【精选】七年级数学上册代数式专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.
(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.
(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.
一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;
①直接判断123是不是“友好数”?
②直接写出共有个“和平数”;
③通过列方程的方法求出既是“和平数”又是“友好数”的数.
【答案】(1)解:这个两位数用多项式表示为10a+b,
(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),
∵11(a+b)÷11=a+b(整数),
∴这个两位数的和一定能被数11整除;
(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),
∵9(a﹣b)÷9=a﹣b(整数),
∴这两个两位数的差一定能被数9整除,
故答案为:11,9
(2)解:①123不是“友好数”.理由如下:
∵12+21+13+31+23+32=132≠123,
∴123不是“友好数”;
②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;
十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;
十位数字是6的“和平数”有165,264,462,561,一个4个;
十位数字是5的“和平数”有154,253,352,451,一个4个;
十位数字是4的“和平数”有143,341,一个2个;
十位数字是3的“和平数”有132,231,一个2个;
所以,“和平数”一共有8+(6+4+2)×2=32个.
故答案为32;
③设三位数既是“和平数”又是“友好数”,
∵三位数是“和平数”,
∴y=x+z.
∵是“友好数”,
∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,
∴22x+22y+22z=100x+10y+z,
∴12y=78x﹣21z.
把y=x+z代入,得12x+12z=78x﹣21z,
∴33z=66x,
∴z=2x,
由②可知,既是“和平数”又是“友好数”的数是396,264,132.
【解析】【分析】(1)分别求出两数的和与两数的差即可求解;
(2)①根据“友好数”的定义即可判断求解;
②根据“和平数”的定义列举出所有的“和平数”即可求解;
③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.
2.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:
月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分
收费标准
2.2
3.3
4.4
(元/吨)
(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.
(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.
【答案】(1)解:2.2×10=22元,
答:该用户4月份应缴水费是22元,
(2)解:15×2.2+(24﹣15)×3.3=62.7元,
答:该用户8月份应缴水费是 62.7元
(3)解:①当m≤15时,需交水费2.2m元;
②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,
③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.
【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;
(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;
(3)分①m≤15吨,②15
3.电话费与通话时间的关系如下表:
通话时间a(分)电话费b(元)
10.2+0.8
20.4+0.8
30.6+0.8
40.8+0.8
……
;
(2)计算当a=100时,b的值.
【答案】(1)解:依题可得:
通话1分钟电话费为:0.2×1+0.8,
通话2分钟电话费为:0.2×2+0.8,
通话3分钟电话费为:0.2×3+0.8,
通话4分钟电话费为:0.2×4+0.8,
……
∴通话a分钟电话费为:0.2×a+0.8,
即b=0.8+0.2a.
(2)解:∵a=100,
∴b=0.8+0.2×100=20.8.
【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.
4.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.
【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6
;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t
(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;