数学建模方法之概率统计分析法

合集下载

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题的过程。

它就像是一座桥梁,将现实世界中的复杂问题与数学的抽象世界连接起来,让我们能够借助数学的强大工具找到解决问题的有效途径。

在我们的日常生活中,数学建模无处不在。

比如,当我们规划一次旅行,考虑路线、时间和费用的最优组合时;当企业要决定生产多少产品才能实现利润最大化时;当交通部门设计道路规划以减少拥堵时,这些背后都有着数学建模的身影。

那么,数学建模具体是怎么一回事呢?数学建模首先要对实际问题进行观察和分析,明确问题的关键所在,确定需要考虑的因素和变量。

然后,根据这些因素和变量,运用数学知识建立相应的数学模型。

这个模型可以是一个方程、一个函数、一个图表,或者是一组数学关系。

接下来,通过对模型进行求解和分析,得到理论上的结果。

最后,将这些结果与实际情况进行对比和验证,如果结果不符合实际,就需要对模型进行修正和改进,直到得到满意的结果。

数学建模的过程并不是一帆风顺的,往往需要不断地尝试和调整。

但正是这种挑战,让数学建模充满了魅力和乐趣。

接下来,让我们了解一下数学建模中常用的一些方法。

第一种常用方法是线性规划。

线性规划是研究在一组线性约束条件下,如何使一个线性目标函数达到最优的数学方法。

比如说,一个工厂要生产两种产品,每种产品需要不同的资源和时间,而工厂的资源和时间是有限的,那么如何安排生产才能使利润最大呢?这时候就可以用线性规划来解决。

第二种方法是微分方程模型。

微分方程可以用来描述一些随时间变化的过程,比如人口的增长、传染病的传播、物体的运动等。

通过建立微分方程,并求解方程,我们可以预测未来的发展趋势,从而为决策提供依据。

第三种是概率统计方法。

在很多情况下,我们面临的问题具有不确定性,比如市场需求的波动、天气的变化等。

概率统计方法可以帮助我们处理这些不确定性,通过收集和分析数据,估计概率分布,进行假设检验等,为决策提供风险评估和可靠性分析。

概率统计数学模型

概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。

概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。

一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。

在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。

而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。

二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。

三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。

2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。

3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。

4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。

5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。

6、验证模型:对建立的模型进行验证,确保其准确性和适用性。

7、应用模型:将建立的模型应用于实际问题的解决和预测中。

概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。

通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。

概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。

概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。

一、概率模型的应用概率模型在投资决策中的应用广泛。

因子模型

因子模型

因子模型为:
X 1 r11 F1 r12 F2 r1m Fm X r F r F r F p1 1 p2 2 pm m p
'
X 其中: X , X ,, X 为原指标 , ' F F1 , F2 , , Fm m p 称为 的公共因子或潜因子, ' 1 , 2 , , p 为 的特殊因子 可将上式写成矩阵表示形式: X AF
0.06437 0.17414 0.05393 -0.06481 -0.35020 0.01063 -0.03769 0.25530 0.20883 -0.00922 0.03517 -0.26668 -0.03334 -0.03132 -0.11394 0.10482
用于系统评估的方法:关键问题是如何科 学的客观地将一个多指标问题转化为单指 标问题
主成分分析法:就是设法将原来的具有一 定相关性的变量或者指标,重新组成一组 新的相互无关的少数几个综合变量或指标, 以此代替原来的变量或指标。简单的说就 是降维。 应用:综合评价(系统评估)
例:对我国上市公司的经济效益进行综合评判。
上市公司 qinghua beida 资金利税率 x1 产值利税率 x2 百元销售成 本利润x3 百元销售收 入利税x4 流动资金周 转次数x5 主营利润增 长率x6
Prin5 Prin6 0.30363 0.00430 0.55119 -0.18726 0.40041 -0.10461 0.63296 0.13851 -0.42964 -0.55401 0.14000 0.02221 -0.15189 0.01702 -0.92520 0.08394 0.16273 -0.30327 -0.17088 -0.10267 -0.02382 -0.06419 0.12718 0.45539 -0.16784 0.14422 0.09760 0.11375 -0.16618 0.04080 -0.38025 0.29589

数学建模中的概率统计模型1

数学建模中的概率统计模型1
x1 2,F1统计量和与χ y1 对应的概率p。 相关系数 R 回归系数 a , b 以及它们的置信区间 0 残差向量e=Y-Y 及它们的置信区间 X , Y 1 xn yn
残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。

