模糊模式识别方法

合集下载

模糊模式识别

模糊模式识别

模糊模式识别1 模糊模式识别的原则(1) 最大隶属原则当模式是模糊的,被识别对象是明确的,问题可以描述如下:设有n 个模式,它们分别表示成某论域X (X 可以是多个集合的笛卡儿乘积集)的n 个模糊子集12,,,n A A A,而0x X ∈是一个具体被识别的对象,若有},2,1{n i ∈,使得12()m ax{(),(),,()}inA o A o A o A o x x x x μμμμ=则认为0x 相对属于模式i A。

对事物进行直接识别时,所依据的是最大隶属原则。

这种方法适合处理具有如下特点的问题:a 用作比较的模式是模糊的;b 被识别的对象本身是确定的。

(2) 贴近度原则当模式及被识别对象都是模糊的,问题可以描述如下:设论域X 的模糊子集12,,,n A A A代表n 个模糊模式,被识别的对象可以表示成X 的子集B,若有},2,1{n i ∈,使得12(,)max{(,),(,),,(,)}i n B A B A B A B A σσσσ=则认为B相对合于模式A。

在模糊模式识别的具体应用中,关键是模式或被识别对象的模糊集合的构造,即如何建立刻画模式或对象的模糊集合。

根据实际应用来看,通常有三种主要方法,简单模式的识别方法,语言模式的识别方法和统计模式的识别方法。

2 模糊模式识别方法(一)简单模式的模糊模式识别具体的模糊模式识别工作可分为如下三个步骤:1)选取模式的特征因子集合},,,{21n X X X =X,被识别的对象表示为nni i XXX X ⨯⨯⨯∆∏= 211上的向量(),,,21n x x x ,,1,2,,,i i x X i n ∈= 或者表示为∏=ni i X 1上的模糊子集;2)建立模糊模式的隶属函数()A X μ,1()ni i A F X =∈∏;3)利用最大隶属度原则或贴近度原则对被识别的对象进行归属判决。

特征因子(1,2,,)i X i n = 的选取直接影响识别的效果,它取决于识别者的知识和技巧,很难做一般性讨论,而模式识别中最困难的是建立模式的隶属函数,人们还没有从理论上彻底解决隶属函数的确定问题。

模糊模式识别的方法

模糊模式识别的方法
为 27 岁和 30 岁的人都属于“青年人” 范畴。
第21页/共26页
例:按气候谚语来预报地区冬季的降雪量。 内蒙古丰镇地区流行三条谚语:①夏热冬雪大,
②秋霜晚冬雪大,③秋分刮西北风冬雪大。现在根据三 条言语来预报丰镇地区冬季降雪量。
为描述“夏热” ( A~1) 、”秋霜晚” (A~2) 、”秋分刮西北 风” ( A~3) 等概念,在气象现象中提取以下特征:
第8页/共26页
等腰三角形的隶属函数I(A,B,C)应满足下条件: (1) 当A = B 或者 B = C时, I(A,B,C )=1; (2) 当A =180, B =60, C =0时, I(A,B,C )=0; (3) 0≤I(A,B,C )≤1. 因此,定义I(A,B,C ) =1–[(A–B)∧(B – C)]/60.
x
50 15
2
,
1,
0 x 50, x 50.
第16页/共26页
当 x0 = 8 时,即物价上涨率为 8 %,我们有: A1(8) = 0.3679, A2 (8) = 0.8521, A3(8) = 0.0529 A4(8) 0, A5 (8) 0。
此时,通货状态属于轻度通货膨胀。
模式识别(Pattern Recognition)是一门判断学科, 属于计算机应用领域,主要目的是让计算机仿照人的思 维方式对客观事物进行识别、判断和分类。
如:阅读一篇手写文字;医生诊断病人的病情;破案 时对指纹图像的鉴别;军事上对舰船目标的识别等等 ,都可归结为模式识别问题。
但是,在实际中,由于客观事物本身的模糊性,加上 人们对客观事物的反映过程也会产生模糊性,使得经典 的识别方法已不能适应客观实际的要求。因此,模式识 别与模糊数学关系很紧密。

