是( C ) A.正三角形 B.长方形 C.正八边形 D.正六边形14.当多边形的边数增加时,其外角和( C ) A 、增加 B 、减少 C 、不变 D 、不能确定● 15.已知:一光线沿平行于AB经镜面AC 、AB 反射后,如图所示, 若∠A=40°则∠MNA=( B ) A.90° B.100° C.60° D.80°● 16.已知:如图B 处在A 处的南偏西40C 处在A 处的南偏东15°方向上,C 处在B 处的北偏东80°方向,则∠ACB=( B )A.90°B.85°C.40°D.60° 17.若一个三角形中的其中一个外角等于与它相邻的内角,则此三角形是( A ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定18.点到直线的距离是指这点到这条直线的( D )A 、垂线段B 、垂线C 、垂线的长度D 、垂线段的长度二、巧心填一填,一锤定音!19.已知∠a 的对顶角是58°,则∠a=______。

(完整版)初一几何难题_练习题(含答案)

(完整版)初一几何难题_练习题(含答案)

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1求证:DE = 分析:由∆ABC 连结CD ,易得CD = 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。

有兴趣的同学不妨一试。

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。

求证:∠E =∠FAB CD BC AD AC CA ABC CDA SSS B D AB CD AE CFBE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。

2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

初一数学几何难题精选全文完整版

初一数学几何难题精选全文完整版

BC可编辑修改精选全文完整版初一几何难题 19.1.26 1.如图, OC 是∠AOM 的平分线,OD 是∠BOM 的平分线. (1)如图1,若∠AOB = 90°,∠AOM = 60°,求∠COD 的度数; (2)如图2,若∠AOB = 90°,∠AOM = 130°,则∠COD = °; (3)如图3,若∠AOB =m °,∠AOM = n ° ,则∠COD = °.2.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上, OD ,OE 分别平分∠AOC 和∠BOC . (1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数. 解:(1)如图,因为OD 是∠AOC 的平分线,所以∠COD =21∠AOC . 因为OE 是∠BOC 的平分线, 所以 =21∠BOC . 所以∠DOE =∠COD + =21(∠AOC+∠BOC )=21∠AOB= °. (2)由(1)可知∠BOE =∠COE = -∠COD = °. 所以∠AOE= -∠BOE = °.3. 已知:如图,OC 是∠AOB 的平分线. (1)当∠AOB =60°时,求∠AOC 的度数;(2)在(1)的条件下,过点O 作OE ⊥OC ,请在图中补全图形,并求∠AOE 的度数;O DC MBA图3图2图1AOB M CDAOBM CD(3)当∠AOB =α时,过点O 作OE ⊥OC ,直接写出∠AOE 的度数. (用含α的代数式表示)4.已知:如图, 70AOB ∠=︒,30AOC ∠=︒,平分. 请依题意补全图形,并求的度数.5. 如图AOB α∠= ,OC 是一条射线,OM 平分AOC ∠ ,ON 平分BOC ∠ .(1)当15,45MOC NOC ∠=︒∠=︒时,求α的大小.(2)将射线OC 绕点O 按逆时针方向旋转一周.试用含 α的代数式表示MON ∠.6.(6分)如图,OA ⊥OB ,引射线OC (点C 在∠AOB 外),OD 平分∠BOC ,OE 平分 ∠AOD .OD BOC ∠AOD∠ABOABO备用图(1)若∠BOC =40°,请依题意补全图,并求∠BOE 的度数;(2)若∠BOC =α(0180α︒<<︒),请直接写出∠BOE 的度数(用含α的代数式表示).8。