如何在数学建模中运用概率统计知识

如何在数学建模中运用概率统计知识

如何在数学建模中运用概率统计知识在数学建模中,概率统计是一项非常重要的知识。

概率统计是数学中的一个分支,主要研究随机事件的概率问题。

概率统计是一门极其实用的学科,不仅能够用在科研领域,也能够应用在日常生活中。

随着计算机技术不断发展,概率统计的应用越来越广泛。

接下来我们将探讨如何在数学建模中运用概率统计知识。

一、概率基础知识在数学建模中运用概率统计知识,首先需要了解概率基础知识。

概率是一个事件发生的可能性大小,通常用一个介于0和1之间的数值来表示。

在实际应用中,我们需要根据具体情况来估计概率值。

在数学建模中,我们通常使用统计数据来估算概率值。

因此,对于收集和整理数据的能力至关重要。

二、统计分析概率统计的核心是统计分析。

统计分析是指通过采集、整理、展示数据,从中发现数据之间的关系和规律性,并以此来作出预测或者推断的过程。

数学建模往往需要进行统计分析,以确定数据之间的关系以及影响的因素,从而建立模型。

通过统计分析,我们可以找出数据之间的相关关系。

例如,如果我们想研究温度和降水量之间的相关性,那么我们需要收集一定的数据,然后通过统计学方法计算出它们之间的相关系数。

这样就可以通过建立模型来预测未来的降水量。

三、分布和抽样在实际应用中,我们通常会进行大量的数据采集和统计分析,但是由于数据量非常大,我们无法对所有数据进行统计分析。

因此,我们需要进行抽样,即从总体数据中随机选择一部分进行分析。

而抽样的合理性很大程度上取决于样本的分布情况。

因此,在进行抽样时,必须要了解分布的特点。

分布是指随机变量的取值情况概率分布,是对一系列可能的取值的概率的描述。

在数学建模中,我们通常通过对数据的分布进行分析来判断所采用的统计方法是否合理。

例如,在正态分布的情况下,我们可以用平均数来描述数据的中心位置,用标准差来描述数据的分布情况。

四、模型建立在进行数学建模时,我们需要通过分析数据的规律性来建立模型。

模型是指用公式或者图形等方法来描述或者预测实际问题的方法。

概率统计在数学建模中的应用探究

概率统计在数学建模中的应用探究

概率统计在数学建模中的应用探究作者:杨映霞来源:《课程教育研究》2017年第34期【摘要】概率统计课程作为一门实践性与理论性较强的数学学科,已经在各大高校作为一门公共课程而开设。

数学的知识表面看起来太复杂又太片面化,似乎在日常生活中并没有太大的存在感,除了些简单的加减问题。

其实不然,数学建模思想的出现,使得数学中的概率统计渐渐的接近日常生活问题,带来了很多的便利。

本文就概率论在数学建模中的应用问题进行了探究。

【关键词】概率统计数学建模应用探究【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2017)34-0138-01前言随着信息时代的不断发展,相关理论知识也越来越被重视,并且渴望被广泛应用,其中数学方面的变化最大,例如数学中的分支概率统计课程的学习越来越被各高校重视,并且在教学的过程中,还融入了数学建模的基本思想,而概率统计这门学科主要包括利用期望把随机问题转化为确定性问题,考虑平均意义下的最优问题;生灭过程的应用;多元统计分析:(1)回归分析;(2)判别分析;(3)聚类分析;随机模拟,而建模是针对某一事件或问题进行的探究,两者的结合让学生充分的体会到了概率统计的实用性,让学生运用学过的概率统计知识去解决,从而激发学生学习的主动性和积极性,提高他们的运用能力。

目前在概率论与数理统计课程中融入数学建模的思想已经引起了越来越多的相关教学工作者的重视。

一、概率统计与数学建模相结合的教学现状随着数学建模思想的发展,越来越多的高校对于概率统计与数学建模思想的结合教学模式的重视度加大。

但是,尽管只是学校加大了力度还是不够的。

毕竟最后的应用需要有才能的进行探究与总结,最终才能让模型得以扩张与应用。

概率统计的课程在我们学校是第二学期开展的,当时,学生们已经学过了高等数学、线性代数等课程。

但是不同的学生来自于不同的学校,对数学的学习能力以及基础不同,这对两者结合的教学模式带来了难度。

一是很多同学根本没有把数学知识的学习放在心上,他们认为在现实的生活中数学的应用涉及的范围很小,几乎接触不到概率统计、线性等知识的应用;二是即使有些同学可以将概率统计的知识学的很好,订单式一旦与实际问题相结合,往往就觉得失去了头绪,不知从哪里开始做起。

