重庆邮电大学信号与系统考点总结
信号与系统知识点总结
信号与系统知识点总结信号与系统是电子信息科学与技术专业中的一门重要课程,它研究的是信号的产生、传输、处理和系统的分析、设计与控制等内容。
信号与系统是电子信息工程及其相关专业的基础课程,对于学习与工程实践有着重要的意义。
下面是信号与系统知识点的总结。
1.信号的分类信号是信息的载体,它可以是连续的或离散的,可以是周期的或非周期的,可以是冲激的或非冲激的。
根据信号的不同属性,可以将其分为连续信号和离散信号、周期信号和非周期信号、冲激信号和非冲激信号等。
2.连续信号与离散信号连续信号是定义在连续时间域上的信号,用函数表示;离散信号是定义在离散时间域上的信号,用数列表示。
连续信号和离散信号可以通过采样和重构的方法相互转换。
3.周期信号与非周期信号周期信号是在一定时间内重复出现的信号,其周期可以是有限的也可以是无限的;非周期信号是不具有周期性的信号,其能量或功率可以是有限的也可以是无限的。
4.冲激信号与非冲激信号冲激信号是单位面积上的单位冲量信号,可以看作是宽度趋近于零、幅度趋近于无穷大的矩形信号;非冲激信号是在一定时间范围内的非零函数。
5.信号的基本操作信号的基本操作包括平移、反褶、放大、缩小等。
平移操作是将信号在时间轴上平移,反褶操作是将信号在时间轴上反转,放大操作是增大信号的幅度,缩小操作是减小信号的幅度。
6.系统的分类系统是对信号进行操作或变换的装置或过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。
线性系统具有叠加性和比例性质,时不变系统的输出与输入的延迟无关。
7.线性时不变系统的性质线性时不变系统具有线性叠加性、时域平移不变性、时域卷积性质和频域相应性质。
线性时不变系统可以通过其单位冲激响应来描述,单位冲激响应与系统的输入信号进行卷积运算可以得到系统的输出信号。
8.系统的稳定性系统的稳定性是指对于有界输入信号,系统的输出是否有界。
稳定系统的输出信号不会无限增长,而不稳定系统的输出信号可能会无限增长。
【重庆邮电大学】信号与系统常用公式
第一章
第二章 一. 单位冲积函数的性质
二. 信号的分解 1. 信号的阶跃分解 2. 单位冲激函数分解 三. N 阶系统的一般微分方程 四. 全响应的三种分解
五. 卷积及性质
1. 零状态响应 2. 交换律 3. 分配律 4. 结合律 5. 卷积的微分性质
6. 卷积的积分性质 7. 函数与冲激函数的卷积
双边: 单边:
二. Z 变换的性质
三. Z 变换与拉普拉斯变换的关系
四. 序列的傅立叶变换
五. 序列的傅立叶变换与 z 变换的关系 六、常用序列 z 变换对表
第七章 线性系统状态变量分析
一. 连续时间系统状态方程的一般形式
二. 连续时间系统输出方程的矩阵形式
三. 离散系统状态方程的一般形式 四. 离散系统输出方程的矩阵形式
三. 系统稳定的充要条件 四. Routh---Hurwitz(罗斯---霍维茨)判据
(用来判断系统是否稳定)
五。常用函数的拉普拉斯变换对表
接上表:
第五章 离散时间系统的时域分析
一. 离散系统响应的分解
二. 卷积和
三. 卷积和的性质ቤተ መጻሕፍቲ ባይዱ1. 交换律 2. 结合律 3. 分配律
第六章 离散时间系统的频域分析 一. 序列的 Z 变换
8. 函数延时后的卷积 六. 常用信号的卷积公式
第三章 一. 周期信号的傅立叶级数 1. 三角傅立叶级数
2. 指数傅立叶级数
二. 非周期信号的傅立叶变换 1. 傅立叶正变换
2. 傅立叶反变换 三. 常用信号的傅立叶变换
四. 傅立叶变换的性质
第四章 连续时间系统的复频域分析 一. 连续时间函数的拉普拉斯变换 双边: 单边: 二. 拉普拉斯变换性质
信号与系统期末考试重点知识点梳理
信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:(1)能量有限信号的平均功率必为0;(2)非0功率信号的能量无限;(3)存在信号既不是能量信号也不是功率信号。
