大学物理上,质点运动学1-2 描述运动的物理量

合集下载

大学物理质点力学第一章 质点运动学 PPT

大学物理质点力学第一章 质点运动学 PPT

方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=

dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ

第一讲-质点运动学

第一讲-质点运动学


练习题
4、质点沿半径为R的圆周运动,运动学方程为
2 4 rad /s = . 加速
3 2t 2
(SI) ,则t时刻质点的法向加速度大小为an= 16 R t2 ;角
5、某人骑自行车以速率V向正西方向行驶,遇到由北向南刮的 风(设风速大小也为V),则他感到的风是从 A)东北方向吹来 B)东南方向吹来 [C] C)西北方向吹来 D)西南方向吹来
t 2s时 an 2 230.4(m/s )
at 2 4.8(m/s2 )
t 0.661( s)
t 0.661s 2 4t 3
t 0.661s
3.15( rad )
练习题
2 10. 质点在 Oxy 平面内运动,其运动方程为 r 2ti (19 2t ) j
t 2s时 an 2 230.4(m/s )
2
t 0.661( s)
at 2 4.8(m/s2 )
t 0.661s 2 4t 3
t 0.661s
3.15( rad )
练习题
9 一质点在半径为 0.10 m 的圆周上运动,其角位置 为 2 4t 3 。(1)求在 t 2s 时质点的法向加速度和切向 加速度;(2)当切向加速度的大小恰等于总加速度大小的一 半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速 度的值相等? 解: (3) 当a a 时 (2) 总加速度
et
x
an r 2 at r v r 0 t 匀变速率圆周运动: 1 2 0 0t t 2
v r
知识点回顾
4、注意区分: | r | 与r 1 ) r 与r a 与at 2) a与at

大学物理学习知识重点(全)

大学物理学习知识重点(全)

y第一章 质点运动学主要内容一.描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r r称为位矢位矢r xi yj =+r v v ,大小 r r ==v 运动方程()r r t =r r运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆r rr r r△,r =r△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆r 、r ∆、s ∆的含义(∆≠∆≠∆rr r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度 x y r x y i j i j t t tu u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt∆→∆==∆r r r(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ϖϖϖϖϖϖ+=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==ϖϖ ds dr dt dt=r 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆rr 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆r r r r △ a r方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x ϖϖϖϖρϖ2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x ϖ二.抛体运动运动方程矢量式为 2012r v t gt =+r rr分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

大学物理第四版

大学物理第四版

韩晓红信息学院北楼A203教务处网络教学——用户名:1234密码:1234课程搜索:大学物理II课程搜索大学物理11第一章质点运动学3/31教学基本要求位置矢量位移加速度等描述质点运动及运动一掌握位置矢量、位移、加速度等描述质点运动及运动变化的物理量. 理解这些物理量的矢量性、瞬时性和相对性.二理解运动方程的物理意义及作用. 掌握运用运动方程确定质点的位置、位移、速度和加速度的方法,以及已知质点运动的加速度和初始条件求速度、运动方程的方法.三能计算质点在平面内运动时的速度和加速度,以及质点作圆周运动时的角速度、角加速度、切向加速度和法向加速度.四理解伽利略速度变换式, 并会用它求简单的质点相对运动问题.运动的绝对性和相对性一参考系、坐标系、物理模型1、运动的绝对性和相对性①运动是绝对的:任何物体任何时刻都在不停地运动着②运动又是相对的:运动的描述是相对其他物体而言的2、参考系为描述物体的运动而选择的标准物叫做参考系.选取的参考系不同对物体运动情况的描述不同这就选取的参考系不同,对物体运动情况的描述不同,这就是运动描述的相对性.4、物理模型——质点质点没有大小和形状,只具有全部质量的一点。

可将物体简化为质点的两种情况可以将物体简化为质点的两种情况:物体不变形,不作转动(此时物体上各点的速度及加速度都相同,物体上任一点可以代表所有点的运动)物体本身线度和它活动范围相比小得很多(此时物体的变形及转动显得并不重要)。

