概率论期末复习重点
概率论期末复习题集

概率论期末复习题集一、基本概念与原理1. 定义随机试验、样本空间、事件,并举例说明。
2. 解释概率的古典定义、频率定义和主观定义。
3. 描述概率的公理化定义,并列出概率的三个基本公理。
4. 举例说明条件概率的概念,并解释全概率公式和贝叶斯公式。
5. 描述随机变量、离散型随机变量和连续型随机变量的区别。
6. 定义数学期望、方差、标准差,并解释它们的意义。
二、离散型随机变量1. 给出离散型随机变量的概率分布列和概率质量函数。
2. 计算离散型随机变量的数学期望和方差。
3. 解释二项分布、泊松分布和几何分布,并给出它们的期望和方差公式。
4. 利用二项分布解决实际问题,例如药物测试的成功率问题。
三、连续型随机变量1. 描述连续型随机变量的概率密度函数和分布函数。
2. 计算连续型随机变量的数学期望和方差。
3. 解释均匀分布、指数分布和正态分布,并给出它们的概率密度函数和期望、方差的公式。
4. 利用正态分布解决实际问题,例如测量误差的分布问题。
四、多变量随机变量1. 定义联合分布函数和边缘分布函数,并解释它们之间的关系。
2. 描述协方差、相关系数和独立性的概念。
3. 计算两个随机变量的协方差和相关系数。
4. 利用联合分布解决实际问题,例如两个独立试验的联合成功概率。
五、大数定律和中心极限定理1. 解释切比雪夫不等式、马尔可夫不等式和切比雪夫大数定律。
2. 描述中心极限定理的内容,并解释为什么它在统计学中非常重要。
3. 利用中心极限定理估计样本均值的分布。
六、随机过程1. 定义随机过程和遍历理论。
2. 描述泊松过程和维纳过程,并解释它们在实际中的应用。
3. 解释随机过程的平稳性和遍历性。
七、应用题1. 一个袋子里有10个红球和20个蓝球,随机抽取5个球,计算以下事件的概率:至少有3个红球。
2. 某工厂生产的零件,每个零件合格的概率为0.95。
求生产100个零件中,至少有90个合格的概率。
3. 一个随机变量X服从正态分布N(μ, σ²),求X的数学期望和方差。
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计期末复习

概率统计期末知识点复习一、概率计算⒈事件的关系和运算⑴ 子事件(事件的包含)B A ⊂:若A 发生,则B 必然发生; ⑵ 相等事件A B =:B A ⊂且A B ⊃; ⑶ 并事件B A :“,A B 中至少发生一个”; ⑷ 交(积)事件AB :“,A B 都发生”; ⑸ 互不相容(互斥)事件:AB =∅; ⑹ 对立事件:若AB =Ω,且AB =∅,称B 为A 的对立事件,记为A B =.⑺ 差事件B A -:“A 发生,而B 不发生”. ⑻ 事件的运算律 ①交换律:A B B A =,AB BA =;②结合律:()()A B C A B C =,()()AB C A BC =; ③分配律:()A B C ACBC =,()()()AB C A C B C =;④摩根律:AB A B =,AB A B =.⒉概率计算的基本公式⑴非负性:设A 为任一随机事件,则0()1P A ≤≤. ⑵规范性:()1P Ω=,()0P ∅=. ⑶并事件概率计算公式:()()()()P AB P A P B P AB =+-;()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+.如果事件12,n A A A ,,两两互不相容,则1212()()()()n n P A A A P A P A P A =+++.⑷差事件概率计算公式:()()()()()P A B P AB P A AB P A P AB -==-=-; 若B A ⊂,则①()()()P A B P A P B -=-; ②()()P B P A ≤. ⑸对立事件概率计算公式:()1()P A P A =-.1A 2A 3A nA 21(|)P A A 1()P A 312(|)P A A A11(|)nnP A AA -B2A ∙1A nA 1()P A 2()P A ()n P A 1()P B A 2()P B A ()n P B A ⒊条件概率公式、乘法公式 ⑴条件概率:()P B A .①公式法:()(),()0()P AB P B A P A P A =>;②代入法:改变样本空间直接计算.⑵乘法公式:()0P A >,有()()()P AB P A P B A =. 设12()0n P A A A >,2n ≥,则12()n P A A A 12131211()(|)(|)(|)-=n n P A P A A P A A A P A A A .适用范围:链式结构⒋全概公式、逆概公式 ⑴全概率公式:1,,n A A 为一完备事件组,则1()()()ni i i P B P A P B A ==∑.适用范围:并列结构⑵贝叶斯公式(逆概公式):1()()()()()i i i nkkk P A P B A P A B P A P B A ==∑.⒌古典概型、几何概型、贝努里概型 ⑴古典概型:()A P A =事件所含样本点的个数所有样本点的个数.掌握简单的排列组合.⑵几何概型:()A P A =Ω的几何测度的几何测度,其中几何测度分别为长度或面积.对比均匀分布.⑶贝努里概型:在n 重贝努里试验中事件A 恰好发生k 次的概率为(1)kkn kn C p p --,其中0,1,2,,k n =,()p P A =,01p <<.对比二项分布.⒍事件的独立性⑴事件A 和B 相互独立的直观理解为事件A 和B 各自发生与否没有任何关系.并会根据实际问题判断事件A 和B 的独立性.⑵事件,A B 相互独立()()()P AB P A P B ⇔=(|)()(()0)P B A P B P A ⇔=>.⑶,,A B C 两两独立⇔()()(),()()(),()()().P AB P A P B P AC P A P C P BC P B P C =⎧⎪=⎨⎪=⎩⑷,,A B C 相互独立⇔,,()()()().A B C P ABC P A P B P C ⎧⎨=⎩两两独立,⑸独立性的有关结论:①设()0P B >,则事件A 和B 相互独立的充要条件为()()P A B P A =.