水泵变频运行的图解分析方法
水泵变频运行特性曲线
水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵变频运行分析报告
水泵变频运行的图解分析方法作者:变频器世界1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵变频调速时的原理
水泵变频调速是通过调节电动机的供电频率来控制水泵的转速,从而实现流量和扬程的调节。
这种调速方式的基本原理如下:1. 电动机的原理:电动机的转速与供电频率成正比。
当供电频率增加时,电动机的转速也会相应增加;反之,供电频率降低时,电动机的转速也会降低。
2. 频率与转速的关系:变频调速器通过改变供电频率,可以精确控制电动机的转速。
对于感应电动机,转速与频率之间的关系可以通过以下公式表示:\[ n = (1 - \text{滑差率}) \times \text{同步速度} \]其中,\( n \) 是电动机的转速,\( \text{滑差率} \) 是电动机的滑差率,\( \text{同步速度} \) 是电动机的同步速度,同步速度与供电频率成正比。
3. 滑差率:滑差率是电动机在运行过程中由于转子与定子之间的相对滑动而造成的速度损失。
在变频调速中,通过调整供电频率,可以改变滑差率,从而控制电动机的转速。
4. 变频调速器:变频调速器是控制供电频率的关键设备。
它可以将标准的固定频率电源转换为可调的变频电源,供送给电动机。
变频调速器通常包括整流器、滤波器、逆变器等部分,其中逆变器是调节频率的关键。
5. 控制系统:在变频调速系统中,通常还需要一个控制系统来监测和调节电动机的转速。
这个系统可以是一个简单的开关,也可以是一个复杂的自动化控制系统,如PID控制器,它可以根据实际的流量和扬程需求自动调整供电频率。
6. 节能效果:变频调速不仅可以精确控制流量和扬程,还可以根据实际需求调整电动机的供电频率,从而节省能源。
与传统的阀门调节相比,变频调速可以减少不必要的能量消耗,提高系统的整体效率。
总之,水泵变频调速是通过改变电动机的供电频率来控制转速,实现流量的精确调节和能源的有效利用。
这种调速方式不仅可以提高水泵的性能,还可以减少能源消耗,具有显著的节能效果。
变频器工作原理与结构图文详解—变频器的功能作用分析
变频器工作原理与结构图文详解—变频器的功能作用分析变频器变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
变频器基本组成变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。
整流单元:将工作频率固定的交流电转换为直流电。
高容量电容:存储转换后的电能。
逆变器:由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。
控制器:按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。
变频器的结构与原理图解变频器的发展也同样要经历一个徐徐渐进的过程,最初的变频器并不是采用这种交直交:交流变直流而后再变交流这种拓扑,而是直接交交,无中间直流环节。
这种变频器叫交交变频器,目前这种变频器在超大功率、低速调速有应用。
其输出频率范围为:0-17(1/2-1/3 输入电压频率),所以不能满足许多应用的要求,而且当时没有IGBT,只有SCR,所以应用范围有限。
变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。
故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。
变频器电路结构框架图矩阵式变频器是一种交交直接变频器,由9个直接接于三相输入和输出之间的开关阵组成。
三种水泵的变频控制
冷冻水泵变频:1、根据设定压差控制水泵变频,当测量压差小于设定压差时,根据PID算法,水泵频率渐渐增大,直到50HZ为止。
当测量压差大于设定压差时,根据PID算法,水泵频率渐渐降低,直到30HZ 为止,当水泵频率为30HZ,测量压差仍大于设定压差时,调节旁通阀的开启度,使压差满足要求。