模糊模式识别

模糊模式识别

第6讲模糊模式识别(第三章模糊模式识别)一、模式识别一般原理1.模式识别的概念模式识别是人工智能的一个重要方面,也是一门独立的学科。

模式:用数学描述的信息结构或观察信号。

模式识别就是把要辨别的对象,通过与已知模式进行比较,从而确定出它和哪一个模式相类同的过程。

2.模式识别系统人们识别事物时,首先要对事物进行观察,抓住特点,分析比较,才能加以判断和辨别,而机器进行模式识别也同样要有这些过程。

因此模式识别系统通常由以下四个部分构成:①传感器部分:这是获取信息的过程。

比如摄像头就象人的眼睛,把图像信息变为电信号,麦克风象人的耳朵,获取声音信号,又如霍尔元件可以感受磁场,压电陶瓷可以把力转换为电信号等等。

②预处理部分:这是对信息进行前端处理的过程。

它把传感器送来的信号滤除杂波并作规范化、数字化。

③特征提取部分:这是从信号中提取一些能够反映模式特征的数据的过程。

④识别判断部分:这是根据提取的特征,按照某种归类原则,对输入的模式进行判断的过程。

二、模糊模式识别模糊模式识别主要是指用模糊集合表示标准模式,进而进行识别的理论和方法。

主要涉及到三个问题:(1)用模糊集合表示标准模式;(2)度量模糊集合之间的相似性;(3)模糊模式识别的原则。

例3.1 邮政编码识别问题识别:0,1,2,……,9关键:1)如何刻化,0,1,……,9(如何选取特征?)(区分)2)如何度量特征之间的相似性? 1.模糊集合的贴近度贴近度是度量两个模糊集合接近(相似)程度的数量指标,公理化定义如下:定义3.1 设,,()A B C F X ∈,若映射[]:()()0,1N F X F X ⨯→ 满足条件:①(,)(,)N A B N B A =; ②(,)1,(,)0N A A N X φ==; ③若A B C ⊆⊆,则(,)(,)(,)N A C N A B N B C ≤∧。

则称(,)N A B 为模糊集合A 与B 的贴近度。

N 称为()F X 上的贴近度函数。

模糊模式识别法

模糊模式识别法

X
Y
~
(
x)
x
0,
μ
o ~
x
1
x
50 5
2
1
,
0 x 50 50 x 200
1,
Y ~
x
1
x
25 5
2
1
,
0 x 25 25 x 200
③ 年轻与年老的隶属函数曲线
年轻 1
年老
0.5
0
25
50 55
年龄 100
7.2.2 隶属函数的确定
隶属函数是模糊集合赖以存在的基石。正确地确定隶属函 数是利用模糊集合恰当地定量表示模糊概念的基础。
头发为n根者为秃头, 头发为n+1根者为秃头, 头发为n+2根者为秃头,
…… 头发为n+k根者为秃头。
其中,k是一个有限整数,显然k完全可以取得很大。
结论:头发很多者为秃头。
类似地:没有头发者不是秃头
2.模糊数学的诞生 模糊数学:有关描述和处理模糊性问题的理论和方法的学科。 模糊数学的基本概念:模糊性。
根据具体研究的需要而定。
2)子集
对于任意两个集合A、B,若A的每一个元素都是B的元素,
则称A是B的“子集”,记为
A B或;B若B中A存在不属于
A的元素,则称A是B的“真子集”,记为
A 。B或B A
3)幂集
对于一个集合A,由其所有子集作为元素构成的集合称
为A的“幂集”。
例:论域X={ 1, 2 },其幂集为
~A
的核为
x0

x0
的两边分别有点
x1

x2
,使得
A ~
(
x1

第二节 模糊模式识别(高等教学)

第二节  模糊模式识别(高等教学)