②设,A B 为两个随机事件,如果A 和B 相互独立,则A 和B 相互独立;A 和B 相互独立; A 和B 也相互独立.③设,A B 为两个随机事件,且0()1P B <<,则A 和B 相互独立的充要条件为()()P A B P A B =.④如果随机事件12,,,n A A A 相互独立,则12,,,n A A A 的任一部分事件(至少两个事件)也相互独立.⑤如果随机事件12,,,n A A A 相互独立,则分别将i A 不变或换成i A 后所得事件仍相互独立.例如12,,,n A A A ,12,,,n A A A 等也分别相互独立.⑥如果随机事件1212,,,,,,,m n A A A B B B 相互独立,则由12,,,m A A A 组成的随机事件与由12,,,n B B B 组成的随机事件相互独立.⒎切比雪夫不等式(估计概率) 设μ=EX,2σ=DX ,则对任意的0ε>,有22{}1P X σμεε-<≥- 或22{}P X σμεε-≥≤.⒏利用分布计算概率⑴利用分布函数计算概率:①{}()()P a X b F b F a <≤=-,000{}()(0)P X x F x F x ==--等等. ②1212{,}<≤<≤P x X x y Y y 22211211(,)(,)(,)(,)F x y F x y F x y F x y =--+. ⑵利用分布律计算概率:①{}P X L ∈=i ix Lp ∈∑. ②(,){(,)}i j ij x y DP X Y D p ∈∈=∑.⑶利用密度函数计算概率:①{}{}P a X b P a X b <≤=≤≤{}P a X b =≤<{}P a X b =<<()b af x dx =⎰.②{(,)}(,)DP X Y D f x y dxdy ∈=⎰⎰.③00{}()X Y LP X L Y y f x y dx ∈==⎰;00{}()Y X LP Y L X x f y x dy ∈==⎰.二、随机变量的分布⒈分布函数及性质⑴一维随机变量的分布函数:(){},F x P X x x =≤-∞<<+∞. ⑵一维随机变量分布函数的性质:①0()1F x ≤≤; ②()0F -∞=,()1F +∞=; ③()F x 处处单调不减; ④()F x 处处右连续. ⑶二维随机变量的分布函数:(,){,}=≤≤F x y P X x Y y ,2(,)x y R ∈. ⑷二维随机变量分布函数的性质: ①0(,)1F x y ≤≤,其中2(,)x y R ∈;②(,)1,(,)(,)(,)0F F x F y F +∞+∞=-∞=-∞=-∞-∞=; ③(,)F x y 分别为关于变量x 和y 单调不减的函数; ④(,)F x y 分别关于变量x 和y 处处右连续. ⒉分布律及性质⑴一维离散型随机变量的分布律:{}i i P X x p ==,1,2,i =;或1212~i ix x x X p p p ⎛⎫⎪⎝⎭. ⑵一维离散型随机变量分布律的性质:①0i p ≥,1,2,i =; ②1iip=∑.⑶二维离散型随机变量的分布律:{,}i j ij P X x Y y p ===,1,2,,1,2,i j ==;或2j y121j p⑷二维离散型随机变量分布律的性质: ①0ij p ≥,1,2,,1,2,i j ==; ②1ijijp=∑∑.⒊密度函数及性质⑴一维连续型随机变量的密度()f x :()f x 满足()()x F x f t dt -∞=⎰,x -∞<<+∞.⑵一维连续型随机变量密度函数的性质: ①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.⑶二维连续型随机变量的密度(,)f x y :(,)f x y 满足(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰,2(,)x y R ∈.⑷二维连续型随机变量密度函数的性质: ①(,)0≥f x y ,2(,)x y R ∈; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰.⒋常见分布及其数字特征⑴01-分布~(1,)X B p :1{}(1)k k P X k p p -==-,0,1;,k EX p DX pq ===. ⑵二项分布(,)B n p :{}(1),0,1,2,,,01kkn kn P X k C p p k n p -==-=<<;,EX np DX npq ==.应用背景..:记X 为n 重贝努利试验中A 发生的次数..,则(,)X B n p .⑶泊松分布()P λ:{},0,0,1,2,!kP X k e k k λλλ-==>=,EX DX λ==.⑷均匀分布~[,]X U a b :1,,()0,a x b f x b a ⎧<<⎪=-⎨⎪⎩其它.()2,212b a a b EX DX -+==. ⑸指数分布()E λ:,0,()00,0.x e x f x x λλλ-⎧>=>⎨≤⎩,211,EX DX λλ==.⑹正态分布X ~),(2σμN:22()2()x f x μσ--=,x -∞<<+∞;2,EX DX μσ==.5.常见分布的性质⑴(了解)设随机变量12,,,n X X X 相互独立,且~(,),1,2,,i i X B n p i n =,则11~(,)nnii i i XB n p ==∑∑.特别地,设随机变量12,,,n X X X 相互独立,且~(1,),1,2,,i X B p i n =,则1~(,)nii XB n p =∑.反之,服从二项分布(,)B n p 的随机变量X 可以分解为n 个相互独立,且均服从(1,)B p 的随机变量12,,n X X X 之和.⑵(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X P i n λ=,则11~()nnii i i XP λ==∑∑.⑶(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X E i n λ=,则121min{,,,}~()nn i i X X X E λ=∑.