初一下册数学角度几何解析题以及练习题附答案推荐文档

初一下册数学角度几何解析题以及练习题附答案推荐文档

七年级下册数学几何解析题以及练习题(附答案)CAB岛的北偏西60°方向,在岛在45°方向,则9.(2011·扬州)如图,岛的北偏东CABACB=两岛的视角∠、从________.岛看答案 105°CABABCCABABC=75°,)=180°,∴∠解析如图,∵(60°+∠)+(45°+∠+∠ABCC=105°.在△中,得∠ABCABCDACBDEAC.=80°,∠,=30°,.如图所示,在△12∥中,∠平分∠DEB的度数; (1)求∠EDC的度数. (2)求∠ABCAB=30°, (1)在△=80°,∠中,∠解ACBAB=70°. ∴∠-∠=180°-∠DEAC,∥∵DEBACB=70°.=∠∴∠CDACB,平分∠(2)∵1DCEACB=35°.∠∴∠=2DEBDCEEDC,+∠=∠∵∠EDC=70°-35°=35°. ∴∠CFABFDEABEFGBC.(⊥请将证明补充113.已知,如图,∠=∠2,于⊥∥于,,求证:完整)CFABDEAB(已知)⊥证明∵,⊥,EDFC( ).∴∥BCF( ∴∠1=∠ ).又∵∠1=∠2(已知),BCF( ,2∴∠=∠)等量代换FGBC( )∴.∥解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.ABCABC=180°.+∠+∠ 14.如图,已知三角形,求证:∠ABC作等角代换,使各角之和恰为一平角,依辅助分析:通过画平行线,将∠、∠、∠线不同而得多种证法,如下:BCDCCEBA.,过证法1:如图甲,延长∥到画BACE(作图所知),∵∥BA=∠2(两直线平行,同位角、内错角相等)∴∠.=∠1,∠BCDBCA+∠2+∠1=180°(平角的定义=∠),又∵∠ABACB=180°(等量代换)∴∠.+∠+∠BCFFHACFGAB,这种添加辅助线的方法能证明∠,画,如图乙,过∥上任一点∥ABC=180°吗?请你试一试.+∠+∠FHAC,∥解∵BHFAC. 1=∠=∠∴∠,∠FGAB,∥∵BHFB,,∠3∴∠=∠=∠2A. =∠∴∠2BFC=180°,∵∠∴∠1+∠2+∠3=180°,ABC=180°. 即∠+∠+∠15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.aABCDPABCDBBODBODPOD是△、外部,则有∠.(1)如图,若=∠∥,点又因∠在BODBPDDBPDBDPABCD内部,如-∠、.将点移到的外角,故∠=∠+∠,得∠=∠bBPDBD之图,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠、∠间有何数量关系?请证明你的结论;cCDQbABB,中,将直线于点绕点如图逆时针方向旋转一定角度交直线在图(2),BQDBDBPD) (则∠、∠、∠不需证明、∠之间有何数量关系?FEBCDAd+∠+∠+∠的度数.(3)根据(2)的结论求图中∠+∠+∠DBBPD.=∠解 (1)不成立,结论是∠+∠ECDBP于点延长,交BEDBABCD. ∥∵=∠,∴∠DBEDBPD又∠+∠=∠,DBBPD.∴∠+∠=∠DBBPDBQD. =∠+∠+∠(2)结论:∠GACBF.与设交于点(3)EABAGB.+∠+∠由(2)的结论得:∠=∠CBDCFAAGBCGFCGF+∠+∠+∠+∠又∵∠=∠=360°,∴∠,∠+∠+∠FED+∠=360°.+∠A度.14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是DE CB题第14。

(完整版)初中七年级下册期末几何压轴题数学附答案(一)

(完整版)初中七年级下册期末几何压轴题数学附答案(一)