行业学习8ຫໍສະໝຸດ 例题3.3设论域R={1,2,3,4,5}, A,B ∈F(R),且
A=(0.2, 0.3, 0.6, 0.1, 0.9), B=(0.1, 0.2, 0.7, 0.2, 0) 求欧几里得贴近度
行业学习
9
黎曼贴近度
若U为实数域,被积函数为黎曼可积且广义积 分收敛,则
行业学习
10
例题3.4
行业学习
4
模糊集的贴近度
贴近度 对两个模糊集接近程度的一种度量
定义1 设A,B,C∈F(U),若映射
满足条件:
则称N(A,B)为模糊集A与B的贴近度。N称为F(U)上的贴 近度函数
行业学习
5
海明贴近度
若U={u1, u2,…, un}, 则 当U为实数域上的闭区间[a,b],则有
行业学习
标准模型库={正三角形E,直角三角形R,等腰三角形I,等腰直 角三角形I∩R,任意三角形T}。 某人在实验中观察到染色体的形状,测得起三个内角分别为 (94度,50度,36度),问此三角形属于哪一种三角形?
行业学习
31
择近原则(群体模糊模式识别问题)
设Ai,B ∈F(U)(i=1,2,…,n),若存在i0,是使
6
例题3.2
设模糊集 A=0.6/u1+0.8/u2+1/u3+0.8/u4+0.6/u5+0.2/u6 B=0.4/u1+0.6/u2+0.5/u3+1/u4+0.8/u5+0.3/u6 试应用海明贴近度计算N(A,B)
行业学习
7
欧几里得贴近度
若U={u1, u2,…, un}, 则 当U为实数域上的闭区间[a,b],则有

模式识别第八章 模糊模式识别PPT课件

模式识别第八章 模糊模式识别PPT课件

– 则xo∈Ai
– 若有了隶属函数μ (x),我们把隶属函数作为判别函数 使用即可。
– 此法的关键是求隶属函数
11
二、择近原则识别法
– 1、定义:两个模糊子集间的贴近度 – 设:A,B为E上的两个模糊集。则它的贴近度为:
(A•B)1[AB ( 1A⊙ B)]
2 ~ ~
~~
~~
式中 ,AB(A(x)B(x))A ,⊙B(A(x)B(x))
~~
~
~
R 2 为模糊关系。 ~
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
17
矩阵内,的 称 R具 元有 素传 . 递性
具有自反性、对称性、传递性的模糊关系称为
等价关系。
10
8.3模糊识别方法
-、隶属原则识别法
– 设: A1, A2,…. ,An是E中的n个模糊子集, x0为E中
的一个元素,若有隶属函数
μi(xo)
=max(μ1(xo), μ2(xo),….. μn(xo)),则xo∈ μi。
它满R足自反性、对称性,即:μij=1,μij= μji 此模
糊关~系为相似关系。
– ㈡把相似关系(相似矩阵)R变成等价关系方法为: ~
取 R的乘幂为 ~ 若在某R~一2,步 R~R~4k有 ,=R~R~82.k= ...R~...
则R就是模糊等价关系R2。 =R且R
~
~
~~
R4=R2R2,R8=R4R4

第九章模糊识别技术

第九章模糊识别技术

第九章模糊识别技术模式识别(Pattern Recognition)是本世纪六十年代初迅速发展起来的、与高技术的研究开发有着密切联系的一门新兴学科,是人工智能的重要组成部分。

从本质上讲,模式识别所讨论的的核心问题便是如何使机器模拟人脑的思维方法,来对客观事物进行有效地识别和分类,因此,模式识别又经常被称作模式分类(Pattern Classification)。