⑷(了解)设随机变量12~[,]X U θθ,则12~[,](0)aX b U a b a b a θθ+++>;21~[,](0)aX b U a b a b a θθ+++<.⑸(了解)设二维随机变量(,)X Y 服从均匀分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从均匀分布.⑹设随机变量2~(,)X N μσ,则22~(,)Y aX b N a b a μσ=++,其中0a ≠.特别地,~(0,1)X N μσ-.⑺设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i i i X N i n μσ=,12,,,n a a a 是不全为零的常数,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.特别地,设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i X N i n μσ=,则211~(,)n i i X N n nσμ=∑. ⑻设二维随机变量(,)X Y 服从二维正态分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从二维正态分布.⑼设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=.⒌边缘分布 ⑴离散型{}i ij jP X x p ==∑,1,2,i =;{}j ijiP Y y p==∑,1,2,j =.关于X 的边缘分布律可对表中的i j p 进行纵向求和即得;关于Y 的边缘分布律可对表中的i j p 进行横向求和即得.⑵连续型()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞;()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.()X f x 可通过在给定点x 处,),(y x f 的纵向积分(对y 从-∞到+∞积分)求得,()Y f y 可通过在给定点y 处,),(y x f 的横向积分(对x 从-∞到+∞积分)求得.⒍条件分布 ⑴离散型1212()~i jj ij j jjjx x x p p p X Y y p pp⎛⎫⎪= ⎪ ⎪⎝⎭;1212()~j ij i i i iiiy y y p Y X x p p p p p ⎛⎫⎪= ⎪ ⎪⎝⎭. ⑵连续型(,)()()X Y Y f x y f x y f y =,x -∞<<+∞;(,)()()Y X X f x y f y x f x =,y -∞<<+∞.⒎随机变量的独立性⑴随机变量X 和Y 相互独立的直观意义是指X 和Y 的各自取值情况没有任何关系. ⑵利用分布函数:(,)()()X Y F x y F x F y =. ⑶利用分布律:ij i j p p p =,1,2,,1,2,i j ==.⑷利用密度函数:(,)()()X Y f x y f x f y =. ⑸随机变量独立性的有关结论①设随机变量X 与Y 相互独立,则对任意实数集合12,L L ,有1212{,}{}{}P X L Y L P X L P Y L ∈∈=∈∈.②如果随机变量12(,,,)m X X X 和12(,,,)n Y Y Y 相互独立,,g h 分别为m 元连续函数和n 元连续函数,则随机变量12(,,,)m g X X X 与12(,,,)n h Y Y Y 也相互独立.特别地,设随机变量X 与Y 相互独立,(),()g x h y 是连续函数,则随机变量()g X 与()h Y 也相互独立.⒏随机变量函数的分布⑴离散型随机变量函数的分布可直接列表求得. ⑵连续型随机变量函数分布采用分布函数法①()Y g X =:先求()(){}{()}()Y X g x yF y P Y y P g X y f x dx ≤=≤=≤=⎰,②(,)Z g X Y =:先求(,)(){}{(,)}(,)Z g x y zF z P Z z P g X Y z f x y dxdy ≤=≤=≤=⎰⎰,然后对y 或z 进行讨论然后求导数.⑶熟记1max i i nM X ≤≤=和1min i i nN X ≤≤=的分布函数和密度函数公式.①若随机变量12,,,n X X X 相互独立,i X 的密度函数为()i f x ,分布函数为()i F x ,1,2,,i n =,则M 和N 的分布函数(),()M N F x F x 和密度函数(),()M N f x f x 分别为12(){}()()()M n F x P M x F x F x F x =≤=,()()M Mf x F x '=; ()()()12(){}1[1][1][1]N n F x P N x F x F x F x =≤=----,()()N Nf x F x '=. ②当12,,,n X X X 独立同分布时,()()i f x f x =,()()i F x F x =,1,2,,i n =,则 ()[()]n M F x F x =,1()[()]()n M f x n F x f x -=;()1[1()]n N F x F x =--,1()[1()]()n N f x n F x f x -=-.⒐数字特征计算⑴数学期望(均值):①一维随机变量函数的数学期望:1(),(())()().i i i g x p E g X g x f x dx ∞=+∞-∞⎧⎪=⎨⎪⎩∑⎰注: 2,()EX E X 为其特例.②二维随机变量函数的数学期望:11(,),((,))(,)(,).i j i j i j g x y p E g X Y g x y f x y dxdy ∞∞==+∞+∞-∞-∞⎧⎪⎪=⎨⎪⎪⎩∑∑⎰⎰注: 22,(),,(),()EX E X EY E Y E XY 为其特例.⑵方差:222()()()DX E X EX E X EX =-=-.