数学建模案例分析4足球门的危险区域--概率统计方法建模

数学建模案例分析4足球门的危险区域--概率统计方法建模

§4 足球门的危险区域一、问题提出在足球比赛中,球员在对方球门前不同的位置起脚射门对对方球门的威胁是不一样的。

在球门的正前方的威胁要大于在球门两侧射门;近距离的射门对球门的威胁要大于远射。

已知标准球场长为104米,宽为69米;球门高为2.44米,宽为7.32米。

实际上,球员之间的基本素质可能有一定差异,但对于职业球员来讲一般可以认为这种差别不大。

另外,根据统计资料显示,射门时球的速度一般在10米/秒左右。

下面要建模研究下列问题:(1)针对球员在不同位置射门对球门的威胁度进行分析,得出危险区域;(2)在有一名守门员防守的情况下,对球员射门的威胁度和危险区域作进一步研究。

二、问题分析根据这个问题,要确定球门的危险区域,也就是要确定球员射门最容易进球的区域。

球员无论从哪个地方射门,都有进与不进两种可能,这本身就是一个随机事件,无非是哪些地方进球的可能性最大,即是最危险的区域。

影响球员射门命中率的因素很多,其中最重要的两点是球员的基本素质(技术水平)和射门时的位置。

对每一个球员来说,基本素质在短时间内是不可能改变的,因此,我们主要是在确定条件下,对射门位置进行分析研究。

也就是说,我们主要是针对同素质的球员在球场上任意一点射门时,研究其对球门的威胁程度。

某一球员在球门前某处向球门内某目标点射门时,该球员的素质和球员到目标点的距离决定了球到达目标点的概率,即命中球门的概率。

事实上,当上述两个因素确定时,球飞向球门所在平面上的落点将呈现一个固定的概率分布。

稍作分析容易断定,该分布应该是二维正态分布,这是我们解决问题的关键所在。

球员从球场上某点射门时,首先必定在球门平面上确定一个目标点,射门后球依据该概率分布落入球门所在平面。

将球门视为所在平面上的一个区域,在区域内对该分布进行积分,即可得到这次射门命中的概率。

然而,球员在选择射门的目标点时是任意的,而命中球门的概率对目标点的选择有很强的依赖性。

这样,我们遍历球门区域内的所有点,对命中概率作积分,将其定义为球场上某点对球门的威胁程度,根据威胁度的大小来确定球门的危险区域。

数学建模之概率统计-1

数学建模之概率统计-1

概率与统计
概率论中所研究的随机变量的分布都是 已知的。 统计学中所研究的随机变量的分布是未 知的或部分未知的,必须通过对所研究 的随机变量进行重复独立的观察和试验, 得到所需的观察值(数据),对这些数 据分析后才能对其分布做出种种判断, 即“从局部推断总体”。

统计学
给定一组数据,统计学可以摘要并且描述这
……
……
Matlab相关命令介绍
normfit 正态分布中的参数估计
[muhat,sigmahat,muci,sigmaci]=normfit(x,alpha) 对样本数据 x 进行参数估计,并计算置信度为 1-alpha 的置信区间 alpha 可以省略,缺省值为 0.05,即置信度为 95%
频率
随机试验进行次数

概率
基本知识
随机变量 数字特征(均值、方差、相关系数、特征函数…)
统计分析(假设检验、相关分析、回归分析…)
Matlab 中的随机函数
rand(m,n)
生成一个满足均匀分布的 m n 随机矩阵,矩阵的每
个元素都在 (0,1) 之间。
注:rand(n)=rand(n,n)
Matlab中的取整函数
fix(x) floor(x) ceil(x) round(x)
: 截尾取整,直接将小数部分舍去 : 不超过 x 的最大整数 : 不小于 x 的最小整数
: 四舍五入取整
取整函数举例
x1=fix(3.9);
x2=fix(-3.9); x3=floor(3.9); x4=floor(-3.2); x5=ceil(3.1); x6=ceil(-3.9); x7=round(3.9); x1=3 x2=-3 x3=3 x4=-4 x5=4 x6=-3 x7=4 x8=-3 x9=-4