一、解答题1.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.2.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.4.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.5.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.6.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.7.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 8.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭9.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 10.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复) 11.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++12.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 13.在平面直角坐标系中,已知线段AB ,点A 的坐标为()1,2-,点B 的坐标为()3,0,如图1所示.(1)平移线段A B 到线段C D ,使点A 的对应点为,点B 的对应点为C ,若点C 的坐标为()2,4-,求点D 的坐标;(2)平移线段A B 到线段C D ,使点C 在y 轴的正半轴上,点D 在第二象限内(A 与D 对应, B 与C 对应),连接BC BD ,,如图2所示.若(7BCD BCD S S ∆∆=表示△BCD 的面积),求点C 、D 的坐标;(3)在(2)的条件下,在y 轴上是否存在一点P ,使(23PCD PCD BCD S S S ∆∆∆=表示△PCD 的面积)?若存在,求出点P 的坐标; 若不存在,请说明理由.14.已知,AB ∥CD ,点E在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.15.如图,在平面直角坐标系中,点()26A ,,()4,3B ,将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,A ,B 的对应点分别为A ',B ',连接AA '交y 轴于点C ,BB '交x 轴于点D .(1)线段A B ''可以由线段AB 经过怎样的平移得到?并写出A ',B '的坐标; (2)求四边形AA BB ''的面积;(3)P 为y 轴上的一动点(不与点C 重合),请探究PCA '∠与A DB ''∠的数量关系,给出结论并说明理由.16.对于平面直角坐标系xOy 中的任意两点M (x 1,y 1),N (x 2,y 2),给出如下定义: 将|x 1﹣x 2|称为点M ,N 之间的“横长”,|y 1﹣y 2|称为点M ,N 之间的纵长”,点M 与点N的“横长”与“纵长”之和称为“折线距离”,记作d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|“.例如:若点M (﹣1,1),点N (2,﹣2),则点M 与点N 的“折线距离”为:d (M ,N )=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6. 根据以上定义,解决下列问题: 已知点P (3,2).(1)若点A (a ,2),且d (P ,A )=5,求a 的值;(2)已知点B (b ,b ),且d (P ,B )<3,直接写出b 的取值范围;(3)若第一象限内的点T 与点P 的“横长”与“纵长”相等,且d (P ,T )>5,简要分析点T 的横坐标t 的取值范围.17.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b ++-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABMAOMSS=,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.18.在平面直角坐标系中,O 为坐标原点.已知两点(),0A a ,(), 0B b 且a 、b 满足430a b +-=;若四边形ABCD 为平行四边形,//CD AB 且CD AB = ,点()0,4C 在y轴上.(1)如图①,动点P 从C 点出发,以每秒2个单位长度沿y 轴向下运动,当时间t 为何值时,三角形ABP 的面积等于平行四边形ABCD 面积的四分之一;(2)如图②,当P 从O 点出发,沿y 轴向上运动,连接PD 、PA ,CDP ∠、APD ∠、PAB ∠存在什么样的数量关系,请说明理由(排除P 在O 和C 两点的特殊情况).19.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.20.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a 元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a 元收费,超过的部分按c 元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份 用水量(m 3)收费(元) 3 5 7.5 4 927系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.21.