描述物体运动的基础:选择合适的参考系确定物体的运动性质建立恰当的坐标系定量描述物体的运动提出准确的物理模型突出问题中最基本的运动规律位移的物理意义注意简称速度r r d vv v=Δ=x v v ΔΔli li t t t d lim 0Δ→Δv j ty i t t t vΔ+Δ=→Δ→Δ00lim lim v vsr d d =当时,0→Δt d s v v 当质点做曲线运动时 质点在某一点的速度方向就td e t=v ,质点在某点的速度方向就加速度a v位矢rv位移r vΔ速度v v注矢量性:四个量都是矢量,有大小和方向意加减运算遵循平行四边形法则avrv v v某一时刻的瞬时量瞬时性:rvΔ不同时刻不同过程量相对性:不同参照系中,同一质点运动描述不同不同坐标系中,具体表达形式不同质点运动学两类基本问题一由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;二已知质点的加速度以及初始速度和初始位置, 可求质点速度及其运动方程.v v 求导求导v )(t a )(t r 积分积分()t v 运动状态运动状态变化2at +=υυ02运动学方程BlαAvA Blαv21υυ+12x x −=υ2υ=12t t −。

大学物理-质点运动学

大学物理-质点运动学
空间曲线上的任意点都存在密切面,而且 是唯一的。
空间曲线上的任意点无穷小邻域内的一段 弧长,可以看作是位于密切面内的平面曲线。
曲线在密切面内的弯曲程度,称为曲线的 曲率,用表示。
描述点运动的弧坐标法
密切面与自然轴系
自然轴系
B(副法线) N(主法线)
自然轴系P-TNB P-空间曲线上的动点;
描述点运动的直角坐标法
例题3
几点讨论
2、关于P点运动的性质:何时 作加速度运动?何时作减速度 运动?
这一问题请同学们自己研究。
第1章 质点运动学
描述点运动的弧坐标法
描述点运动的弧坐标法

弧坐标要素与运动方程 密切面与自然轴系 速度 加速度
描述点运动的弧坐标法
弧坐标要素与运动方程
x
rA
O
r
B
rB
y
速度的方向为轨道上质点所在处的切线方向。 速度的矢量式:
v v x i v y j vz k
dx dy dz vx , vy , vz dt dt dt
速度的三个坐标分量:
速度的大小:
2 2 2 v v vx v y vz
( 2) 令
b x2 x1 为影长
db l dx2 v dt h dt
代入
l b x2 h

dx 2 hv 0 dt h l

lv 0 v hl
描述点运动的直角坐标法
椭圆规机构
例 题3
=常数, ω=
OA AB AC l , BP d
求:P点的运动方程、速度、加速度。

速率
1
在t时间内,质点所经过路程 s 对时间的变化率

大学物理知识点汇总

大学物理知识点汇总

大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。

3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。

二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。

2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。

3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。

三、动量1、动量的定义:物体的质量和速度的乘积。

2、动量的计算公式:p = mv。

3、动量守恒定律:在不受外力作用的系统中,动量守恒。

四、能量1、动能:物体由于运动而具有的能量。

表达式:1/2mv²。

2、重力势能:物体由于被举高而具有的能量。

表达式:mgh。

3、动能定理:合外力对物体做的功等于物体动能的改变量。

表达式:W = 1/2mv² - 1/2mv0²。

4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。

表达式:mgh + 1/2mv ² = EK0 + EKt。

五、刚体与流体1、刚体的定义:不发生形变的物体。

2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。

大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。

2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。

3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。

4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。

5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。

大学物理知识点汇总一

大学物理知识点汇总一
位移反映了质点位置随时间变化
的大小和方向
路程是质点经过实际路径的长度。
z
P ΔS
r
r(t)
Δ
P1
r(t t) y
o
讨论
x
(1) 位移是矢量,路程是标量 s r
直线(单向)运动 s r
曲线运动 t 0 ds dr
3. 速度——描述质点位置随时间的变化快慢(大小与方向)
✓ 瞬时速度(简称速度):
x
第二章 质点力学的运动定律
本章内容
——动力学
§2.1 质点力学的基本定律 力的瞬时作用效果
§2.2 动量定理和动量守恒定律 §2.3 功 动能定理
力的持续作用效果
§2.4 角动量 角动量守恒定律 §2.5 刚体定轴转动
一 动量、冲量
动量 p mv 状态量
F ma m dv dmv d p dt dt dt
x, y 消去 t 后,得到 轨道方程
y
b a2
x2
1、曲线运动
在一般曲线运动中,质点速度的大小和方向都在改 变,即存在加速度。采用自然坐标系,可以更好地理解 加速度的物理意义。
自然坐标系:即在轨道上任一点建立正交坐标系
B
相互垂直的单位矢量 et en et 切向单位矢量 指向物体运动方向 en 法向单位矢量 指向轨道的凹侧
特点: 各质元在转动平面内作半径不同的圆周运动;
且角位移、角速度、角加速度均相同。
一、刚体定轴转动的运动学描述
角位置: (t) rad
角速度: d
dt
角加速度:
d
dt
d2
dt2
vi ri
mi
质元
x
转动平面
固定轴