数学建模中的概率统计

数学建模中的概率统计

Z '常用数据分析函数corrcoef(x)---求相关函数;cov(x)---协方差矩阵;cross(x,y)---向量的向量积;diff(x)---计算元素之间差;dot(x,y)---向量的点积;gradient(z,dx,dy)---近似梯度;histogram(x)---直方图和棒图;max(x), max(x,y)---最大分量;mean(x)---均值或列的平均值;min(x), min(x,y)---最小分量;prod(x)---列元素的积;rand(x)---均匀分布随机数;rands(x)---正态分布随机数;sort(x)---按升序排列;std(x)---列的标准偏差;sum(x)---各列的元素和;subspace(A,B)---两个子空间之间的夹角。

常用统计函数一、参数估计(1)[N,X]=hist(data,k) 将区间[min(data),max(data)]分为k个区间(缺省为10),返回数据data落在每一个区间的频度数N和每一个区间的中点X。

(2)h=normplot(x)显示数据矩阵x的正态概率图,如果数据来自于正态分布,则图形显示出直线性形态,而其他概率分布分布函数显示出曲线形态。

(3)h=weibplot(x) 显示数据矩阵x的weibull概率图,如果数据来自于weibull分布,则图形显示出直线性形态,而其他概率分布分布函数显示出曲线形态。

(4)[muhat,sigmahat,muci,sigamaci]=normfit(x) [muhat,sigmahat,muci,sigamaci]=normfit(x,alpha)对于正态分布,命令[muhat,sigmahat,muci,sigamaci]=normfit(x,alpha)在置信度(1-alpha)下估计数据x的参数,[muhat,sigmahat,muci,sigamaci]=normfit(x)在置信度0.95下估计数据x的参数,返回值muhat是x的均值,sigmahat是方差,muci是均值的置信区间,sigmaci是方差的置信区间。

概率统计在数学建模中的应用课件

概率统计在数学建模中的应用课件

人口发展方程
一阶偏微分方程
2019/11/27
太原理工大学
14
背景 • 一个人的出生和死亡是随机事件
一个国家或地区
平均生育率 平均死亡率
确定性模型
一个家族或村落
出生概率 死亡概率
随机性模型
对象
X(t) ~ 时刻 t 的人口, 随机变量. Pn(t) ~概率P(X(t)=n), n=0,1,2,…
e t
1
(7)
Dt的大小表示人口Zt在平均值 Et附近的波动
范围。(7)式说明这个范围不仅随着时间的延续和净
增长率r 的增加而变大,而且即使当r 不变时, 它也随着 和 的上升而增长,这就是说,当出生和死 亡频繁出现时,人口的波动范围变大。
E E(t)+(t)
进一步假设
4)bn与n成正比,记bn=n , ~出生概率; dn与n成正比,记dn=n,~死亡概率。
模型建立
由假设1~ 3,可知Z t t n可分解为三个互不相
容的事件之和:
Z t n 1且t 内出生一人; Z t n 1且t 内死亡一人; Zt n且t 内无人出生或死亡。
n0
E(t)-(t)
0
t
X(t)大致在 E(t)2(t) 范围内( (t) ~均方差)
2019/11/27
太原理工大学
25
实例1.3 传送系统的效率

传送带
景 挂钩
产品
工作台
工人将生产出的产品挂在经过他上方的空钩上运走,若工 作台数固定,挂钩数量越多,传送带运走的产品越多。
在生产进入稳态后,给出衡量传送带效 率的指标,研究提高传送带效率的途径
6
1.2 常见概率分布及其数字特征

数学建模的常用模型与求解方法知识点总结

数学建模的常用模型与求解方法知识点总结

数学建模的常用模型与求解方法知识点总结数学建模是运用数学方法和技巧来研究和解决现实问题的一门学科。

它将实际问题抽象化,建立数学模型,并通过数学推理和计算求解模型,从而得出对实际问题的理解和解决方案。

本文将总结数学建模中常用的模型类型和求解方法,并介绍每种方法的应用场景。

一、线性规划模型与求解方法线性规划是数学建模中最常用的模型之一,其基本形式为:$$\begin{align*}\max \quad & c^Tx \\s.t. \quad & Ax \leq b \\& x \geq 0\end{align*}$$其中,$x$为决策变量向量,$c$为目标函数系数向量,$A$为约束系数矩阵,$b$为约束条件向量。