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.22.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( ) A .2019 B .2020 C .2021 D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm 40cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲,(单位:cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A 型板材________张,B 型板材_______张;②已知①中的A 型板材和B 型板材恰好做成竖式有盖礼品盒x 个,横式无盖礼品盒的y 个,求x 、y 的值.24.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标.25.某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元:新建4个地上停车位和2个地下停车位共需1.4万元, (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额. 26.阅读材料:关于x ,y 的二元一次方程ax+by=c 有一组整数解00x x y y =⎧⎨=⎩,则方程ax+by=c 的全部整数解可表示为00x x bty y at =-⎧⎨=+⎩(t 为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为0069x y =⎧⎨=⎩,则全部整数解可表示为61997x ty t =-⎧⎨=+⎩(t 为整数).因为61909+70.tt->⎧⎨>⎩,解得96719t-<<.因为t为整数,所以t=0或-1.所以该方程的正整数解为69xy=⎧⎨=⎩和252xy=⎧⎨=⎩.(1)方程3x-5y=11的全部整数解表示为:253x ty tθ=+⎧⎨=+⎩(t为整数),则θ= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.27.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长40cm,宽34cm的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒200元购进一批茶叶,按进价增加18%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了6元,售价仍不变,已知在整个买卖过程中共盈利1800元,求这批茶叶共进了多少盒?28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x 的组合515032x x a a +=⎧⎪⎨-⎪⎩>是“有缘组合”,求a 的取值范围; (3)若关于x 的组合5323212a x x a x a x a -⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a 的取值范围. 29.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值; (3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.30.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(3,4);(2)①t =32时,AP 所在直线垂直于x 轴;②当t 为107或145时,S =S △APE .【分析】(1)根据直角坐标系得出点F 的坐标即可;(2)①根据AP 所在直线垂直于x 轴,得出关于t 的方程,解答即可;②分713t ≤≤和71033t ≤≤两种情况,利用面积公式列出方程即可求解. 【详解】(1)由直角坐标系可得:F 坐标为:(3,4);故答案为:(3,4);(2)①要使AP 所在直线垂直于x 轴.如图1,只需要P x =A x , 则 t +3=3t ,解得:32t =,所以即32t =时,AP 所在直线垂直于x 轴;②由题意知,OH =7,所以当73t =时,点D 与点H 重合,所以要分以下两种情况讨论: 情况一:当713t ≤≤时, GD =3t ﹣3,PF =t ,PE =4﹣t , ∵S =S △APE , ∴BC ×GD =()12y y PE E A ⨯-, 即:2×(3t ﹣3)=()1422t -⨯, 解得:107t =; 情况二:当71033t ≤≤时,如图2,HD =3t ﹣7,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×CH =()12y y PE E A ⨯-, 即:2×[2﹣(3t ﹣7)]=()1422t -⨯, 解得:145t =, 综上所述,当t 为107或145时,S =S △APE . 【点睛】 本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.2.(1)150°;(2)∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)如图②,过O 点作OF ∥CD ,根据平行线的判定和性质可得∠OCD 、∠BO ′E ′的数量关系;(3)由已知推出CP ∥OB ,得到∠AOB +∠PCO =180°,结合角平分线的定义可推出∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′.