模式识别的过程大致如图9.1的框图所示,包括两个主要的阶段——学习过程和识别过程。

学习过程的主要目的是形成识别所需要的判决规则和标准模式,或者构造出分类器。

识别过程则是应用已得到的分类器或者识别准则对未知样本进行分类。

在学习过程和识别过程中,都首先需要将由“传感器”得到的表征样本的特性(往往表现为物理量和化学量)进行“数值化”后输入计算机,形成样本数据。

一般来说得到的样本数据的数据量大,它对应的特征空间的维数很高。

而一般的分类任务最后形成的类别数是比较少的,它对应的是一个低维的空间中的划分。

因此,模式识别可以理解成一个对高维空间不断变换,不断选取和保留重要的特征维,不断压缩维数,最后在合适的低维特征空间中的确定对该空间的划分过程。

而学习的目的就是要寻找出从高维数据空间到低维空间的映射关系(维数压缩方法)或映射规则,以及在对应的低维空间的划分形式。

识别的过程是用上述得到的知识来,确定待识的未知样本在已划分的特征空间中的位置。

学习过程是获得类模式原型、分类判决规则,设计分类器;识别过程,则主要是利用学习阶段训练好的分类器来对未知模式进行归类。

因此,在模式识别过程中,特征的选择、提取和分类规则的获取(分类器的构造)是关键。

图9.1 模式识别的过程设计模式识别系统,首先要用各种可能的手段对识别对象的性质作各种测量,并将这些测量值作为分类用的特征。

在实际应用中,能得到的性质测量值的数目可能很多,如果将这数目庞大的测量值不作分析,全部直接供作分类特征,这不仅耗费机时,而且分类效果也不一定好,往往出现所谓的“特征维数灾难”现象。

哈工大模式识别课程11.模糊模式识别

哈工大模式识别课程11.模糊模式识别
– 模糊集表示更接近于我们日常的理解。
16
• 模糊集合
– 模糊集通常可以用来表示某种人为的概念(比如上 面提到的“开水”),即用数学形式来表达人们的 语言变量,因此隶属度函数需要人为定义。 – 一些常见的单变量隶属度函数的形式包括斜台阶型 、三角型、梯型、高斯函数型等。
MATLAB Fuzzy Logic Toolbox: dsigmf gauss2mf gaussmf gbellmf pimf psigmf sigmf smf trapmf trimf zmf
25
几个概念: A ∈ F ( X ) 支集 sup p( A) = {x | A( x) > 0} 高度 hgt ( A) = sup A( x)
x∈X
1
核 ker( A) = {x | A( x) = 1} 正规模糊集:ker(A) ≠ φ 例如:
A = 0.3 / 1 + 0.7 / 2 + 1 / 3 + 1 / 4 + 0.3 / 5
a
E
f
b
e
d
c
19
S-型隶属度函数 (Zadeh,1975) 型隶属度函数
b=(a+c)/2;
20
∏-型隶属度函数 型隶属度函数
c=(a+a’)/2, b=(a+c)/2, b’=(c+a’)/2
21
2. 模糊集的集运算
它们的并A ∪ B、交A ∩ B分别定义为: 设A, B ∈ F ( X ), ( A ∪ B )( x) = max( A( x), B ( x)) = A( x) ∨ B ( x)
17
【模糊集基础知识 】
模糊集的例子。 例 论域E={1,2,3,4,5},用模糊集表示“大”和“ 小”。 解:设A、B分别表示“大”与“小”的模糊集, µA ,µB分别为相应的隶属函数。 A={0, 0, 0.1, 0.6, 1} B={1, 0.5, 0.01, 0,0} 其中:µA(1)=0,µA(2)=0 ,µA(3)=0.1 ,µA(4)=0.6 ,µA(5)=1 µB(1)=1,µB(2)=0.5 ,µB(3)=0.01 ,µB(4)=0,µB(5)=0

三角形类型的模糊模式识别

三角形类型的模糊模式识别

三角形类型的模糊模式识别摘要:三角形类型的模糊模式识别问题,在生物细胞染色体形状的识别、癌细胞以及白血球分类等问题中有很大意义。

发现传统方法和参考论文所提出的新方法在某些三角形判断中的不足,故提出基于给定阈值5.0=λ的最大隶属度原则,提出关于三角形角度的指数型隶属度函数,并与其它两种方法进行对比,结果表明指数函数性质使所求得的隶属度差距较大、区别明显,便于识别,并且更贴近于人们的直观理解,能更好的实现三角形的分类。

关键词:三角形;最大隶属度原则;阀值原则;指数型隶属度函数1、基本概念a) 最大隶属度原则:当模式是模糊的,被识别对象时明确的,问题可以描述成:设~~2~1,...,,n A A A 是论域U 中的n 个模糊模式。