常用的求解方法有单纯形法、对偶单纯形法和内点法等。

二、非线性规划模型与求解方法非线性规划是一类约束条件下的非线性优化问题,其目标函数或约束条件存在非线性函数。

常见的非线性规划模型包括凸规划、二次规划和整数规划等。

求解方法有梯度法、拟牛顿法和遗传算法等。

三、动态规划模型与求解方法动态规划是一种用于解决多阶段决策问题的数学方法。

它通过将问题分解为一系列子问题,并利用子问题的最优解构造原问题的最优解。

常见的动态规划模型包括最短路径问题、背包问题和任务分配等。

求解方法有递推法、记忆化搜索和剪枝算法等。

四、图论模型与求解方法图论是研究图及其应用的一门学科,广泛应用于网络优化、城市规划和交通调度等领域。

常见的图论模型包括最小生成树、最短路径和最大流等。

求解方法有贪心算法、深度优先搜索和广度优先搜索等。

五、随机模型与概率统计方法随机模型是描述不确定性问题的数学模型,常用于风险评估和决策分析。

概率统计方法用于根据样本数据对随机模型进行参数估计和假设检验。

常见的随机模型包括马尔可夫链、蒙特卡洛模拟和马尔科夫决策过程等。

求解方法有蒙特卡洛法、马尔科夫链蒙特卡洛法和最大似然估计等。

六、模拟模型与求解方法模拟模型是通过生成一系列随机抽样数据来模拟实际问题,常用于风险评估和系统优化。

数学建模分析方法过程

数学建模分析方法过程

03
总结词
04
利用微积分的知识来建模和解决 问题的方法。
详细描述
微积分法是数学建模中常用的方 法之一,它利用微积分的知识来 建模和解决各种实际问题。例如 ,在经济学中,可以使用微积分 法来建立描述商品需求和供给关 系的模型。
代数法
01 总结词
通过代数方程和不等式来描述 和解决问题的方法。
02
详细描述
数学建模在科学研究、工程设计、商 业分析、金融预测等领域中发挥着越 来越重要的作用,已经成为现代社会 不可或缺的技能之一。
数学建模的应用领域
01
02
03
04
自然科学
物理、化学、生物等领域的数 学建模被广泛应用于研究自然 现象和解决实际问题。
工程学
机械、电子、航空航天、土木 工程等领域中的数学建模被用 于优化设计、预测性能和解决 复杂问题。
数值分析法
总结词
通过数值计算和近似推理来解决问题的方法。
详细描述
数值分析法是数学建模中常用的方法之一,它通过数值计算和近似推理来解决问题。例如,在物理学中,可以使 用数值分析法来模拟物体运动轨迹或气体流动情况。
04
数学建模的常见问题与解决方法
04
数学建模的常见问题与解决方法
如何选择合适的数学模型
线性回归模型案例
总结词
线性回归模型是一种常用的数学建模方法,用于探索变量之间的 关系并预测未来趋势。
详细描述
线性回归模型通过最小化预测值与实际值之间的残差平方和,来 找到最佳拟合直线的参数。在案例分析中,我们可以通过收集数 据、建立模型、评估模型和预测未来趋势等步骤,来应用线性回 归模型解决实际问题。
选择合适的数学模型是 数学建模的关键步骤, 需要根据问题的性质和 目标进行选择。

数学建模基本要素

数学建模基本要素

问题定义不清
总结词
数据是数学建模的基础,数据不足或不准确会导致模型无法准确反映实际情况。
详细描述
在数学建模过程中,需要收集大量相关数据作为输入。如果数据量不足或数据质量不高,会导致模型精度下降,甚至得出错误的结论。解决这个问题的方法是尽可能多地收集高质量的数据,同时采用合适的数据处理方法对数据进行清洗和预处理,提高数据的质量和准确性。
详细描述
05
CHAPTER
数学建模的常见问题与解决方案
总结词
问题定义不清是数学建模中常见的问题,它可能导致模型建立偏离实际需求。
详细描述
在数学建模过程中,首先需要对问题进行清晰、准确的定义。如果问题定义模糊或过于宽泛,会导致建模过程中出现偏差,甚至得出错误的结论。解决这个问题的方法是仔细分析问题,明确问题的边界和约束条件,确保模型能够准确反映实际需求。
通过代数方程和不等式来描述和解决问题的方法。
详细描述
代数法是数学建模中最基本的方法之一,它通过建立代数方程或不等式来描述和解决各种实际问题。例如,在解决几何问题时,可以通过代数法找到未知数,进而求出问题的解。
代数法
利用微积分的基本概念和定理来建模的方法。
总结词
微积分法是数学建模中常用的一种方法,它利用微积分的基本概念和定理来描述和解决实际问题。例如,在经济学中,可以通过微积分法建立需求和供给函数,进而求出市场的均衡价格。
详细描述
变量选择需要考虑与问题相关的各种因素,并确定哪些因素对模型输出有显著影响。参数设定则需要根据已知数据和经验进行合理估计,以确保模型的有效性和准确性。
变量选择与参数设定
总结词
假设条件是数学建模中不可或缺的一部分,它们限制了模型的可能解的范围,有助于简化模型并提高预测精度。