【详解】解:(1)∵CD ∥OE ,∴∠AOE =∠OCD =120°,∴∠BOE =360°-∠AOE -∠AOB =360°-90°-120°=150°;(2)∠OCD +∠BO ′E ′=360°-α.证明:如图②,过O 点作OF ∥CD ,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.4.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=β,∠EPD=α,∴CPDβα∠=∠-∠;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a 2017=12,a 2018=2然后计算a 2016•a 2017•a 2018的值; (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a 1=12,代入11a -,得21=211-2a = ; 将a 2=2,代入11a -,得31=-11-2a =; 将a 3=-1,代入11a -,得411=1--12a =(). (2)根据(1)的计算结果,从a 1开始,每三个数一循环, 而2016÷3=672,则a 2016=-1,a 2017=12 ,a 2018=2 所以,a 2016•a 2017•a 2018=(-1)×12×2= -1 (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,a 33+a 66+a 99+…+a 9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.8.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.9.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.10.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭; (2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.11.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.12.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.13.(1)()4,2D -;(2)()()0422C D -,、,;(3)存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S △BCD =7(S △BCD 建立方程求解,即可); (3)设出点P 的坐标,表示出PC 用PCD BCD S 2S 3=,建立方程求解即可. 【详解】(1)∵B(3,0)平移后的对应点()2,4C -,∴设3204a b +=-+=,, ∴54a b =-=, 即线段AB 向左平移5个单位,再向上平移4个单位得到线段CD ,∴A 点平移后的对应点()4,2D -;(2)∵点C 在y 轴上,点D 在第二象限,∴线段AB 向左平移3个单位,再向上平移y 个单位,∴()()022C y D y --+,,, 连接OD ,BCD BOC COD BOD S S S S =+-=1112(2)7222OB OC OC OB y ⨯+⨯-⨯-+=,∴4y = ∴()()0422C D -,、,; (3)存在设点()0P m ,,∴4PC m =- ∵23PCD BCD S S ∆=, ∴12|4|2723m -⨯=⨯ ∴14|4|3m -=, ∴22633m m =-=或 ∴存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.14.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∴∠HEM=∠DEM=1∠HED,2∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M 作MQ ∥AB ,过点H 作HP ∥AB ,由∠KFE :∠MGH =13:5,设∠KFE =13x ,∠MGH =5x ,由(2)可知:∠BGH =2∠MGH =10x ,∵∠AFE +∠BFE =180°,∴∠AFE =180°﹣10x ,∵FK 平分∠AFE ,∴∠AFK =∠KFE =12 ∠AFE , 即1(18010)132x x ︒-=, 解得:x =5°,∴∠BGH =10x =50°,∵HP ∥AB ,HP ∥CD ,∴∠BGH =∠GHP =50°,∠PHE =∠HED ,∵∠GHE =90°,∴∠PHE =∠GHE ﹣∠GHP =90°﹣50°=40°,∴∠HED =40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.15.(1)向左平移4个单位,再向下平移6个单位,(2,0)A '-,(0,3)B '-;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点P 在点C 的上方,点P 在点C 的下方,分别求解即可.【详解】解:(1)点(2,6)A ,(4,3)B , 又将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,∴线段A B ''是由线段AB 向左平移4个单位,再向下平移6个单位得到,(2,0)A ,(0,3)B '-.(2)11692232642422ABB A S ''=⨯-⨯⨯⨯-⨯⨯⨯=四边形.(3)连接AD .