⑶协方差:ov(,)[()()]()C X Y E X EX Y EY E XY EXEY =--=-.⑷相关系数:XY ρ=.⑸数字特征的性质(见教材). ⑹不相关:①若0XY ρ=,称X 与Y 不相关;X 与Y 不相关的直观意义指X 与Y 没有线性关系. ②X 与Y 不相关ov(,)0C X Y ⇔=()D X Y DX DY ⇔±=+()E XY EXEY ⇔=.③设221212(,)~(,,,,)X Y N μμσσρ,则X 与Y 的相关系数XY ρρ=.④设221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=⇔X 与Y 不相关.⑤如果X 与Y 相互独立,且X 与Y 的相关系数XY ρ存在,则X 与Y 不相关.反之未必.⒑中心极限定理的应用 ⑴设12,,n X X X 独立同分布,且2,0i i EX DX μσ==≠(1,2,)i =,则当n 充分大(30n ≥)时,有21~(,)nii XN n n μσ=∑近似.⑵设~(,)X B n p ,则当n 充分大(30n ≥)时,~(,(1))X N np np p -近似.三、计算过程中需要分段讨论的几种类型与方法⒈已知X 的分布律,求X 的分布函数()F x .三个特征: ⑴分1n +段;⑵每段上,将概率逐次累加(初始值为0,终值为1); ⑶每个区间为左闭右开. ⒉已知X 的密度函数()f x (分段函数),求X 的分布函数()F x . ⑴分1n +段;⑵每段上,将()f x 在(,]x -∞上积分;⑶由于()F x 为连续函数,故每个区间为开闭均可.⒊已知(,)X Y 的密度函数(,)f x y (分段函数),求X 的分布函数(,)F x y . ⑴结合(,)F x y 的原理图和(,)f x y 特征图,将全平面分若干块; ⑵每块上,将(,)f x y 在区域(,](,]x y D -∞⨯-∞上积分.⒋连续型随机变量函数的分布⑴一维连续型随机变量函数()Y g X =的分布函数()Y F y :①先确定()Y g X =取值范围;例如m Y M ≤≤,其中,m M 为实数,则采用三段式讨论.②当y m <时,()0Y F y =.③当m y M <≤时,利用定积分()()()Y X g x yF y f x dx ≤=⎰计算.④当y M ≥时,()1Y F y =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Y 为连续型随机变量,则Y 的密度函数()()Y Y f y F y '=. ⑵二维连续型随机变量函数(,)Z g X Y =的分布函数()Z F z :①确定(,)Z g X Y =的取值范围;例如m Z M ≤≤,其中,m M 为实数,则采用三段式讨论.②当z m <时,()0Z F z =.③当m z M <≤时,利用二重积分(,)()(,)Z g x y zF z f x y dxdy ≤=⎰⎰计算.④当z M ≥时,()1Z F z =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Z 为连续型随机变量,则Z 的密度函数()()Z Z f z F z '=. ⒌二维连续型随机变量(,)X Y 的边缘密度 ⑴()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞.①作出),(y x f 的特征图.②用垂直直线x m =和x M =将D 夹住. ③当x m <或x M >时,()0X f x =. ④当m x M ≤≤时,()(,)X f x f x y dy +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论. ⑵()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.①作出),(y x f 的特征图.②用水平直线y m =和y M =将D 夹住. ③当y m <或y M >时,()0Y f y =. ④当m y M ≤≤时,()(,)Y f y f x y dx +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论.四、数理统计的基础知识⒈总体X ,样本12(,,,)n X X X 和观察值的概念.关注简单随机样本的独立性和代表性.⒉常用统计量:样本均值∑==n i i X n X 11,样本方差2211()1n i i S X X n ==--∑, 顺序统计量*11min i i nX X ≤≤=,*1max n i i nX X ≤≤=.⒊常见分布⑴正态分布:见概率论中的内容. ⑵2χ分布:设12(,,,)n X X X 为来自总体~(0,1)X N 的一个样本,就称统计量22222121ni ni X X X X ===+++∑χ服从自由度为n 的2χ分布,记作)(~22n χχ. ①设)(~22n χχ,则2()E n =χ,2()2D n =χ. ②设~(0,1)X N ,则22~(1)X χ.③设22~()i i n χχ,1,2i =,且2212,χχ相互独立,则2221212~()n n ++χχχ.⑶ t 分布:设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,就称T =服从自由度为n 的t 分布,记作)(~n t T .⑷F 分布:设随机变量)(~12n X χ,)(~22n Y χ,且X 与Y 相互独立,就称21n Y n X F =服从第一自由度为1n ,第二自由度为2n 的F 分布,记作),(~21n n F F . ①如果~()T t n ,则2~(1,)T F n . ②如果12~(,)F F n n ,则211~(,)F n n F. ⒋上侧分位点p x :{},{}1p p P X x p P X x p ≥≥≤≥-. 如U α,2()t n α,21()n αχ-,2121(,)Fn n α-等等(下标为该点处右侧的面积). 注意:1U U αα-=-,1()()t n t n αα-=-,112211(,)(,)F n n F n n αα-=.