高考数学一轮复习第十章算法初步统计统计案例专题提能概率统计中的数学建模与数据分析课件

高考数学一轮复习第十章算法初步统计统计案例专题提能概率统计中的数学建模与数据分析课件

(1)从游客中随机抽取3人,记这3人的总得分为随机变量X,求X的分布列 与数学期望; (2)(ⅰ)若从游客中随机抽取m(m∈N+)人,记这m人的总分恰为m分的概 率为Am,求数列{Am}的前10项和; (ⅱ)在对所有游客进行随机问卷调查的过程中,记已调查过的人的累计 得分恰为n分的概率为Bn,探讨Bn与Bn-1(n≥2)之间的关系,并求数列{Bn} 的通项公式.
破解此题的关键:一是认真审题,判断随机变量的所有可能取值,并 注意相互独立事件的概率与互斥事件的概率的区别,求出随机变量取 各个值时的概率,从而列出随机变量的分布列;二是将概率的参数表 达式与数列的递推式相结合,可得数列的通项公式,此种解法新颖独 特.
(二)函数与期望相交汇应用 [例2] (2021·重庆一中模拟)某蛋糕店制作并销售一款蛋糕,制作一个蛋 糕成本3元,且以8元的价格出售,若当天卖不完,剩下的无偿捐献给饲 料加工厂.根据以往100天的资料统计,得到如下需求量表.该蛋糕店一天 制作了这款蛋糕X(X∈N)个,以x(单位:个,100≤x≤150,x∈N)表示当 天的市场需求量,T(单位:元)表示当天出售这款蛋糕获得的利润.
(一)概率与数列交汇问题 [例 1] (2021·湖北武汉质量监测)武汉又称江城,是湖北省省会,它不仅 有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景 点,黄鹤楼与东湖便是其中的两个.为合理配置旅游资源,现对已参观黄 鹤楼景点的游客进行随机问卷调查,若不游玩东湖记 1 分,若继续游玩 东湖记 2 分,每位游客选择是否参观东湖的概率均为12,游客之间选择意 愿相互独立.
[解析] (1)X 的所有可能取值为 3,4,5,6.
P(X=3)=123=18,P(X=4)=C23123=38,P(X=5)=C23123=38,P(X=6)= 123=18. 所以 X 的分布列为

概率论与数理统计在数学建模中的应用【范本模板】

概率论与数理统计在数学建模中的应用【范本模板】

概率论与数理统计在数学建模中的应用——国 冰。

第一节 概率模型一、初等概率模型初等概率模型主要介绍了可靠性模型、传染病流行估计、常染色体遗传模型等三类问题:1、复合系统工作的可靠性问题的数学模型设某种机器的工作系统由N 个部件组成,各部件之间是串联的,即只要有一个部件失灵,整个系统就不能正常工作.为了提高系统的可靠性,在每个部件上都装有主要元件的备用件及自动投入装置(即当所使用元件损坏时,备用元件可自动替代之而开始工作)明显地,备用件越多,整个系统正常工作的可靠性就越大. 但是,备用件过多势必导至整个系统的成本、重量和体积相应增大,工作精度也会降低。

因此,配置的最优化问题便被提出来了:在某些限制性条件之下,如何确定各部件的备用件数量,使整个系统的工作可靠性最大?这是一个整体系统的可靠性问题。

我们假设第i 个部件上装有i x 个备用件(1,2,,)i N =,此时该部件正常工作的概率为()i p x ,那么整个系统正常工作的可靠度便可用1()ni i p p x ==∏ (9.1)来表示。

又设第i 个部件上的每个备用件的费用为i C ,重量为i W ,并要求总费用不超过C ,总重量不超过W ,则问题的数学模型便写成为1max ()ni i p p x ==∏ (9。