2、自变量变换(1)时移变换x(t)→x(t-t0),x[n]→x[n-n0](2)时间反转变换x(t)→x(-t),x[n]→x[-n](3)尺度变换x(t)→x(kt)3、CT、DT复指数信号周期频率CT 所有的w对应唯一TDT 为有理数4、单位脉冲、单位冲激、单位阶跃(1)DT信号关系(2)CT信号t=0时无定义关系(3)筛选性质(a)CT信号(b)DT信号5、系统性质(1)记忆系统y[n]=y[n-1]+x[n]无记忆系统y(t)=2x(t)(2)可逆系统y(t)=2x(t)不可逆系统y(t)=x2(t)(3)因果系统y(t)=2x(t)非因果系统y(t)=x(-t)(4)稳定系统y[n]=x[n]+x[n-1]不稳定系统(5)线性系统(零输入必定零输出)齐次性ax(t)→ay(t)可加性x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统x(t-t o)→y(t-t0)第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;(2)反转平移;(3)相乘;(4)求和第三章CFS DFS1、CFS收敛条件:x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
DFS无收敛条件无吉伯斯现象2、三角函数表示第四、五章CTFT DTFT1、(1)CTFT(a)非周期收敛条件(充分非必要条件):x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
(b)周期(2)DTFT(a)非周期存在收敛条件不存在吉伯斯现象(b)周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性(2)DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移(a)CT信号(b)DT信号(2)时域微分(差分)和频域微分(求和)(a)CT信号(b)DT信号(3)时域扩展(内插)(a)CT信号(b)DT信号(4)共轭性质(a)CT信号(b)DT信号5、系统稳定系统才存在H(jw) y(t)=x(t)*h(t)Y(jw)=X(jw)H(jw)第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的。
信号与系统_复习知识总结
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统期末重点总结
信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
信号与系统知识点详细总结
信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结
信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
信号与系统复习知识总结
重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε与)(n δ的关系: ()()(1)n n n δεε=-- 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。
重庆邮电大学信号与系统课件第4章
f
(t )
etch tU
(t )
F (s)
(s
(s ) )2
2
23
通信与信息基础教学部
典型信号的拉普拉斯变换(1)
原函数
f (t)
像函数
F (s)
(t)
(t)
t (t)
Ae at (t)
sin0t (t)
cos0t (t)
24
通信与信息基础教学部
1
1 s 1 s2 A
sa
0 s2 02
1 2
s
1
s
1
1 2
s2
2s
2
s2
s
2
22
通信与信息基础教学部
典型信号的拉氏变换
同理
f
(t)
s ht
F (s)
s2
2
f
(t)
s h tU (t)
F (s)
s2
2
f
(t)
c h tU (t)
F (s)
s2
s
2
f (t) et s h tU (t) F (s)
(s )2 2
f (t) 1
2 j
j j
Fb
(
s)e
st
ds
拉普拉斯变换是将时域函数f(t)变为复频域函数Fb(s);或作相 反的变换。此处时域变量t是实数,复频域变量s是复数。
(拉普拉斯变换建立了时域和复频域(s 域)间的联系。)
6
通信与信息基础教学部
拉普拉斯变换的收敛域(1)
拉普拉斯变换的收敛域
02
18
通信与信息基础教学部
典型信号的拉氏变换
同理
信号与系统知识点总结
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统重点总结
信号与系统重点总结一、信号的分类与特征1.根据信号的时间性质划分,可分为连续时间信号和离散时间信号。
连续时间信号在时间上连续变化,离散时间信号在时间上以离散的形式存在。
2.根据信号的取值范围划分,可分为有限长信号和无限长信号。
有限长信号在一定时间段内有非零值,无限长信号在时间上无边界。
3.根据信号的周期性划分,可分为周期信号和非周期信号。
周期信号在一定时间内以固定的周期重复出现,非周期信号没有固定的周期性。