(4,3)B ,(0,3)B '-,BB ∴'的中点坐标为(2,0)在x 轴上,(2,0)D ∴.)6(2,A ,//AD y ∴轴,同法可证(0,3)C ,OC OB ∴=',AO CB '⊥',AC A B ∴'='',同法可证,B A B D ''=',A DB DA B ∴∠'=∠'',ACBA B C ∠''=∠'', 当点P 在点C 的下方时,180PCA ACB ∠'+∠''=︒,90A B C DA B ∠''+∠''=︒,90180PCA A DB ∴∠'+︒-∠''=︒,'''90PCA A DB ∴∠-∠=︒,当点P 在点C 的上方时,'''90PCA A DB ∠+∠=︒.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.16.(1)a =﹣2或a =8;(2)1<b <4;(3)t 112>或0<t 12<. 【分析】(1)将点P 与点A 代入d (M ,N )=|x 1−x 2|+|y 1−y 2|即可求解;(2)将点B 与点P 代入d (M ,N )=|x 1−x 2|+|y 1−y 2|,得到d (P ,B )=|3−b|+|2−b|,分三种情况去掉绝对值符号进行化简,有当b <2 时,d (P ,B )=3−b +2−b =5−2b <3;当2≤b≤3时,d (P ,B )=3−b +b−2=1<3;当b >3时,d (P ,B )=b−3+b−2=2b−5<3;(3)设T 点的坐标为(t ,m ),由点T 与点P 的“横长”与“纵长”相等,得到|t−3|=|m−2|,得到t 与m 的关系式,再由T 在第一象限,d (P ,T )>5,结合求解即可.【详解】(1)∵点P (3,2),点A (a ,2),∴d (P ,A )=|3﹣a |+|2﹣2|=5,∴a =﹣2或a =8;(2)∵点P (3,2),点B (b ,b ),∴d (P ,B )=|3﹣b |+|2﹣b |,当b <2 时,d (P ,B )=3﹣b +2﹣b =5﹣2b <3,∴b >1,∴1<b <2;当2≤b ≤3时,d (P ,B )=3﹣b +b ﹣2=1<3成立,∴2≤b ≤3;当b >3时,d (P ,B )=b ﹣3+b ﹣2=2b ﹣5<3,∴b <4,∴3<b <4;综上所述:1<b <4;(3)设T 点的坐标为(t ,m ),点T 与点P 的“横长”=|t ﹣3|,点T 与点P 的“纵长”=|m ﹣2|.∵点T 与点P 的“横长”与“纵长”相等,∴|t ﹣3|=|m ﹣2|,∴t ﹣3=m ﹣2或t ﹣3=2﹣m ,∴m =t ﹣1或m =5﹣t .∵点T 是第一象限内的点,∴m >0,∴t >1或t <5,又∵d (P ,T )>5,∴2|t ﹣3|>5,∴t 112>或t 12<, ∴t 112>或0<t 12<. 【点睛】本题考查平面内点的坐标,新定义;能够将定义内容转化为绝对值不等式,再将绝对值不等式根据绝对值的意义转化为一元一次不等式的求解是解题的关键.17.(1)4a =-,4b =;(2)5m =-或53m =;(3)513t << 【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a ,b 的值;(2)设直线AB 与直线x =1交于点N ,可得N (1,5),根据S △ABM =S △AMN −S △BMN ,即可表示出S △ABM ,从而列出m 的方程.(3)根据题意知,临界状态是点P 落在OA 和AB 上,分别求出此时t 的值,即可得出范围.【详解】(1)∵80a b -+=0,80a b -+≥∴0a b +=,80a b -+=解得:4a =-,4b =(2)设直线AB 与直线1x =交于N ,设()1,N n∵a =−4,b =4,∴A (−4,0),B (0,4),设直线AB 的函数解析式为:y =kx +b ,代入得044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩∴直线AB 的函数解析式为:y =x +4,代入x =1得()1,5N∵()1,M m∴ABM AMN BMN S S S =-△△△=12×5×|5−m |−12×1×|5−m |=2|5−m |,1422AOM S m m =⨯⨯=△ ∵2ABM AOM S S =∴2522m m -=⨯∴52m m -=或52m m -=-解得:5m =-或53m =,(3)当点P 在OA 边上时,则2t =2,∴t =1,当点P 在AB 边上时,如图,过点P 作PK //x 轴,AK ⊥x 轴交于K , 则KP '=3−t ,KA '=2t −2,∴3−t =2t −2,∴53t = 综上所述:513t <<.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.18.(1)1或3;(2)∠APD =∠CDP +∠PAB 或∠APD =∠PAB -∠CDP ,理由见解析【分析】(1)由非负数的性质求出a ,b ,得到AB 的长,结合点C 坐标求出平行四边形ABCD 的面积,再根据ABP △的面积等于平行四边形ABCD 面积的14,列出方程,解之即可; (2)分点P 在线段OC 上和点P 在OC 的延长线上,两种情况,过P 作PQ ∥AB ,利用平行线的性质求解.【详解】解:(1)∵430a b +-=,∴a =-4,b =3,即A (-4,0),B (3,0),∴AB =3-(-4)=7,又C (0,4),∴OC =4,∴平行四边形ABCD 的面积=4×7=28,由题意可知:PC =2t ,则OP =42t -,∵ABP △的面积等于平行四边形ABCD 面积的14, ∴114272824t ⨯-⨯=⨯, 解得:t =1或t =3,(2)如图,当点P 在线段OC 上时,过P 作PQ ∥AB ,则PQ ∥CD ,∴∠CDP =∠DPQ ,∠APQ =∠PAB ,∴∠APD =∠DPQ +∠APQ =∠CDP +∠PAB ;。