0U 是U 中一个元素。

若有},...,2,1{n i ∈,使:()()}{m ax 010~~u u j i A nj A μμ≤≤=则认为0U 相对隶属于模式~i A ,并称这种识别方法为最大隶属度原则。

b) 阀值原则:设~~2~1,...,,n A A A 是论域U 中的n 个模糊模式,规定一个阀值](1,0∈λ,U u ∈为一个待识别对象。

若()()()λ<},...,,m ax {~~2~1u A u A u A n ,则作为“拒绝识别”的判断;若()()()λ≥},...,,m ax {~~2~1u A u A u A n ,并且有k 个模式()()()u A u A u A ik i i ~~2~1,...,,大于或等于λ,则认为识别可行。

2、指数型隶属度函数的建立设三角形的三个内角分别为C B A ,,,并且约定0>≥≥C B A 。

取特征因子集()}0,180,,{>≥≥=++=C B A C B A C B A U ο。

根据三角形的特征,在U 中规定5个具体的三角形:等腰三角形~I ;直角三角形~R ;等边三角形~E ;等腰直角三角形~IR ;非典型三角形~O 。

第二章 模糊模式识别

第二章 模糊模式识别
−1
x1 : 核(拍照)面积; x2 :核周长; x4 : 细胞周长; x3 : 细胞面积;
核内平均光密度;
六个模糊集:
α 1a 2 A:核增大,A( x) = 1 + x , ~ 1
(a为正常核的面积) ;
−1
B ~
α2 B : 核染色体增深: ( x) = 1 + ; x5
R 维模糊矩阵 β 用贴近度公式求:N ( R , R ) β i
判断Rβ 属于哪一类(字)。
5
例2:癌细胞识别问题(钱敏平,陈传娟) 由医学知识,反映细胞特征有七个数据x1 , ……, x7

x = ( x1 , ……, x7 )
x 5 : 核内总光密度; x 6 : x7 : 核内平均透光率。
2.3模糊模式识别应用实例 模糊模式识别应用实例
本节提供的几个模糊模式识别应用实例, 供处理实际模式识别时参考。
例1:条码识别方法用于上海市燃气公司燃气用户帐单销帐处理、复 旦大学图书馆的检索工作取得满意效果。 现以阿拉伯数字的识别问题为例给予说明。
第一步:构造模式。将0,1,……,9分别用 m × n 维模糊矩阵表示 用 为10个模式。 如“5”,
RE(u)= 1− ρ
≥ β ≥ γ ≥θ
)
1 ∨ (| α − γ | ,β − θ |) | 180
1 [(α −90) + (β −90) + (γ −90) + (θ −90)] 2 90
1 ∧ (| α + β − 180 | ,β + γ − 180 |) | 180
(3)梯形T: T(u)= 1 − ρ3 (4)菱形RH: RH(u)=1− ρ4

模糊模式识别方法介绍课件

模糊模式识别方法介绍课件
应用领域
列举模糊模式识别方法在各个领域 的应用,如图像识别、语音识别等。
研究背景与意 义
研究背景
介绍模糊模式识别方法的研究历 史和发展背景,包括相关理论和 技术的发展。
研究意义
阐述模糊模式识别方法的重要性 和意义,包括解决实际问题、推 动相关领域发展等。
国内外研究现状及发展趋势
01
02
03
国内研究现状
Hale Waihona Puke 对未来研究方向的展望高维数据处理
自适应学习能力提升
针对高维数据的特点,研究更有效的降维 和特征提取方法,提高模糊模式识别算法 在高维数据上的性能。
加强模糊模式识别算法的自适应学习能力, 使其能够自动调整参数和模型结构以适应 不同场景和任务需求。
多模态数据融合
实时性与鲁棒性优化
研究多模态数据的融合方法,将不同来源、 不同形式的数据进行有效整合,提高模糊 模式识别算法在复杂场景下的性能。
在保证识别精度的前提下,优化算法的实 时性和鲁棒性,使其能够更好地应用于实 际场景中。
THANKS
感谢观看
模糊模式识别方法介绍课件
目 录
• 引言 • 模糊数学基础 • 模糊模式识别方法 • 应用实例分析 • 挑战与展望 • 总结与展望
contents
01
引言
模糊模式识别概述
定义
介绍模糊模式识别的基本概念和 定义,包括模糊集合、模糊关系等。
特点
总结模糊模式识别方法的主要特点, 如处理不确定性、鲁棒性等。
06
总结与展望
研究成果总结
模糊模式识别方法 成功应用于图像识别、语音识别、自然语言处理等领域, 提高了识别的精度和效率。
算法改进与创新 提出了多种新型的模糊模式识别算法,优化了现有算法的 性能,为实际问题的解决提供了有力支持。