2)11..,1,2,Ni i i Ni i i i c x cs t w x cx N i N==⎧≤⎪⎪⎪≤⎨⎪⎪∈=⎪⎩∑∑问题的目标函数为非线性的,决策变量取整数,属于非线性整数规划问题.2、传染病流行估计的数学模型问题分析和模型假设本世纪初,瘟疫还经常在世界的某些地方流行.被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?科学家们建立了数学模型来描述传染病的蔓延过程,以便对这些问题做出回答。

这里不是从医学角度探讨每一种瘟疫的传染机理,而是利用概率论的知识讨论传染病的蔓延过程.假定人群中有病人或更确切地说是带菌者,也有健康人,即可能感染者,任何两人之间的接触是随机的,当健康人与病人接触时健康人是否被感染也是随机的。

数学建模概率统计方法

数学建模概率统计方法

则有
D
(x
E )2
f
(x)dx
9
2021年4月17日
3 .常用的概率分布及数字特征
(1)两点分布:
设随机变量 只取 0 或 1 两个值,它的分布列为 P( k) pk (1 p)1k , k 0,1,则称 服从于两点分 布,且 E p, D p(1 p) 。
(2)二项分布:
设随机变量 可能的取值为 0,1,2,, n ,且分布列为 P( k) Cnk p k (1 p)1k , k 0,1,2,, n
2. 常用的统计量
(3)表示分布形态的统计量
偏度: P1
1 S3
n i 1
Xi X
3。
当 P1 0 时称为右偏态;
当 P1 0 时,称为左偏态;
当 P1 0 时,则数据分布关于均值对称。
峰度: P2
1 S4
n i1
Xi X
4 ,是反映数据形态的另一个度量。
24
2021年4月17日
(4)均匀分布:

为连续随机变量,其分布密度为
f
(x)
b
1
a
,
x
[a, b]

0, x [a,b]
则称 服从[a,b] 上的均匀分布,且 E a b , D 1 (b a)2 。
2
12
11
2021年4月17日
3 .常用的概率分布及数字特征
(5)正态分布:
若随机变量 分布密度函数为
f , (x)
7
2021年4月17日
2. 随机变量的数学期望与方差
(1)数学期望
设 为连续型随机变量,其分布密度函数为
f (x) ,如果 x f (x)dx 收敛,则称 xf (x)dx