(完整版)初一数学下册期末几何压轴题试卷_数学

(完整版)初一数学下册期末几何压轴题试卷_数学

一、解答题1.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABEABFSS=,请直接写出t 的值.2.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.3.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数. 4.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.5.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;6.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1ⓝ=1; C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___; (3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷338.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①3310001000000100==,又1000593191000000<<,31059319100∴,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,34 <<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.9.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n为非负数时,若1122n x n-≤<+,则<x>=n.例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x的取值范围是________________.(2)若关于x的不等式组2413xxm x-⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x=的所有非负实数x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n p q=⨯(p,q是正整数,且p q≤),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:()pF nq=.例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=31 62 =.(1)F(13)=,F(24)=;(2)如果一个两位正整数t,其个位数字是a,十位数字为1b-,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值.11.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 12.[阅读材料] ∵459<<,即253<<,∴1512<-<,∴51-的整数部分为1,∴51-的小数部分为52- [解决问题](1)填空:7的小数部分是__________;(2)已知a 是10的整数部分,b 是10的小数部分,求代数式()1b 10a --的平方根为______.13.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.14.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)15.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t 型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)已知点C(6,1),D(8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是时,B'M的最小值保持不变.16.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x 千克苹果(100x >),问师傅应怎样选择两家批发商所花费用更少? 17.如图1,已知,点A (1,a ),AH ⊥x 轴,垂足为H ,将线段AO 平移至线段BC ,点B (b ,0),其中点A 与点B 对应,点O 与点C 对应,a 、b 满足24(3)0a b -+-=.(1)填空:①直接写出A 、B 、C 三点的坐标A (________)、B (________)、C (________); ②直接写出三角形AOH 的面积________.(2)如图1,若点D (m ,n )在线段OA 上,证明:4m =n .(3)如图2,连OC ,动点P 从点B 开始在x 轴上以每秒2个单位的速度向左运动,同时点Q 从点O 开始在y 轴上以每秒1个单位的速度向下运动.若经过t 秒,三角形AOP 与三角形COQ 的面积相等,试求t 的值及点P 的坐标.18.在平面直角坐标系中,O 为坐标原点.已知两点(),0A a ,(), 0B b 且a 、b 满足430a b ++-=;若四边形ABCD 为平行四边形,//CD AB 且CD AB = ,点()0,4C 在y轴上.(1)如图①,动点P 从C 点出发,以每秒2个单位长度沿y 轴向下运动,当时间t 为何值时,三角形ABP 的面积等于平行四边形ABCD 面积的四分之一;(2)如图②,当P 从O 点出发,沿y 轴向上运动,连接PD 、PA ,CDP ∠、APD ∠、PAB ∠存在什么样的数量关系,请说明理由(排除P 在O 和C 两点的特殊情况).19.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.20.某企业用规格是170cm ×40cm 的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a 、b 的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个? 21.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?22.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(2)如图2,在(1)问的条件下,点E,F在DM上,连接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度数.23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材________张,B型板材_______张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y 个,求x、y的值.24.在平面直角坐标系中,若点P(x,y)的坐标满足x﹣2y+3=0,则我们称点P为“健康点”:若点Q(x,y)的坐标满足x+y﹣6=0,则我们称点Q为“快乐点”.(1)若点A既是“健康点”又是“快乐点”,则点A的坐标为;(2)在(1)的条件下,若B是x轴上的“健康点”,C是y轴上的“快乐点”,求△ABC的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.25.学校组织270名同学和7名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为45人/辆,小客车载客量为30人/辆 (1)学校准备租用7辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为400元/辆,小客车租金为300元/辆,哪种租车方案最省钱?(3)学校临时增加10名学生和4名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有1名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有20人,请你帮助设计租车方案26.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。

(完整版)七年级下册数学几何压轴题集锦(最新整理)

(完整版)七年级下册数学几何压轴题集锦(最新整理)

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。

1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。

2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。

1、2a b m b a-+b+3=0=14.ABC A S A 如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作D E ,交轴于E 点,E F 为A E D 的平分线,且D FE 90。

求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,的大小是否发生变化,若不变,求出其值。

MPQECA ∠∠2、如图1,AB//EF, ∠2=2∠1(1)证明∠FEC=∠FCE;(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。

图1 图23、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。

BCA BCABC(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。

AC4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?FEA5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

七年级下学期数学几何难题之欧阳理创编

七年级下学期数学几何难题之欧阳理创编

如图一,在锐角△ABC中,CD垂直于AB于点D,E是AB上的一点.找出图中所有的锐角三角形,并说明理由.第一题:图一中共有三角形6个,为△ABC,△AEC,△CED,△CBD,△ACD,△ECB其中△CED,△ACD,△CDB为Rt△△AEC为钝角△,因为∠AEC=∠ADC+∠ECD=90°+∠ECD>90°△ABC锐角△,已知条件。