模糊数学

模糊数学
则可以计算出
405 A y1 0.675 , 600 427.4 A y 2 0.712 , 600 399.8 A y 3 0.666 , 600 418.7 A y 4 0.698 . 600
于是这四个考生在“优秀”模糊集中的排
序为:
例: 在论域X=[0,100]分数上建立三个表示学习 成绩的模糊集A=“优”,B =“良”,C =“差”.当一 位同学的成绩为88分时,这个成绩是属于哪一类?
模糊模式识别
例1. 苹果的分级问题 设论域 X = {若干苹果}。苹果被摘下来后要分 级。一般按照苹果的大小、色泽、有无损伤等特征来
分级。于是可以将苹果分级的标准模型库规定为 =
{Ⅰ级,Ⅱ级,Ⅲ级,Ⅳ级},显然,模型Ⅰ级,Ⅱ级,
Ⅲ级,Ⅳ级是模糊的。当果农拿到一个苹果 x0 后,
到底应将它放到哪个等级的筐里,这就是一个元素
模糊模式识别
而 则因 1 = 0.7, Y(27) = 0.862 > 1, Y(30) = 0.5 < 1 ,
故认为 27 岁的人尚属于“青年人” ,而 30 岁人的
则不属于“青年人” 。 则因 Y(27) = 0.862 > 2, 若取阈值 2 = 0.5, 而 Y(30) = 0.5 = 2 , 故认为 27 岁和 30 岁的人都属于“青年人” 范畴。
等腰直角三角形的隶属函数 (I∩R)(A,B,C) = I(A,B,C)∧R (A,B,C); (I∩R) (x0)=0.766∧0.955=0.766.
任意三角形的隶属函数
T(A,B,C) = Ic∩Rc∩Ec= (I∪R∪E)c.
T(x0) =(0.766∨0.955∨0.677)c = (0.955)c = 0.045.

1.1 模式识别

1.1 模式识别

A2(8)≈0.8521, A3(8)≈0.0529,
A4(8)≈0.0001, A5(8)≈0.0001 所以 A2(8) =max{0.3679,0.8521,0.0529,0.0001,0.0001} 根据最大隶属原则,价格指数u0 = 8时,可视为轻度通货膨胀。
(3)阈值原则 设A ={A1, A2,…, Ap}为论域U上的已知模糊模式库,给定一个阈值 [0,1],u0U为一个待识别对象 (1) 如果
择近原则 设A ={A1, A2,…, Ap}为论域U上已知的模糊模式库,B
F ( U )为一个待识别对象,若
(B,Ai)=max{(B, A1), (B, A2),…, (B, Ap)}
则认为B应归属于模式Ai,其中为则F ( U ) 上的某种贴近度
函数。 注:(A,B)=1-d(A,B)
(3) 中度通货膨胀(A3);
(5) 恶性通货膨胀(A5);
(4) 重度通货膨胀(A4);
则A ={A1,A2, A3, A4, A5}为R+上的一个模糊模式库,设它们的隶属函数 分别为
1 , 0 u 5; 2 A1 u u 5 exp 3 , u 5;
Au Bu
p
du
1 p
p 1
5. 模糊Lambert距离
(1) 设U = {u1 , u2 , , un }, A , B F (U), 则称
~ 1 d 5 A, B n

i 1
n
Aui Bui Aui Bui
1. 模糊Chebyshev(切比雪夫)距离 设U = {u1 , u2 , , un }, A , B F (U), 则称