大学物理基本知识-大学物理入门

大学物理基本知识-大学物理入门

第一章力学第1章质点运动学1.1 本章主要内容1.1.1 描写质点运动的基本物理量(1) 位置矢量(矢径):是描写质点任意时刻在空间位置的物理量。

如图所示,质点在A点的位置矢量。

(2) 位移:是描述质点在Δt=t2-t1时间内质点位置变化和方向的物理量。

(3) 速度:是描述质点位置变化的快慢和运动方向的物理量。

瞬时速度直角坐标系中(4) 加速度:是描述质点运动速度变化的快慢和方向的物理量。

瞬时加速度直角坐标系中1.1.2 种典型运动的运动公式(1) 匀速直线运动:(2) 匀变速直线运动:(3) 匀速率圆周运动:(4) 抛体运动:当时:(5) 圆周运动:,, ,(6) 角量与线量间的关系:,1.1.3 描述质点运动的三种方法(1) 矢量描述法:质点作空间曲线运动位置矢量随时间变化,是质点的矢量运动方程。

是质点运动的矢量表示法。

(2) 坐标描述法:支点的运动方程可以在直角坐标系中写成分量式(3) 图线描述法:质点在某一坐标方向上的运动可以用坐标随时间的曲线(x-t 曲线)、速度随时间变化的曲线(v x-t曲线)和加速度随时间变化的曲线(a x-t)来表示。

1.1.4 学习指导(1) 矢径、速度、加速度反映的是在某一时刻或某一位置上运动状态及其变化情况,具有瞬时性。

因此,质点的矢径或速度、加速度,都应指明是哪一时刻或哪一位置的矢径、速度、加速度。

(2) 矢径、速度、加速度都是对某一确定的参照系而言的,在不同的参照系中对同一质点的运动描述是不同的,上述各量的大小和方向都可能不同,这就是它们具有相对性。

(3) 矢径、位移、速度、加速度都是矢量在描述质点运动时不仅要指明这些量的大小,还要说明它们的方向。

(4) 在曲线运动中质点在曲线上任一点的加速度是该点法向加速度和切向加速度的矢量和。

其中,,总加速度大小,第2章牛顿运动定律2.1 本章主要内容2.1.1 牛顿运动定律的内容(1) 牛顿第一定律:当物体不受外力作用或所受的和合外力为零时,物体将保持静止或匀速直线运动状态。

大学物理1-2求解运动学问题举例

大学物理1-2求解运动学问题举例

0dy 0v0dt
y
t
dy vy v0 dt
y v0t (1)
0
x


轨迹方程(1)(2)式消去t:
by x
2
2v0
1-2求解运动学问题举例
第一章 质点运动学
例5
t 0 时, v v0 ,r r0 dr dv 解 a v dt dt d v ad t dr vdt
v x
1-2求解运动学问题举例
第一章 质点运动学
第二类问题——积分问题 例4 已知一个气球的运动速度为 b、v0 为常数,y是从地面算起的高度。
v x by v y v0
y
求:(1)气球的运动方程; (2)气球的轨迹方程.
解: 设t=0时,气球位于坐标原点(地面)
vy v0
x t 1 dx 2 vx by bv0t , dx bv0tdt , x bv0t (2) 0 0 2 dt
x/m
-2 t=2 0 2 t=0 7 t=5
t 0, x1 2m, 解: x t 4t 2(m) t 5s, x2 7m 位移 x x2 x1 5 m
t = 5 s时, v = 6 m·-1 s
1-2求解运动学问题举例
第一章 质点运动学
例3 如图所示,A、B 两物体由一长为 l 的刚性 细杆相连,A、B 两物体可在光滑轨道上滑行.如物体 A以恒定的速率 v 向左滑行,当 60 时,物体B的 速率为多少? y 解 建立坐标系如图, OAB为一直角三角形,刚性 细杆的长度 l 为一常量 B
vt 2s 2i 4 j (m s )
求: (4) t=1s~2s时间内的平均加速度;t=1s时刻的加速度.