∠CEB = 180°-钝角=锐角∠B为锐角,∠ECB=∠ACB-∠ACE =锐角△ECB为锐角△共有两个锐角△,为△ECB和△ACB如图二,△ABC中,∠B大与∠C,AD是∠BAC的平分线,说明∠ADB-∠ADC=∠C-∠B成立的理由.第二题:∵AD是∠BAC的平分线∴∠BAD=∠DAC∵三角形内角和为180°∴∠BAD+∠B+∠ADB=∠DAC+∠ADC+∠C∴∠B+∠ADB=∠ADC+∠C∴∠ADB-∠ADC=∠C-∠B如图三,已知BO平分∠CBA,CO平分∠ACB,MN‖BC,AB=12,AC=18,求△AMN的周长.第三题∵MN‖BC∴∠MOB=∠OBC∴∠NOC=∠OCB∵BO平分∠CBA∴∠MBO=∠OBC∵CO平分∠ACB∴∠NCO=∠OCB∴∠MOB=∠MBO∴∠NCO=∠OCB∵∠MOB=∠MBO∴BM=OM∵∠NCO=∠OCB∴ON=NC∴AM+MN+NA =(AM+BM)+(AN+CN)=AB+AC=12+18=30∵△AMN的周长 = 30图五,已知AB=AC,AD=AE,∠1=∠2,问CE=BD吗?说明理由.如图四,已知△ABC中,AD是BC边上的高线,AE是∠BAC的平分线,若设∠EAD=a,求∠C-∠B.(用a的代数式表示)第四题∠C=90°-∠DAC = 90°-[(1/2)∠BAC-a]∠B=∠AEC-∠BAE = 90°- a-∠BAE = 90°- a-(1/2)∠BAC ∠C-∠B=90°-[(1/2)∠BAC-a]-{90°- a-(1/2)∠BAC}=2a如图六,由正方形ABCD边BC、CD向外作等边三角形BCE和CDF,连结AE、AF、EF,求证:△AEF为等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图一,在锐角△ABC中,CD垂直于AB于点D,E是AB上的一点.找出图中所有的锐角三角形,并说明理由.
第一题:
图一中共有三角形6个,为△ABC,△AEC,△CED,△CBD,△ACD,△ECB
其中△CED,△ACD,△CDB为Rt△
△AEC为钝角△,因为∠AEC=∠ADC+∠ECD=90°+∠ECD>90°
△ABC锐角△,已知条件。

∠CEB = 180°-钝角=锐角
∠B为锐角,
∠ECB=∠ACB-∠ACE =锐角
△ECB为锐角△
共有两个锐角△,为△ECB和△ACB
如图二,△ABC中,∠B大与∠C,AD是∠BAC的平分线,说明∠ADB-∠ADC=∠C-∠B成立的理由.
第二题:
∵AD是∠BAC的平分线
∴∠BAD=∠DAC
∵三角形内角和为180°
∴∠BAD+∠B+∠ADB=∠DAC+∠ADC+∠C
∴∠B+∠ADB=∠ADC+∠C
∴∠ADB-∠ADC=∠C-∠B
如图三,已知BO平分∠CBA,CO平分∠ACB,MN‖BC,AB=12,AC=18,求△AMN 的周长.
第三题
∵MN‖BC
∴∠MOB=∠OBC
∴∠NOC=∠OCB
∵BO平分∠CBA
∴∠MBO=∠OBC
∵CO平分∠ACB
∴∠NCO=∠OCB
∴∠MOB=∠MBO
∴∠NCO=∠OCB
∵∠MOB=∠MBO
∴BM=OM
∵∠NCO=∠OCB
∴ON=NC
∴AM+MN+NA = (AM+BM)+(AN+CN)=AB+AC=12+18=30
∵△AMN的周长= 30
图五,已知AB=AC,AD=AE,∠1=∠2,问CE=BD吗?说明理由.
如图四,已知△ABC中,AD是BC边上的高线,AE是∠BAC的平分线,若设∠EAD=a,求∠C-∠B.(用a的代数式表示)
第四题
∠C=90°-∠DAC = 90°-[(1/2)∠BAC-a]
∠B=∠AEC-∠BAE = 90°- a-∠BAE = 90°- a-(1/2)∠BAC
∠C-∠B
=90°-[(1/2)∠BAC-a]-{90°- a-(1/2)∠BAC}
=2a
如图六,由正方形ABCD边BC、CD向外作等边三角形BCE和CDF,连结AE、AF、EF,求证:△AEF为等边三角形。

第六题
∵正方形ABCD
∴AB=AD=BC=CD
∵△CDF和△BCE为等边△
∵FD=DC,
∴BE=AB,
∴FD=BE
∵∠ADF=∠ADC+∠FDC=90+60=150
∵∠ABE=∠ABC+∠CBE=90+60=150
∴∠DFA=∠DAF=∠BAE=∠BEA=15
∴∠ADF=∠ABE
∴△ADF≌△ABE
∴AF=AE
∴△AFE为等腰三角形
∵∠FAE = ∠DAB-∠DAF-∠EAB =90°-15°-15°=60°
∴△AFE为等边三角形。

相关文档
最新文档