模糊数学方法

模糊数学方法
数为 R:U V 0,1 , ( x, y ) R ( x, y )
~
,则称隶属度
度。
R ( x, y )
~
~

( x, y)
关于模糊关系
U V
R
~
的相关程
注:由于模糊关系就是乘积空间
上的一个模糊
子集,因此,模糊关系同样具有模糊集的运算及性质。
模糊矩阵:设矩阵
n n
t ( R) R ( rij( k ) ) nn
k k 1 k 1
特别地,当R为模糊相似矩阵时,必存在一个最小的自然数
k (k
,使得 t ( R) R k ,对任意自然数 l k 都有 Rl R k n)
此时 t ( R ) 一定为模糊等价矩阵。
三. 模糊聚类分析方法
假设作n次模糊统计试验,可以算出
x0 A*的次数 x0 对A的隶属频率= n
事实上,当n不断增大时,隶属频率趋于稳定, 其稳定值称为 x 0 对A的隶属度,即
x0 A* 的次数 A ( x0 ) lim n n
2. 指派方法
指派方法是一种主观的方法,它主要是依据人们
的实践经验来确定某些模糊集隶属函数的方法。如果 模糊集定义在实数集R上,则称模糊集的隶属函数为 模糊分布。所谓的指派方法就是根据问题的性质和经
1 1 n 1 n 2 2 x j xij , s j [ ( xij x j ) ] ( j 1, 2,, m) n i 1 n i 1
(ii) 平移——极差变换.
' xij [0,1] ,则还需 如果经过平移—标准差变换后还有某些
对其进行平移—极差变换,即令
xij xij min {xij }

模糊模式识别

模糊模式识别

3.3 模糊集的贴近度
• 几种常见的贴近度类型:设A,B,C F (U),
(1) 海明(Haming)贴近度 若U={u1,u2,…,un},则
1 n N A, B 1 A(u i ) B(u i ) n i 1
当U为实数域上的闭区间[a,b]时,则
b 1 N A, B 1 A(u ) B(u ) du ba a
uU
例1 设论域R为实数域,F 集的隶属函数为 A( x) e 求N ( A, B).
可以计算得到A B A( x1 ) e 而
xR a a 2 1 1 2
2
x a1 1
2
,
B ( x) e
x a2 2
2
AC B C ((1 A( x)) (1 B( x))) 1 N ( A, B) e
a a 2 1 1 2
2
由格贴近度公式得
3.4 模糊模式识别的直接方法
最大隶属原则主要应用于个体的识别 • 最大隶属原则Ⅰ:设Ai F (U) (i=1,2,…,n) 为n个标 准模式,对u0 U是待识别对象,若存在i,使 Ai (u 0 ) maxA1 (u 0 ), A2 (u 0 ), , An (u 0 ) 则认为u0相对地隶属于Ai 。
20 x 50 50 x 80 其它
0 x 40 40 x 50 50 x 60 60 x 100
N A, B

100 0 100 0
A( x) B( x)dx A( x) B( x)dx
50

40 0
80 80 -x x-20 20 40 dx 50 40 dx 50 80 -x 60 x-20 100 dx dx dx dx 40 50 60 40 40

T-S模糊模型的辨识

T-S模糊模型的辨识

两类T-S 模糊模型的建模方法T-S 模糊模型的辨识有两种方法:通过运动方程建立T-S 模糊模型和通过输入输出 数据利用模糊C 均值聚类算法、最小二乘法、遗传算法等拟合算法辨识模型参数。

1. 通过运动方程建立T-S 模糊模型。

这种方法首先要对系统进行运动分析,然后得到运动状态的状态空间形式(非线性),再利用T-S 模糊模型分段近似,得到系统的T-S 模糊模型。

实例:一级倒立摆系统的模型建立[模糊控制系统的设计及稳定性分析P45]现在利用一般的线性化方法构造局部模型。

假设系统的真值模型为:()()x f x g x u =+ (1) 其中x 是系统的状态变量,u 是系统的输入,(),()f x g x 均是关于x 的非线性函数。