哈里德大学物理学第一章

哈里德大学物理学第一章
B
vB
运动到B, 速度改变为:
v v B v A 用 v t 可粗略描述
质点速度改变的快慢和方 向, 称为平均加速度 。
Δv 表示为: a Δt
Δv 用平均加速度 a Δt
只能粗略地描述质点速度改变的快慢和方向, 瞬时加速度 —— 当△t 趋于 0 时,求得平均加速度的
2 x 2 y
2
t 2 s v 2 2 5 4.47 m s -1
解一错误, 解二正确!
判 断 正 误 并 说 明 理 由
§1-4 加速度矢量 描述质点速度大小、方向变化的快慢 质点在A ,B 两点的速度分别
是 v A ,vB ,
在△t 时间内从A
vA
vA
A
v
r (t ) v , a
第二类:已知加速度(或速度)及初始条件,求
质点任一时刻的速度和运动方程(积分法)
a (t ) , (t 0时 r0 , v0 ) v (t ) , r (t )
r (t )
微分 积分
v(t )
微分 积分
a (t )
一、直线运动
t 时间内位置变化的净效果:
A
rA
r
B
rB
AB rB rA r
位移 矢量
末 位 矢 初 位 矢 位矢 增量
O
直角坐标表示(以二维情况为例):
rA x A i y A j rB x B i y B j r ( xB x A ) i ( yB y A ) j x i y j
dr ds dr v dt dt dt

大学物理知识点总结

大学物理知识点总结

大学物理知识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANBr ∆A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s )2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

大学物理第一章质点运动学习题解详细完整

大学物理第一章质点运动学习题解详细完整

第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。

大学物理学(第二版) 第01章 运动学

大学物理学(第二版) 第01章  运动学

P2 (x2 , y2 , z2 )
注意 r r 位矢长度的变化
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s
p1
'
s r
p2
刻质点的位置,是个状态量. (2)位移与路程
r(t1) r(t2)
(2)选取不同的参考系或在同一参考系上建立不同的坐标系时,
它的方向和数值一般是不同的,故具有相对性.
(3)在质点运动过程中位矢是随时间而改变的,故还具有瞬时性.
2.运动方程
运动方程:质点在运动时,其位置矢量的大小和方向均随时间
发生变化,对于任一时刻t,都有一个完全确定的位置矢量与之
对应,也就是说,位置矢量是时间t的函数,即 r r(t)
2.路程 质点所经过的实际运动轨迹的长度为质点所经历的路
程,记作△S .
位移的物理意义
A)确切反映物体在空间中位置的 变化,与路径无关,只决定于质
y P1 rs P2
点的始末位置.
B)反映了运动的矢量性和叠加性.
r
xi
yj
zk
r x2 y2 z2
z
r(t1)
r
r(t2 )
O
x P1(x1, y1, z1)
P1P2 两点间的路程s是不唯一的,可 O
z 以是 s 或 s ,而位移 r 是唯一的.
x
一般情况下,位移与路程并不相等:只有当质点作单方向的
直线运动时,路程与位移的大小才是相等的;此外,在 t 0的
第1章 质点运动学
本章内容
1.1 质点 参考系 坐标系 时空 1.2 描述质点运动的物理量 1.3 加速度为恒矢量时的质点运动 1.4 曲线运动 1.5 运动描述的相对性 伽利略坐标变换

《大学物理》上册复习资料

《大学物理》上册复习资料

胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。

(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。

(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。

x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。

物体与环带间的滑动摩擦系数为μ。

经典《大学物理》概念.doc

经典《大学物理》概念.doc

B r ∆ A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度xyr x y i j ij ttt瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

(完整版)大学物理知识点(全)

(完整版)大学物理知识点(全)

Br ∆ A rB ryr ∆第一章 质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

第一章质点运动的描述_大学物理(工科)

第一章质点运动的描述_大学物理(工科)