4.根据信号的能量和功率划分,可分为能量信号和功率信号。
能量信号能量有限且为有限幅,功率信号在无穷时间上的平均能量有限。
二、连续时间信号的表示与处理1.连续时间信号的表示可以使用函数形式:s(t),其中t为连续变量,s(t)为连续时间信号的幅值。
2.连续时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,频域分析主要研究信号的频率和振幅关系。
3.连续时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、微分和积分等操作,以实现信号的滤波、平滑和增强等功能。
三、离散时间信号的表示与处理1.离散时间信号的表示可以使用序列形式:x[n],其中n为整数变量,x[n]为离散时间信号的幅值。
2.离散时间信号的处理包括时域分析和频域分析。
时域分析主要研究信号的幅值和时间关系,在离散时间上进行运算,频域分析主要研究信号的频率和振幅关系,在离散频率上进行运算。
3.离散时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、差分和累加等操作,以实现信号的滤波、平滑和增强等功能。
四、连续时间系统的特性与分析1.连续时间系统可以通过输入信号和输出信号之间的关系来描述。
输入信号经系统处理后,输出信号的幅值和时间关系可以通过系统的传递函数来表示。
2.系统的特性包括因果性、稳定性、线性性和时不变性等。
因果性要求系统的输出只能依赖于过去的输入,稳定性要求系统的输出有界,线性性要求系统满足叠加原理,时不变性要求系统的特性不随时间变化。
(完整版)重庆邮电大学信号与系统杨晓非版课件
描述某离散系统的差分方程为:
已知:
, 试求其零状态响应。
3、经典法求全响应
n
n
n
其中,
Ci
k i
Cxi
k i
C
fi
k i
i 1
i 1
i 1
自由响应与零输入响应都是齐次解的形式,但它们的系数并不相同; Cxi仅由初始状态所决定; Cfi仅由输入激励f(t)所决定, Ci是由起始状态和激励共同决定。
2.5 卷积积分
本节解决几个问题: LTI连续系统的零状态响应表示为卷积积分 卷积的求取方法 卷积的存在性 卷积的性质 利用卷积求yf(t)
一、LTI连续系统的零状态响应表示为卷积积分 1、卷积积分的定义 (1)任意信号 f(t) 表示为冲激函数的积分
f(t)是其自身与δ(t)的卷积积分
a是r重特征根
P1cos(βk)+P2sin(βk)
所有的特征根均不等于e±jβ
或Pcos(βk−θ) 其中, Pejθ=P2+jP2
k[P1cos(βk)+P2sin(βk)] 当特征根均等于e±jβ
3、差分方程的完全解
LTI差分方程的完全解: y(k) yh (k) yp (k) 已知某离散时间系统的差分方程为:
注意:为方便起见,对单一零状态系统进行讨论时常常仅用y(t)代表yf(t)。
y( t ) a0 y当( tf)(t b)0f (t()t )时 h( t ) a0h( t ) b0 ( t )
2、h(t)的求解方法 (1) 利用阶跃响应与冲激响应的关系求解
此方法适用于简单电路,前提是阶跃响应g(t)简单易求。
ρk[Ccos(βk)+Dsin(βk) ] 或Aρkcos(βk-θ) Aejθ=C+jD
信号与系统 知识点总结
信号与系统知识点总结1. 信号的分类信号可以分为连续信号和离散信号。
连续信号是在连续的时间范围内变化的信号,如声音信号、光信号等。
离散信号则是在离散的时间点上取值的信号,如数字信号、样本信号等。
信号还可以根据其能量或功率的性质来分类,能量信号是能量有限,而功率信号是功率有限。
对于周期信号和非周期信号,周期信号必须满足在某个周期内的所有时间点上的信号值是相同的。
2. 时域分析时域分析是研究信号在时间域上的特性,主要包括信号的幅度、相位、频率等。
时域分析有利于了解信号在时间上的变化规律,对于非周期信号可通过傅里叶变换将其分解为频谱成分,而对于周期信号可以利用傅里叶级数展开。
此外,还有拉普拉斯变换、Z变换等方法用于时域分析。
3. 频域分析频域分析是研究信号的频率特性,对于周期信号可以采用傅里叶级数展开进行频域分析,而对于非周期信号可以采用傅里叶变换进行频域分析。
频域分析有助于了解信号的频率分布情况,诸如频率分量的大小、相位、频率响应等。
4. 系统特性系统特性包括线性性、时不变性、因果性等。
线性时不变系统是信号与系统理论中最基本的概念之一,它是指系统对输入信号的线性组合具有线性响应,且系统的特性参数不随时间变化。
除了这些基本的特性外,系统还有稳定性、因果性、可逆性等特性。
稳定系统是指对于有限输入产生有限输出,因果系统则是指系统的输出只能由当前和过去的输入决定等。