⒌单正态总体2~(,)X N μσ中X 和2S 的分布(其中12(,,,)n X X X 为样本): ⑴2~(,)X N nσμ,或nX /σμ-~)1,0(N ;⑵nS X /μ-~)1(-n t ;⑶2212()()nii Xn μχσ=-∑;⑷222122()(1)(1)nii XX n Sn χσσ=--=-∑,且X 与2S 相互独立.五、参数估计⒈点估计 ⑴矩估计:①原理:用样本矩估计理论矩.②方法:建立方程(组)11()n rr i i X E X n ==∑,1,2,r =,解出θ,得θ的矩估计θ.⑵最大似然估计:①原理:概率最大的事件最有可能出现. ②方法:构造似然函数)(L θ=12)(,,,;n L x x x θ(似然函数体现了样本12(,,,)n X X X 出现的概率大小),求似然函数L 的最大值点,即为θ的极大使然估计θ. ③步骤:第一步:写出似然函数)(L θ.如果连续型总体X 的密度函数为(;)f x θ,则1()(;)n i i L f x θθ==∏.如果离散型总体X 的分布律为(;)p x θ,则1()(;)ni i L p x θθ==∏. 第二步:取对数ln )(L θ,并令ln 0)(d d L θθ=,或ln 0)(i L θθ∂=∂,1,2,,i k =,建立方程(组).如果从中解得惟一驻点θˆ,则θˆ即为θ的最大似然估计; 第三步:如果上述方程无解,则通过单调性的讨论,在某边界点处,求出θ的最大似然估计量θˆ. ⒉估计量的评价标准⑴无偏性:如果E θθ=,就称θ为θ的无偏估计.主要结论有:①如果总体X 的数学期望EX 存在,则X 是μ的无偏估计,即E X μ=. ②如果总体X 的方差DX 存在,则2S 是2σ的无偏估计,即22()E S σ=.③设估计量12ˆˆˆ,,m θθθ均为θ的无偏估计,12,,,m c c c 为常数,且11mi i c ==∑,则1ˆmi i i c θ=∑仍为θ的无偏估计.注意:即使ˆθ为θ的无偏估计,而ˆ()g θ未必为...()g θ的无偏估计. ⑵(较)有效性:设21ˆ,ˆθθ均为θ的无偏估计,如果12ˆˆD D θθ<,就称1ˆθ比2ˆθ有效.⑶一致性(相合性):设ˆθ为θ的估计量,如果对任意的0ε>,均有ˆl i m {}1n P θθε→∞-<=,就称θˆ为θ的一致估计量或相合估计量. ⒊单正态总体2(,)N μσ中2,σμ的区间估计⑴2σ已知,μ的置信度1α-的置信区间为22X u X u αα⎛⎫-+ ⎝. ⑵2σ未知,求μ的置信度为1α-的置信区间为2(X t n α⎛⎫±- ⎝. ⑶2σ的置信度为1α-的置信区间为2222122(1)(1),(1)(1)n Sn S n n ααχχ-⎛⎫-- ⎪ ⎪-- ⎪⎝⎭. 六、假设检验⒈假设检验的有关概念了解假设检验的背景,假设的提法,假设检验中的反证法思想,假设检验的基本原理,显著性检验,双侧检验和单侧检验等相关内容.⒉假设检验的两类错误⒊假设检验的四个步骤⑴根据给定的问题,建立假设检验问题01(,)H H . ⑵根据检验问题01(,)H H 及条件,选择检验统计量12(,,,)n g X X X .当0H 为成立时,确定该统计量12(,,,)n g X X X 的分布.⑶根据显著性水平α,确定临界值和原假设0H 的拒绝域W . ⑷通过样本值12(,,,)n x x x ,计算统计量12(,,,)n g X X X 的值12(,,,)n g x x x .若12(,,,)n g x x x W ∈,则拒绝0H ,否则接受0H .⒋单正态总体中均值和方差的假设检验。
概率论与数理统计期末复习课件

置信水平
用于确定样本统计量的不 确定性范围。
置信区间
根据置信水平和抽样分布, 估计未知参数的可能值范 围。
点估计与最优性
点估计
用单一的数值估计未知参数的值。
无偏估计
样本统计量的期望值等于真实参数 值。
最小方差估计
选择一个点估计,使得预测误差的 方差最小。
假设检验与p值
假设检验
根据样本数据对未知参数 提出假设,并进行检验。
详细描述
一元线性回归是一种最简单的回归分析方 法,用于研究一个因变量和一个自变量之 间的线性关系。
一元线性回归模型通常表示为`Y = β0 + β1*X + ε`,其中Y是因变量,X是自变量, ε是误差项。β0和β1是需要估计的参数。
重要概念
适用范围
一元线性回归模型假设因变量Y和自变量X 之间存在线性关系,即Y的变化可以由X的 变化来解释。
02
置信区间
根据自助法计算的统计量的置信区间,可以用来估计总体参数的区间范
围。
03
应用
在社会科学和医学研究中,自助法和置信区间被广泛应用于估计样本参
数的可靠性和精度。例如,在估计人口平均年龄的置信区间时,自助法
可以用来确定样本大小和置信水平之间的关系。
CHAPTER 06
实验设计初步
完全随机设计
描述 马尔科夫链通常用状态转移图来表示,其中每个状态通过 箭头连接到其他状态,箭头上标记了从一个状态转移到另 一个状态的概率。
实例 例如天气预报、股票价格等都可以被视为马尔科夫链。
平稳过程与遍历性
定义
平稳过程是一类特殊的随机过程,它具有“时间齐次性”和“空 间齐次性”的性质。
描述
概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
《概率论与数理统计》期末复习重点总结

概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论总复习-知识总结(一)

概率论总复习-知识总结(一)概率论总复习-知识总结概率论是一门广泛应用于自然科学、社会科学、医学、金融等领域的数学学科,是研究随机事件及其发生规律的学科。
下面就概率论常见的概念、公式和计算方法进行总结和复习。
一、基本概念1. 试验和事件:试验是人为、自然、社会等各种实际现象的模拟或观测过程,试验的每一个结果称为该试验的一个基本事件;事件是由基本事件构成的,即试验结果的任意某些组合,可以是单个事件,可以是多个事件组合形成的复合事件。
2. 样本空间和事件域:样本空间是由一切可能的基本事件组成的集合;事件域是指样本空间中,所有事件的全体,即事件的集合。