为了方便,记(,)()()F x u x f x g x u ==+ (2) 将(,)F x u 在工作点00(,)x u 用泰勒级数展开法可得:00000,000(,)()|()|()...x x x x u u u u F Fx F x u F x u x x u u x u ====∂∂==+-+-+∂∂ (3) 上式中00000(,)()()F x u f x g x u =+,记00|x x u u F A x ==∂=∂,00|x x u u FB u ==∂=∂,并忽略式(3)中的高次项得:0000((,))x Ax Bu F x u Ax Bu =++-- (4)1.1若00(,)(0,0)x u =且是系统的平衡点,则00(,)(0,0)0F x u F ==,此时可得平衡点00(,)(0,0)x u =处的一个局部线性化模型x Ax Bu =+ (5) 其中0000|x x u u F A x ====∂=∂,0000|x x u u FB u ====∂=∂。

1.2若00(,)x u 既不是平衡点,又不满足00(,)(0,0)x u =,我们采用下面的线性化方法。

第5章:模糊模式识别(高级运筹学-中南大学 徐选华)

第5章:模糊模式识别(高级运筹学-中南大学 徐选华)
x X x X
( A, A)
1 1 [ A A (1 A A)] [1 (1 0)] 1 2 2
2、( A ,B ) = ( B ,A ) ≥ 0 3、 若 A B C ,即 x∈X ,A(x)≤ B(x)≤ C(x) 则 ( A ,C ) ≤ ( B ,C )
例5-1 A1、A2 是实数域 R 上两个正态模糊子集,其隶属函数为:
( x a1 2 ) b1
A ( x) e
1
,xR

1 C
A ( x) e
2
x a2 2 ( ) b2
,xR
a1 a2 2 ) b1 b2
则:A1 A2 e
(
,
o
a1
( 小中取大,故为交点 C )
B C B CT
0.1 0.2 (0.5,0.6,0.5,0.7,0.8) 0 0.1 0.2 0 0.3 0.4 0.4 0.3 0.4
5
例5-5 企业“经济效益好”这个模糊概念,在论域 “利润” 与论域 “费用” 上分别表现为模糊 向量: A = ( 0.5,0.9,0.3,0.2 ),B = ( 0.1,0.8,0.4 ), 则: “经济效益好”这个模糊概念,在两个论域 “利润” 与 “费用” 之间的转换关系为:
10
例5-10 识别三角形:取论域 U = {( A,B,C )| A + B + C = ,A≥B≥C≥0 }, 其中A,B,C为三角。 定义以下几个模糊子集,并给出其隶属函数: ① 近似等腰三角形 I: I ( A, B, C ) 1 ② 近似直角三角形 R: R ( A, B , C ) 1 ③ 近似正三角形 E:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊模式识别方法
模糊模式识别法是一种机器学习技术,它旨在基于现有数据中已经存在的模式,检测新的数据模式的存在。

模糊模式识别的基本思想是,如果能够学习到某种类型的模式,那么新的数据模式也可以被学习到。

为了准确的识别新的模式,系统需要被训练,将繁琐的数据模式转换为可以识别的模式,以便能够识别新的数据模式。

模糊模式识别法是基于模糊逻辑理论的过程,它以解决实际问题为目的。

该方法被广泛应用于许多研究领域,如医疗诊断,模式识别,机器学习,机器人控制,生物计算等。

该方法的关键步骤是建立一个模糊规则基,规则基中的任何规则具有不同的事件和概率。

然后在规则基内应用模糊逻辑操作,将规则基转换为新的模式。

最后,收集模糊规则基和模糊规则,并将其用于预测新的模式。

模糊模式识别法能够自动地检测出数据库或现有数据中不存在的模式。

这一功能是非常有效的,可以应用于模式识别,智能检测,机器学习等方面。

此外,模糊模式识别法也可以用于自然语言处理,图像处理,帮助识别或定义对象以及分类和归类等。

它拥有丰富的因子,可以被自动学习,智能检测和预测,因而有利于提高人类活动的效率。

相关文档
最新文档