Oxy
,则该物体以恒定加速度
a = g 作斜抛运动。设在 t = 0 时,该物体位于原点 O ,其
位矢 r0 = 0 。于是由曲线运动方程矢量式(1-9),有
r = v 0t +
1 2 gt 2 (1-10a)
上式的物理意义可以这样来理解:
从上图中可以看出,在时间 t 内,该物体从原点 O 到点 P 的位移 r 是
有一个具有恒定加速度( a =恒矢量)的质点,在平面上作曲线运动。此恒定加速度 a 在 Ox 轴 和
Oy
轴上的分量也是一定的。
v 0 x 和v 0 y
设 t = 0 时,质点的初始速度为 v 0 ,它在坐标轴上的分量为 可得
,于是,由加速度定义,
∫v
解得
v
0
dv = ∫ adt
0
t
v = v 0 + at
v 0t
1 2 gt 与2 这两个位移
矢量之和。显然,我们是把斜抛运动看成由沿着与 Ox 轴成 α 角的匀速直线运动和沿 加速直线运动这两个运动的叠加而成。 抛体运动的叠加性,可用 枪打靶的演示来验证。 扩充内容:枪打落靶的演示
Oy 轴的匀
枪打落靶演示
猎人举起枪直接瞄准树上吊挂的靶子,靶子在枪击同时自由落下,子弹总是可以击中靶子, 这是真的吗? 如果枪口水平瞄准靶子,子弹能击中靶子吗?请看! 如果枪口斜向下瞄准靶子,子弹能击中靶子吗?请看!
(1)求 t = 3s 时的速度。 (2)作出质点的运动轨迹图。 解 这是已知运动方程求运动状态的一类运动学问题,可以通过求导数的方法求出。 (1)由题意可得速度分量分别为
vx = dx dy 1 = 1m ⋅ s −1 , v y = = ( m ⋅ s − 2 )t dt dt 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
选择参照系,选择一个参照点,标记为O。 连接O 与此时被考察质点的位置P
O
3
1.2 描述运动的物理量
1 位置矢量和运动方程
第1章 质点运动学
1 ) 位置矢量 (Position Vector )
确定质点P某一时刻在 坐标系里的位置的物理量称 位置矢量, 简称位矢 r 。
在直角坐标系中:
y
y
(B)
dr dt
dx 2 dy 2 ( ) ( ) dt dt
15
(D)
1.2 描述运动的物理量
第1章 质点运动学
例: 设质点的运动方程为 r(t ) x(t )i y(t ) j , 1 2 x( t ) t 2, y( t ) t 2 其中 4 求:1) t 3 s 时的速度。2) 质点的轨迹方程。 解: 1)由题意可得速度分量分别为:
H
h
O
M
x1
x
故影子M点运动速度为:
H vM v0 H h
21
1.2 描述运动的物理量
第1章 质点运动学
伽利略(Galileo Galilei,1564—1642) 伽利略杰出的意大利物理学家和 天文学家,实验物理学的先驱者。 他提出著名的相对性原理、惯性 原理、抛体的运动定律、摆振动的等 时性等。 《关于两门新科学的对话和数学证明对话集》 一书,总结了他的科学思想以及在物理学和天文学 方面的研究成果。 伽利略所取得的巨大成就,开创了近代物理学 的新纪元。
8
1.2 描述运动的物理量
位移的物理意义
第1章 质点运动学
A) 确切反映物体在空间 位置的变化, 与路径无关, 只决定于质点的始末位置。 B)反映了运动的矢量性 和叠加性。
y
r (t1 )
O
P 1 r
s
P2
r r (t2 )
P 1 ( x1 , y1 , z1 ) P2 ( x2 , y2 , z2 )
dx dy 1 x 1m / s, y t dt dt 2 t 3 s 时速度为: v 1i 1.5 j (SI)
2 2 2 2 速度的大小为: υ = υx + υ y = 1 + 1.5 = 1.8m / s,
速度 v 与
x
1.5 56.3 轴之间的夹角: arctan 16 1
第1章 质点运动学
s s
r
P1 P2
'
大小不等于路程。 r
(C)什么情况 r s?
不改变方向的直线运动;
s
或当 t 0 时 r s 。 即, dr ds
(D)位移是矢量, 路程是标量。
10
1.2 描述运动的物理量
2) 速度(Velocity ) (1)平均速度
第1章 质点运动学
y
B
在t 时间内, 质点从点 A 运动到点 B, 其位移为
r (t t)
s r
A
r r (t t) r (t)
r (t)
o
t 时间内, 质点的平均速度: r r2 r1 平均速度是矢量, v t t2 t1 v 与 r 同方向。 s 平均速率: 是标量。 显然: v t 11
l h
2
l ( t ) l0 0 t
坐标表示为:
x( t ) ( l 0 0 t ) h
2