3. 必然事件和不可能事件:试验中一定会发生的事件称为必然事件,常用符号Ω表示;试验中不可能发生的事件称为不可能事件,常用符号Ø表示。
4. 等可能概型:所有基本事件的发生是等可能的,即每个基本事件发生的概率相等。
5. 概率的基本性质:对于任何事件A,有0 ≤ P(A) ≤ 1,并且P(Ω) = 1,P(Ø) = 0;对于任意两个互不相容的事件A和B,有P(A∪B) =P(A) + P(B)。
二、概率的计算方法1. 古典概型:若试验基本事件有限且等可能,则事件A的概率P(A) = A中基本事件数 / S中基本事件总数。
2. 几何概型:可以利用图形面积的比值计算。
3. 组合计数:若A是从n个不同元素中取m个元素集合,则其包含m个元素的子集个数称为A的组合数。
三、条件概率和独立事件1. 条件概率:设A、B是两个事件,且P(A) > 0,则事件B在事件A发生的条件下发生的概率记为P(B|A),称为条件概率,P(B|A) = P(AB) / P(A)。
2. 乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。
3. 全概率公式和贝叶斯公式:全概率公式是用于计算复杂事件的概率,表示为P(B) = ΣiP(Ai)P(B|Ai);贝叶斯公式是在已知结果的情况下,得出反推因果关系的方法,表示为P(Ai|B) = P(Ai)P(B|Ai) /ΣjP(Aj)P(B|Aj)。
概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。
概率论复习提纲范文

概率论复习提纲范文概率论是一门研究随机事件发生的可能性的数学分析方法。
它在各个领域中都有广泛的应用,包括统计学、经济学、物理学等。
本文将为您提供概率论的复习提纲,包括概率基本原理、随机变量与概率分布、大数定律与中心极限定理等重要内容。
一、概率基本原理1.随机试验和样本空间a.随机试验的定义和特点b.样本空间的概念和表示方法2.概率的定义和性质a.概率的基本定义和公理b.集合的概率运算法则c.条件概率和乘法公式d.全概率公式和贝叶斯公式二、随机变量与概率分布1.随机变量的定义和分类a.随机变量的基本定义b.随机变量的分类:离散和连续随机变量2.离散随机变量a.概率质量函数的定义和性质b.分布函数的定义和性质c.数学期望和方差的计算3.连续随机变量a.概率密度函数的定义和性质b.分布函数的定义和性质c.数学期望和方差的计算4.常见概率分布a.伯努利分布和二项分布b.泊松分布和指数分布c.正态分布和标准正态分布三、大数定律与中心极限定理1.大数定律a.辛钦大数定律的概念和证明b.切比雪夫大数定律的概念和证明2.中心极限定理a.中心极限定理的基本概念和特点b.林德贝格-莱维中心极限定理的概念和证明c.中心极限定理的应用四、统计推断与参数估计1.统计推断的基本概念a.参数估计和假设检验b.置信区间和假设检验法则2.参数估计a.点估计的基本概念和性质b.最大似然估计和矩估计3.假设检验a.原假设和备择假设的概念b.显著性水平和拒绝域的确定c.正态总体均值的参数检验五、贝叶斯统计与贝叶斯估计1.贝叶斯统计的基本概念a.条件概率和贝叶斯定理b.先验概率和后验概率2.贝叶斯估计a.贝叶斯估计的基本原理和方法b.贝叶斯估计的优点和应用六、随机过程与马尔可夫链1.随机过程的定义和特点a.随机过程的基本定义b.随机过程的分类和性质2.马尔可夫链a.马尔可夫链的基本定义和性质b.平稳分布和转移概率矩阵的计算c.马尔可夫链的应用以上是概率论的复习提纲,主要包括概率基本原理、随机变量与概率分布、大数定律与中心极限定理、统计推断与参数估计、贝叶斯统计与贝叶斯估计、随机过程与马尔可夫链等重要内容。
概率论与数理统计期末复习资料

概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。
概率论与数理统计期末考试复习

j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;
概率论总复习知识总结

contents
目录
• 概率论概述 • 随机变量及其分布 • 随机变量的数字特征 • 大数定律与中心极限定理 • 参数估计与假设检验 • 贝叶斯统计推断 • 概率论的应用
01 概率论概述
概率论的基本概念
01
02
03
04
概率
描述随机事件发生的可能性大 小。
随机试验
具有随机性结果的试验。
对于连续型随机变量,数学期望的计算公式为$E(X) = int x f(x) dx$,其中$f(x)$是随机变量$X$的概率 密度函数。
方差与协方差
方差的定义
方差是用来衡量随机变量取值分散程度的量,计算公式为 $D(X) = E[(X - E(X))^2]$。
方差的性质
方差具有非负性、可加性、可乘性和变换不变性等性质。
在贝叶斯决策理论中,决策者需要先对各种可能的结果赋予主观概率,然后根据 这些结果的价值和发生的概率计算期望值,最后选择期望值最大的方案作为最优 决策。
贝叶斯网络与推理
贝叶斯网络是一种基于概率的图形模型,用于表示随机变量 之间的条件独立关系。它由一组节点和有向边组成,节点代 表随机变量,边代表变量之间的概率依赖关系。
协方差的定义
协方差是用来衡量两个随机变量同时取值的分散程度和它 们之间的相关程度的量,计算公式为$Cov(X, Y) = E[(X E(X))(Y - E(Y))]$。
协方差的性质
协方差具有非负性、可加性、可乘性和变换不变性等性质 。
矩与特征函数
矩的定义
矩是用来描述随机变量取值分布特征 的量,包括数学期望、方差、偏度和 峰度等。
样本空间
随机试验所有可能结果的集合 。
事件
概率论复习资料大全

P(X k)Cnk pk (1 p)nk , k 0,1,, n
称r.v X服从参数为n和p的二项分布,记作 X ~ b(n,p)
9
4.泊松分布
定义:设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P( X k) e k , k0,1,2,,
称的钟形曲线.
特点是“两头小,中间大,左右对称”.