5. 离散系统离散系统是指在离散的时间点上产生输出的系统,如数字滤波器、数字控制系统等。
离散系统与连续系统相比,具有离散时间的性质,其特性和分析方法也有所不同。
在离散系统中,常见的方法有差分方程描述、Z变换分析等。
而离散系统的特性与分析方法与连续系统有很大的差异,需要通过一定的数学工具进行分析与设计。
以上就是信号与系统的主要知识点总结,通过对这些知识的掌握,可以更好地理解信号的特性与系统的特性,从而应用于实际工程问题的处理与解决。
希望以上内容能对你的学习有所帮助。
重邮移通信号与系统第二章
[
( t )d ]U ( t 6) (0.5t 2 2t 6)U ( t 6)
从而
y( t ) 0.5t 2U ( t ) ( 0.5t 2 8)U ( t 4) ( 0.5t 2 2t 2)U ( t 2) (0.5t 2 2t 6)U ( t 6)
0
2
t
2013年12月1日9时9分
电路基础教学部
二. 冲激函数的性质
抽样性质
f (t ) (t t 0 ) f (t 0 ) (t t 0 )
例:
f (t ) (t t 0 )dt f (t 0 )
e 2 t ( t )
2 sin( 3 t ) (t 1)dt
U ( 2)( t )U ( t )d U ( 2)( t )U ( t 4)d
19
电路基础教学部
2013年12月1日9时9分
2.3.2 卷积积分限的确定(2)
等式右端第一项
t 的定义域(上限大于下限)
t
U ( )( t )U ( t )d [ (t )d ]U (t ) 0.5t 2U ( t )
0
等式右端第二项为
U ( )( t )U ( t 4)d
[
t 4
0
( t )d ]U ( t 4) ( 0.5t 2 8)U ( t 4)
等式右端第三项为
U ( 2)( t )U ( t )d
0.5<t-1<1.5
信号与系统知识点概括总结
理想低通滤波器:
c Sa[ c (t t0 )] 冲激响应: h(t )
H ( j) e jt0 [u( c ) u( c )]
取样信号的傅里叶变换
f s( t )
f s (t ) f (t )T (t )
T (t )
n
(t nT )
1 F f1 (t ) f 2 (t ) F1 (j ) F2 (j ) 2
周期信号的傅里叶变换:
2 Fn ( n 1 ) F ( j ) F f ( t ) n
1 其中 Fn T1
T1 / 2 T1 / 2
f (t )e
F ( j) E Sa( ) 2
E
Fn
1 21
2 4
4
F ( j )
2
2
4
对偶性: 若 F [ f (t )] F ( j), 则 F [ F ( jt )] 2
f ()
F ( j )
E
f (t )
E
/ 2
F sin 0t j ( 0 ) ( 0 )
卷积定理:
若F
f1 (t ) F1 (j ),F f2 (t ) F2 (j ) ,则
F
f1 (t ) f2 (t ) F1 (j )F2 (j )
零状态响应
(Azik Azsk )e k t y p (t )
k 1 强迫响应 自由响应
h(t ), g (t ) :
卷积:
dg (t ) h(t ) dt
g (t ) h( )d
信号与系统面试知识点总结
信号与系统面试知识点总结一、基本概念1. 信号与系统的定义:信号是某种随时间或空间变化的物理量的数学表达,系统是将输入信号映射为输出信号的装置或规律。
2. 基本信号类型:包括连续时间信号和离散时间信号;周期信号和非周期信号;能量信号和功率信号等。
3. 信号的基本运算:信号的加法、乘法、平移、积分、微分等运算。
4. 系统的基本分类:线性系统和非线性系统;时不变系统和时变系统。
5. 傅里叶分析:傅里叶级数和傅里叶变换,以及它们在信号与系统中的应用。
二、连续时间信号与系统1. 连续时间信号的表示和性质:冲激函数、单位阶跃函数、正弦函数、矩形波等基本信号的性质及表示方法。
2. 连续时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。
3. 连续时间系统的时域分析:冲激响应、单位阶跃响应、系统的零点和极点等。
4. 连续时间信号的频域分析:傅里叶级数分析、傅里叶变换和拉普拉斯变换的定义、性质和应用。
5. 连续时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。
三、离散时间信号与系统1. 离散时间信号的表示和性质:单位脉冲、单位阶跃序列、正弦序列、方波序列等基本离散时间信号的性质及表示方法。