v'
x
18
运动学说到底是几何问题。
o
x
1.2 描述运动的物理量
第1章 质点运动学
例:湖中有一小船,岸上有人用绳跨过定滑轮拉船。已 知滑轮距水面高度为h,到原船位置的绳长为 l0 ,试求: 人以恒定速率v0 拉船时,任一时刻船运动的速度。 解: 选地面参照系,建立直角坐标系。 寻找几何关系: h 对几何关系式微分:
22
1.2 描述运动的物理量
四 加速度(Acceleration) 1) 平均加速度 单位时间内的速度增 量即平均加速度。
第1章 质点运动学
y
A
O
v1
B
v2
v a t
a
与 v 同方向。
2)(瞬时)加速度
v dv a lim t 0 t dt
v1
x
v
v2
23
r r (t t ) r (t )
x
经过时间间隔 t 后,质点位置发生变化, 由始 点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的位 移矢量 r 。 位移矢量也简称位移。
rB rA r
r rB rA
7
1.2 1.2 描述运动的物理量 描述运动的物理量
dv x d x ax 2 dt dt dv y d 2 y ay 2 dt dt 2 dv z d z az 2 dt dt
2
a a a a
2 x 2 y
2 z
24
1.2 描述运动的物理量 讨论
第1章 质点运动学 吗?
v v
v v(t t ) v(t ) v v(t t ) v(t )
x x0 v0t cos 1 2 y y0 v0t sin gt 2
6
1.2 描述运动的物理量
2 位移和速度
第1章 质点运动学
1) 位移(Displacement )
y
A
r
y
B
yB yA
A
r
B
rA
o
rB
x
o
rA
yB y A
rB
xA xB xB x A
加速度的方向:t0时速度增量的极限方向; 在曲线运动中,总是指向曲线的凹侧。
1.2 描述运动的物理量
第1章 质点运动学
在直角坐标系中,加速度的表示式为:
a = a x i + a y j + az k
加速度大小为:
2 dυ d r dυx dυ y dυz i+ j+ k a= = 2 = dt dt dt dt dt
x/m
6
17
1.2 描述运动的物理量
第1章 质点运动学
例:湖中有一小船,岸上有人用绳跨过定滑轮拉船。 已知:滑轮距水面高度为h,到原船位置的绳长为 l0 , 试求:人以恒定速率v0 拉船时,船的运动方程。 解: 选地面参照系,建立直角坐标系。 寻找几何关系: 依题意有:
h x l
2 2
2
v0
y
yB yA
S
A
r
B
rA
yB y A
rB
xA xB xB x A
x
移为: r ( xB x A )i ( yB y A ) j ( z B z A )k 2 2 2 位移的大小为: r x y z
路程(
s ):质点实际运动轨迹的长度。
cos2 +
第1章 质点运动学
y

r

P
P
o
=1
cos2
+
cos2
Байду номын сангаас
z

x
2) 运动方程
r = r (t )
z
y (t )
y
r (t )
z (t )
运动方程:质点位置坐标 随时间变化的函数关系。
它包含了质点运动的全部信息。
o
x(t )
5
x
1.2 描述运动的物理量
在直角坐标系中,运动方程为:
12
1.2 描述运动的物理量
在直角坐标中:
第1章 质点运动学
dy d r dx i j v dt d t dt
y
vy
v
vx
x
vx i v y j
若质点在三维空间中运动,其速度为:
o
dx dy dz v i j k dt dt dt
速度的大小为:
v x i v y j vz k
1.2 描述运动的物理量
第1章 质点运动学
2
x(t ) t 2
(2) 运动方程:
y(t ) t 2
由运动方程消去参数
1 2 y x x 3 (m) 4
轨迹图
t 4s
6
t 可得轨迹方程为:
y/m
t 4s
t0
2 4
1 4
t 2s 4
2
-6 -4 -2 0
t 2s
r xi yj zk z r x 2 y 2 z 2
注意
x
r r
2
位矢长度的变化
2 2
r x2 y2 z 2 x1 y1 z1
2 2
2
9
1.2 描述运动的物理量 讨论 位移与路程
(A)P1P2 两点间的路程 ' s s 是不唯一的, 可以是 或 而位移 r是唯一的。 (B) 一般情况, 位移
1.2 描述运动的物理量
第1章 质点运动学
1.2 描述运动的物理量
1
1.2 描述运动的物理量
第1章 质点运动学
描述运动的物理量
• 位置矢量 • 位移矢量 • 速度矢量 • 加速度矢量
r r
dr dt
d r 2 dt
2
2
1.2 描述运动的物理量
第1章 质点运动学
运动学的第一个问题就是描述质点的空间位置。
2
x l
2
相关文档
最新文档