正态分布表
15
9.连续型随机变量函数的分布
定理 设 r.v X具有概率密度 f(x), x , 又设g(x)处处可导,且恒有g(x) 0(或 g(x) 0) 则Y=g(X)是连续型r.v,其概率密度为
fY
(
y)
计算方差的一个简化公式 D(X)=E(X2)-[E(X)]2
26
6.方差的性质
1. 设C是常数,则D(C)=0; 2. 若C是常数X是随机变量,则D(CX)=C2 D(X);
3. 设X与Y 是两个随机变量,则有 D(X+Y)= D(X)+D(Y) + 2E{(X-E(X))(Y-E(Y))}. 特别,若X与Y 相互独立,则有 D(X+Y)= D(X)+D(Y)
p
B(n,p)
π()
P( X k) Cnk pk (1 p)nk k 0,1,2,,n
np
P( X k) ke
k!
k 0,1,2,
23
分布
概率密度
期望
区间(a,b)上的 均匀分布
f
(
x)
b
1
a
,
0,
a x b, 其它
《概率论总复习》课件

常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
概率论期末复习知识点

知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,n A A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,n A A A ,有111111()()()()(1)()nnn i i i j i j k ni i j ni j k ni P A P A P A A P A A A P AA -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,n A A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,n A A A 总满足 11()()()k k i i i i P A A P A P A =,则称事件1,2,,n A A A 相互独立.这里实际上包含了21n n --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,n A A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律(),1,2,,,.i i p P X a i n ===分布律也可用下列表格形式表示:2.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率 设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.j p =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数Y g =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 .3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞; (2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.第四章 随机变量的数字特征本章重点:随机变量的期望。
《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n
则
Ai Ai
Ai Ai
i 1
概率论期末复习重点

概率论期末总复习第一章 随机事件 1、 事件的关系与运算 2、 古典概率3、 条件概率的概念与性质,乘法公式4、 事件的独立性5、主要公式(1)()()()()P A B P A P B P AB ⋃=+- (2))()()(AB P A P B A P -=- (3)()()1P A P A =- (4)()()()|P AB P B A P A =(5)()()()()()||P AB P A P B A P B P A B ==(6)n 重贝努利试验中,事件A 发生k 次的概率为 6、 主要例题:P10例1.3.3、例; 7、主要习题:P23习题、、、例1、已知8.0)(,5.0)(,3.0)(===B A P B P A P Y ,求(1)P(AB);(2)P (A -B );(3))(____B A P 解:(1)由)()()()(AB P B P A P B A P -+=Y得()()()()P AB P A P B P A B =+-⋃ (2)3.003.0)()()(=-=-=-AB P A P B A P(3)2.08.01)(1)()(___________=-=-==B A P B A P B A P Y Y 第二章随机变量 1、离散型分布列()i i P X x P ==,i =1,2,……(1)0≥iP (2)11=∑∞=i i P2、分布函数)()(x X P x F ≤=3、连续型概率密度函数)(x f (1)0)(≥x f (2)()1f x dx ∞-∞=⎰ (3)⎰-==≤<b a a F b F dx x f b X a P )()()()((4))()('x F x f = 4、常用离散型(1)两点(0-1)分布E (x )=P ,D (x )=P (1-P ) (2)二项分布X ~B (n ,p ) E (x )=np ,D (x )=np (1-p ) (3)泊松分布X ~)(λP!)(K e K X P K λλ-==,K =0,1,2,……0>λE (x )=D (x )=λ 5、常用连续型 (1)均匀分布],[~b a U X (2)指数分布][~λE X (3)正态分布),(~2σu N X(4)标准正态分布X ~N (0,1) 6、重要例题:P39例2.3.3、; 7、重要习题:P48习题、、、、 例1、设随机变量X 的密度函数为求:(1)常数K ;(2)分布函数F (x )(3)P (<X<2)(4)E (x ),D (x )解:(1)⎰⎰∞∞-====101022|2)(1Kx K Kxdx dx x f ,K =2(2)⎰⎰∞-===≤xxdt dt t f x F x 000)()(0时, (3)43|2)()25.0(15.0215.025.0====<<⎰⎰x xdx dx x f X P (4)32|322)()(10310====⎰⎰∞∞-x xdx x dx x xf x E 第三章 多维随机变量 一、二维离散型随机变量(x,y ) 1、联合分布律()i i ij P X x y P ===,Y性质:(1)0≥ij P (2)111=∑∑∞-∞=j i ij P2、边缘分布11() ()i i ij j j ij j i P P X x P P P Y y P ∞∞⋅⋅========∑∑、()(),X f x f x y dy +∞-∞=⎰,()(),Y f x f x y dx +∞-∞=⎰3、独立性X 与Y 独立j i ij P P P ⋅⋅=⇔4、条件分布()()(),|i j ij i j jj P X x Y y P P X x Y y P P Y y ⋅=======二、重要例题:P53例3.2.1 三、重要习题:P79习题、、、、、 例1、设随机变量X 和Y 的分布律为问(1)βα,为何值时,X 与Y 独立?