2. 离散时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。
3. 离散时间系统的时域分析:脉冲响应、阶跃响应、差分方程描述等。
4. 离散时间信号的频域分析:傅里叶级数分析、傅里叶变换和z变换的定义、性质和应用。
5. 离散时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。
四、采样和重建1. 采样定理的理论基础:奈奎斯特定理和香农采样定理的定义、理论推导和应用。
2. 信号的重构方法:理想插值方法、牛顿插值方法、插值滤波器设计等。
3. 采样系统的频谱分析:采样系统的频带限制、混叠现象的分析和抑制方法。
五、系统的时域与频域分析方法1. 系统的单位脉冲响应和阶跃响应:定义、性质、求解方法及应用。
信号与系统知识点汇总总结
信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。
通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。
重庆邮电大学——现代通信复习
名词解释:1、模拟信号模拟信号是指代表信息的电信号及其参数(幅度、频率或相位)随着信息的变化而连续变化的信号。
2、数字信号数字信号是指在时间上和幅度上均取有限离散数值的电信号。
3、移动通信移动通信就是在运动中实现通信。
也就是说通信的双方中或有一方或双方均处于移动状态的通信方式。
4、微波通信微波通信是指利用微波波段的电磁波进行的通信,属于无线通信的范畴。
5、光纤通信光纤通信以光波为载频、以光导纤维为传输介质的一种通信方式。
6、数据通信依据通信协议,利用数据传输技术在两个功能单元之间传递数据信息。
它可实现计算机与计算机、计算机与终端换终端与终端之间的数据信息传递。
7、帧结构在数字通信系统中,各种信号(包括加入的定时、同步等信号)都是严格按时间关系进行的。
在数字通信中把这种严格的时间关系称为帧结构。
8、卫星通信简单而言就是地球上(包括陆地、水面和低层大气层)的无线电通信站之间利用人造地球卫星作中继站而进行的通信。
9、接入网接入网是由业务节点接口SNI和用户网络接口UNI之间的一系列传送实体(如线路设施和传输设施)组成的,为传送电信业务提供所需承载能力的实施系统,可由管理接口Q3进行配置和管理。
10、数字复接数字复接技术就是把两个或两个以上分支数字信号按时分复用方式汇接成为单一的复合数字信号。
具体来说,数字复接技术是解决 PCM群路信号由低次群到高次群的合成的技术,它把 PCM数字群路信号由低次群逐级合成位高次群以适应在高速线路中传输。
主要有按位复接、按字复接和按帧复接三种。
问答题:1、数字通信有哪些特点?答:传输数字信号的通信称为数字通信。
①抗干扰能力强、无噪声积累,可实现长距离高质量的传输;②便于加密处理;③便于存储、处理和交换;④设备便于集成化、微型化;⑤便于构成综合数字网和综合业务数字网;⑥占用信道频带宽。
——缺点2、传输信道对传输码型有那些要求?答:①频谱中不存在直流成分,低频分量尽量小;②尽量减少码型频谱中的高频分量;③具有一定的抗干扰能力;④便于时钟信号的提取;⑤具有较好的传输效率;⑥码型变换设备简单,易于实现。
重庆邮电大学2020年考研真题讲解(801信号与系统)第一部分(1-10题)
重庆邮电大学2020年考研真题讲解(801信号与系统)第一
部分(1-10题)
本公众号进行数字信号处理系列课程(信号与系统——数字信号处理——随机信号分析——现代数字信号处理)辅导,巩固基础与进一步提高相结合。
提倡“我为人人,人人为我”,欢迎广大朋友提供好的资料、文章、题解和学习经验,共同学习,共同进步。
考研专业课真题必练——数字信号处理王仕奎编著,北京邮电大学出版社,2020
本书是数字信号处理硕士研究生入学考试的解题指导, 对博士生入学考试也有一定的参考价值. 同时, 作为数字信号处理这门课程学习的参考书, 对于学习该课程的学生, 对讲授该课程的教师的备课、习题讲解和测试, 也有很高的参考价值.本书最初的一章对五套近年的数字信号处理考研真题进行了详细解答, 接着的八章分别介绍了数字信号处理的重要内容: 离散时间信号与系统、z变换与离散时间傅里叶变换、离散傅里叶变换、快速傅里叶变换、数字滤波器的基本结构、IIR滤波器的设计、FIR滤波器的设计、信号的抽取与插值——多抽样率数字信号处理基础. 每一章在提纲挈领地介绍基础知识点后, 辅之以大量的考研真题和著名教材习题的解答, 向学习者演示基础知识的灵活运用和答题技巧. 最后一章包含大量的各类高校考研(博)真题, 以给读者提供丰富的自我测试材料, 所有真题都包含参考解答, 解答有详有略, 以便学习者对照答案之用.