数学建模简明教程课件:概率模型

数学建模简明教程课件:概率模型
33
31
图 7-4
32
5.决策树的优缺点
•决策树方法的优点:可以生成可以理解的规则;计 算量相对来说不是很大;可以处理连续和种类字段;决策 树可以清晰地显示哪些字段比较重要.
•决策树方法的缺点:对连续性的字段比较难预测; 对有时间顺序的数据,需要很多预处理的工作;当类别太 多时,错误可能就会增加得比较快;一般算法分类的时候 ,只是根据一个字段来分类.
(a b)np(r) d r
0
n
计算
(7.2.2)
d G (a b)np(n)
n
(b c) p(r) d r (a b)np(n)
(a b) p(r) d r
dn
0
n
n
(b c)0 p(r) d r (a b)n p(r) d r
18
令 d G 0 ,得到 dn
n
0
p(r)d r p(r)d r
14
2.问题的分析及假设
众所周知,应该根据需求量确定购进量.需求量是随机 的,假定报童已经通过自己的经验或其它的渠道掌握了需 求量的随机规律,即在他的销售范围内每天报纸的需求量 为r份的概率是f(r)(r=0,1,2,…).有了f(r)和a,b,c,就 可以建立关于购进量的优化模型了.
假设每天的购进量为n份,因为需求量r是随机的,故r 可以小于n、等于n或大于n,致使报童每天的收入也是随 机的.所以作为优化模型的目标函数,不能是报童每天的收 入,而应该是他长期(几个月或一年)卖报的日平均收入.
26
(4)设定变量: A——试销成功,——试销失败 B——大量销售成功,——大量销售失败
27
3.建立模型 先来计算两个概率,注意到P(A|B)=0.84,P(B)=0.6 ,P(A|)=0.36,代入贝叶斯概率公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资金利税率 x1
5.41 7.21 8.38 6.31 8.97 3.74 3.63 14.47 8.18
产值利税率 x2
8.05 8.54 9.52 9.97 1.43 6.47 5.79 5.97 8.20
百元销售成 本利润x3
2.09 4.51 4.27 3.63 1.73 0.33 -1.09 7.62 3.41
百元销售收 入利税x4
2.43 5.26 5.07 4.59 1.18 0.39 -1.29 1.37 4.01
流动资金周 转次数x5
1.30 1.43 1.70 1.29 1.10 0.98 1.17 1.20 1.75
主营利润增 长率x6
7.51 10.44 10.49 7.21 5.22 5.24 4.71 10.56 12.13
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion
Cumulative
1 4.04767016 3.03734802 0.6746
0.6746
2 1.01032214 0.30248369 0.1684
0.8430
用于系统评估的方法:关键问题是如何科 学的客观地将一个多指标问题转化为单指 标问题
第一种方法:用第一主成分得分y=F1. 必须要求:所有系数均为正
第二种方法:将主成分F1,F2, Fm进行线性 组合,系数为方差贡献率
yi di yi zhu cheng fen pai xv 13:30 Saturday, July 17, 1999 35
主成分分析法:就是设法将原来的具有一 定相关性的变量或者指标,重新组成一组 新的相互无关的少数几个综合变量或指标, 以此代替原来的变量或指标。简单的说就 是降维。
应用:综合评价(系统评估)
例:对我国上市公司的经济效益进行综合评判。
上市公司 qinghua beida hualian xinya yanzhong shuiyun cengxin qingshan pudong
3 0.70783845 0.55300190 0.1180
0.9610
4 0.15483655 0.10037328 0.2959385 0.0091
0.9959
6 0.02486942
0.0041 1.0000
z1 0.472272X 1 0.448652X 2 0.361916X 3 0.47085X 4 0.00075X 5 0.467955X 6
数学建模方法
之概率统计分析法
主成分分析 马氏链模型 排队论模型
因子模型 统计回归模型 概率模型
第一篇 主成分分析
在实际经济工作中,我们经常碰到多变量 或多指标问题,例如,企业经济效益的评 价,地区经济发展情况比较。由于变量或 指标较多,且变量或指标之间存在一定的 相关性,人们自然希望用较少的变量或指 标代替原来较多的变量或指标,而且可尽 量保存原有信息,利用这种降维的思想产 生了主成分分析方法
z 0.044568X1 0.039443X 2 0.106057X 3 0.56514X 4 0.959439X 5 0.0.055029X 6
Obs
Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 1 -0.38118 -0.32367 -0.04450 0.30363 0.00430 0.06437 2 0.57795 -0.35416 0.49279 0.55119 -0.18726 0.17414 3 0.69219 -0.21588 0.40557 0.40041 -0.10461 0.05393 4 0.22635 -0.39419 0.27521 0.63296 0.13851 -0.06481 5 -0.82981 -0.40293 0.47330 -0.42964 -0.55401 -0.35020 6 -1.19410 -0.40627 -0.36848 0.14000 0.02221 0.01063 7 -1.63568 -0.26394 -0.67179 -0.15189 0.01702 -0.03769 8 0.95195 -0.46156 1.61851 -0.92520 0.08394 0.25530 9 0.46501 -0.14888 0.19070 0.16273 -0.30327 0.20883 10 -1.45693 -0.18670 -0.55658 -0.17088 -0.10267 -0.00922 11 -0.29401 3.71727 -0.02727 -0.02382 -0.06419 0.03517 12 0.08041 0.22542 1.71694 0.12718 0.45539 -0.26668 13 -2.11628 -0.16312 -0.90179 -0.16784 0.14422 -0.03334 14 -0.94513 -0.31477 -0.39513 0.09760 0.11375 -0.03132 15 6.74015 -0.06989 -1.12895 -0.16618 0.04080 -0.11394 16 -0.88090 -0.23673 -1.07853 -0.38025 0.29589 0.10482
name
Prin1 x1 x2 x3 x4 x5 x6
laigang -2.11628 2.17 5.70 -2.11 -2.57 1.34 3.21
cengxin -1.63568 3.63 5.79 -1.09 -1.29 1.17 4.71
主成分分析步骤: 1.将数据标准化,标准化后的数据矩阵仍记X阵。
23..求求矩R的阵全X的部相特关征系根数i及阵相应R的特(征R向ij )量p()。p
4.根据前k个主分量累计贡献率大小(∑),确定主 成分(因子)个数。
根据具体指标内容和指标变量系数大小解释主成 分含义。
用每个主成分的贡献率作权数,给出多指标综合 评价值。
相关文档
最新文档