(2)()(),E X E Y (3)()1|1P X Y == 解:(x ,y )的边缘分布如上表,由独立特性得 第四章随机变量的数字特征 一、数学期望(1)1 ()() i i i x P E X xf x dx ∞=∞∞⎧⎪=⎨⎪⎩∑⎰-离散连续(2)设Y =g (x ),则1()()()()i ii g x P E Y g x f x dx ∞=∞-∞⎧⎪=⎨⎪⎩∑⎰(3)性质:E (C )=C ,E (ax+b )=aE (x )+b 二、方差(1)2()[()]D X E X E X =-(2)简化公式:22()()(())D X E X E X =- (3)性质:D (C )=0,2()()D aX b a D X += 三、重要例题:P89例4.1.7;P94例; 四、重要习题:P104习题、、 1、设总体X 的概率密度为()10xe f x θθ-⎧⎪=⎨⎪⎩00<≥x x (0θ>,未知),n X X X ,,,21Λ是来自总体X 的样本,求未知参数θ的极大似然估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论期末总复习
第一章 随机事件
1、
事件的关系与运算 2、
古典概率 3、
条件概率的概念与性质,乘法公式 4、
事件的独立性 5、 主要公式
(1)()()()()P A B P A P B P AB ⋃=+-
(2))()()(AB P A P B A P -=-
(3)()()1P A P A =-
(4)()()()
|P AB P B A P A = (5)()()()()()||P AB P A P B A P B P A B ==
(6)n 重贝努利试验中,事件A 发生k 次的概率为
6、
主要例题:P10例1.3.3、例1.3.4; 7、 主要习题:P23习题1.10、1.14、1.16、1.23
例1、已知8.0)(,5.0)(,3.0)(===B A P B P A P Y ,
求(1)P(AB);(2)P (A -B );(3))(__
__B A P
解:(1)由)()()()(AB P B P A P B A P -+=Y
得()()()()P AB P A P B P A B =+-⋃
(2)3.003.0)()()(=-=-=-AB P A P B A P
(3)2.08.01)(1)()(___________=-=-==B A P B A P B A P Y Y
第二章随机变量
1、离散型分布列
()i i P X x P ==,i =1,2,……
(1)0≥i P (2)11
=∑∞=i i P
2、分布函数)()(x X P x F ≤=
3、连续型概率密度函数)(x f
(1)0)(≥x f (2)()1f x dx ∞
-∞=⎰
(3)⎰-==≤<b a a F b F dx x f b X a P )()()()( (4))()('x F x f =
4、常用离散型
(1)两点(0-1)分布
E (x )=P ,D (x )=P (1-P )
(2)二项分布X ~B (n ,p )
E (x )=np ,D (x )=np (1-p )
(3)泊松分布X ~)(λP
!)(K e K X P K λ
λ-==,K =0,1,2,……0>λ
E (x )=D (x )=λ
5、常用连续型
(1)均匀分布],[~b a U X
(2)指数分布][~λE X
(3)正态分布),(~2σu N X
(4)标准正态分布X ~N (0,1)
6、重要例题:P39例2.3.3、2.3.4;
7、重要习题:P48习题2.2、2.4、2.13、2.14、2.19
例1、设随机变量X 的密度函数为
求:(1)常数K ;(2)分布函数F (x )(3)P (0.5<X<2)
(4)E (x ),D (x )
解:(1)⎰⎰∞∞-====101022|2)(1K
x K
Kxdx dx x f ,K =2
(2)⎰⎰∞-===≤x x
dt dt t f x F x 000)()(0时,
(3)43|2)()25.0(15.021
5.025.0====<<⎰⎰x xdx dx x f X P
(4)32
|32
2)()(10310====⎰⎰∞∞-x xdx x dx x xf x E
第三章 多维随机变量
一、二维离散型随机变量(x,y )
1、联合分布律()i i ij P X x y P ===,Y
性质:(1)0≥ij P (2)111
=∑∑∞-∞
=j i ij P
2、边缘分布
11
() ()i i ij j j ij j i P P X x P P P Y y P ∞∞
⋅⋅========∑∑、
()(),X f x f x y dy +∞
-∞=⎰,()(),Y f x f x y dx +∞
-∞=⎰
3、独立性X 与Y 独立j i ij P P P ⋅⋅=⇔
4、条件分布()()
(),|i j ij i j j j P X x Y y P P X x Y y P P Y y ⋅=======
二、重要例题:P53例3.2.1
三、重要习题:P79习题3.7、3.8、3.9、3.15、3.16、3.26 例1、设随机变量X 和Y 的分布律为
问(1)βα,为何值时,X 与Y 独立?(2)()()
,E X E Y (3)()1|1P X Y == 解:(x ,y )的边缘分布如上表,由独立特性得
第四章随机变量的数字特征
一、数学期望
(1)1 ()() i i i x P E X xf x dx ∞=∞
∞⎧
⎪=⎨⎪⎩∑⎰-离散
连续
(2)设Y =g (x ),则1()()()()i i
i g x P E Y g x f x dx
∞
=∞
-∞⎧⎪=⎨⎪⎩∑⎰ (3)性质:E (C )=C ,E (ax+b )=aE (x )+b
二、方差
(1)2()[()]D X E X E X =-
(2)简化公式:22()()(())D X E X E X =-
(3)性质:D (C )=0,2()()D aX b a D X +=
三、重要例题:P89例4.1.7;P94例4.2.2;
四、重要习题:P104习题4.8、4.9、4.26
1、设总体X 的概率密度为()10x e f x θθ-⎧⎪=⎨⎪⎩
00<≥x x (0θ>,未知),n X X X ,,,21Λ是来自总体X 的样本,求未知参数θ的极大似然估计量。
2、(P150习题7.2)设总体X 的概率密度为
()0x e f x λλ-⎧=⎨⎩00<≥x x (0λ>,未知),n X X X ,,,21Λ是来自总体X 的样本,求未知参数λ的矩估计和极大似然估计。
3、(P150习题7.3)设总体为上的均匀分布,求参数的矩估计和极大似然估计。