重庆邮电大学
2020年考研真题讲解(801信号与系统)
第一部分(1-10题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章信号与系统的基本概念
1.1绪言
1.2信号的描述及分类
1.3典型信号
1.4信号的基本运算
1.5信号的分解
1.6系统的描述及分类
1.7系统的时域模拟
1.8信号与系统分析方法及应用概述
通过本章的学习我们需掌握以下知识点:
信号的基本概念及其分类,信号的表示方法,典型连续信号及其性质,典型离散信号及性质,信号的基本运算和变换,系统的基本概念及其分类,线性非时变系统及其性质,系统性质的判定,连续系统与离散系统的数学模型,离散系统数学模型的建立,连续系统的时域模拟。
第二章LIT系统的时域卷积分析法
2.1LIT连续系统的经典时域分析法
2.2LIT连续离散系统的经典时域分析法
2.3LIT连续系统的单位冲击响应
2.4LIT离散系统的单位序列响应
2.5卷积积分
2.6卷和
通过本章的学习我们需掌握以下知识点:
冲激响应、阶跃响应及其与冲激响应的关系;任意波形信号的时域分解与卷积积分的定义,卷积积分的图解法和阶跃函数法、求解卷积的运算性质,LTI连续系统零状态响应的卷积分析法,运用杜阿密尔积分求解系统的零状态响应。
LTI离散系统的时域经典分析法。
单位序列响应、阶跃响应及其与单位序列响应的关系;任意波形离散信号的时域分解与积卷和的定义,卷积和的图解法、时限序列卷积和的不进位乘法和算式法求解、卷积和的运算性质,LTI离散系统零状态响应的卷积和分析法。
第三章信号与系统的频域分析
3.1信号分解为正交函数
3.2连续周期信号的傅里叶变换
3.3连续周期信号的频谱和功率谱
3.4连续非周期信号的频谱——傅里叶变换
3.5傅里叶变换的性质
3.6 LTI连续系统的频域分析
H jω
3.7 LTI连续系统的频域响应()
3.8取样定理
3.9调制与多路复用
3.10离散信号的频域分析
通过本章的学习我们需掌握以下知识点:
周期信号表为傅里叶级数,周期信号的频谱及其特点,周期信号的功率谱。
非周期信号的傅里叶变换,频谱密度及其特点,典型信号的傅里叶变换,傅里叶变换的性质,周期信号的傅里叶变换,能量谱密度和功率谱密度。
H jω,LTI连续系统零状态响应的傅里叶变换分析法,系统无失真传输的条频域系统函数()
件;无失真传输系统和理想低通滤波器的冲激响应与阶跃响应,抽样定理。
第四章连续信号与系统的复频域分析
4.1拉普拉斯变换
4.2拉普拉斯变换的性质
4.3拉普拉斯反变换
4.4拉普拉斯与傅里叶变换的关系
4.5 LTI连续系统的复频域分析法
H s
4.6 LTI连续系统的复频域系统函数()
4.7 LTI连续系统的稳定性
4.8 LTI连续系统复频域框图和信号流图
通过本章的学习我们需掌握以下知识点:
拉普拉斯变换及其收敛域,单边拉普拉斯变换,典型信号的单边拉普拉斯变换,单边拉普拉斯变换的性质,求拉普拉斯反变换的部分分式展开法和留数法,单边拉普拉斯变换与傅里叶变换的关系。
微分方程的拉普拉斯变换解,LTI连续系统的s域分析法,电路的s域分析法,系统函数H(s)在系统分析中的意义及求取,系统信号流图及其化简与模拟。
系统函数的零、极点概念,零极点图,连续系统函数H(s)的零极点分布与系统的时间特性、频率特性、因果性以及稳定性的定性关系,系统稳定性的判别。
第五章离散时间信号与系统Z变换分析法
5.1 Z变换
5.2 Z变换的性质
5.3 Z反变换及单边Z变换与拉普拉斯变换的关系
5.4 LTI离散系统的Z变换分析
H z与系统特性
5.5 离散系统函数()
通过本章的学习我们需掌握以下知识点:
离散信号的单边Z变换,Z变换的收敛域,单边拉氏变换与对应样值序列Z变换的关系,典型离散信号的Z变换,Z变换的性质,Z反变换的求解(部分分式展开法和留数法)。
离散系统的z域分析法,z域系统函数H(z)及其求取方法,离散系统信号流图及其化简与模拟。
系统函数H(z)的零、极点分布与系统时间特性、频率特性以及稳定性的定性关系,离散系统稳定性的判定。