冷却水泵变频控制:2、根据设定的回水温度与测量温度比较,当测量的回水温度小于设定温度,且主机处于启动状态时,水泵以低频30HZ运行,当高于设定温度,根据PID算法渐渐增大水泵的运行频率,当水泵运行频率达到50HZ或温度高于设定温度加带宽时,启动冷却塔地埋水泵变频控制3、根据主机地埋侧进出水温度,让水泵进行变频运行,让主机的COP处于最佳状态,当温度升高时,则增大水泵的运行频率,反之则减小水泵的运行频率。
调节水泵转速的节电原理采用交流变频技术控制水泵的运行,是目前中央空调系统节能改造的有效途经之一,下图绘出了阀门控制调节和变频调速控制两种状态的水泵功率消耗——流量关系曲线。
下图显示了变频器控制和阀门控制水泵所消耗的不同功率,从下图中我们可以清楚的看出在水泵流量为额定的60%时,变频器控制与阀门控制相比,功率下降了60%;所以水泵仅仅依靠阀门控制是远远不够的,进行变频器控制的节能改造是十分必要的。
对于水泵来说,流量Q与转速N成正比,扬程H与转速N的二次方成正比,而轴功率与P与转速N的三次方成正比,下表列出了它们之间的关系变化:水泵转速N% 运行频率F(Hz) 水泵扬程H% 轴功率P%节电率%100 50 100 100 090 45 81 72.9 27.180 40 64 51.2 48.870 35 49 34.3 65.760 30 36 21.6 78.4 从上表中可见用变频调速的方法来减少水泵流量进行节能改造的经济效益是十分显著的,当所需流量减少,水泵转速降低时,其电动机的所需功率按转速的三次方下降;当水泵转速下降到额定转速的10%即F=45Hz时,其电动机轴功率下降了27.1%,水泵节电率为27.1%;当水泵转速下降到额定转速的20%即F=40Hz时,其电动机轴功率下降了48.8%,水泵节电率为48.8%;当水泵转速下降到额定转速的30%即F=35Hz时,其电动机轴功率下降了65.7%,水泵节电率为65.7%;当水泵转速下降到额定转速的60%即F=30Hz时,其电动机轴功率下降了78.4%,水泵节电率为78.4% ;冷冻和冷却水泵节电率的计算:计算公式:冷冻和冷却水泵节电率=[1-(变频器运行频率÷50Hz)3]×100%例如:水泵转速降低30%,即变频器运行频率=35Hz水泵节电率=[1-(35Hz÷50Hz)3]×100%=65.7%水泵转速降低20%,即变频器运行频率=40Hz水泵节电率=[1-(40Hz÷50Hz)3]×100%=48.8%。
水泵与水泵站水泵运行工况及工况调节图文PPT课件
第29页/共52页
A QH
B
Q
2、应用切削律注意点
(1)切削限量 (1)对于不同构造的叶轮切削时,应采取不同的方式。
第30页/共52页
(3)沿叶片弧面在一定的长度内铿掉一层,则可改善 叶轮的工作性能。
第31页/共52页
(4)叶轮切削使水泵的使用范围扩大。
第1页/共52页
泵所在的管路状况2
• 由公式:He =K+ SQ2 ,可绘图: • 综: • (1)在特定的管路中输送液体时, • 管路所需的扬程随所输送液体流量 • 的平方而变。相应的Q e- He曲线为 • 管路特性曲线。 • (2)管道系统中,通过的流量不同, • 单位重量液体所消耗的能量也不同。 • (3)曲线的形状由管路布局与操作条 • 件来确定,与泵的性能无关.
§ 2.8 离心泵装置调速运行工况
• 2.8.1叶轮相似定律
几何相似:两个叶轮主要过流部分一切相对应 的尺寸成一定比例,所有的对应角相等。
b2 D2
b2m D2m
b2、b2m ——实际泵与模型泵叶轮的出口宽度; D2、D2m——实际泵与模型泵叶轮的外径;
——比例。
第10页/共52页
运动相似的条件是:两叶轮对应点上水流的 同名速度方向一致,大小互成比例。也即在 相应点上水流的速度三角形相似。
要形成不同比转数ns,在构造上可改变叶轮的外 径(D2)和减小内径(D0)与叶槽宽度(b2)。
第22页/共52页
(3)相对性能曲线 ns越小:Q—H曲线就越平坦; Q=0时的N值就越小。因而,比转数低的水泵,
采用闭闸起动时,电动机属于轻载起动,起动电流减小; 效率曲线在最高效率点两则下降得也越和缓。
水泵变频运行特性曲线精编
水泵变频运行特性曲线精编Document number:WTT-LKK-GBB-08921-EIGG-229861 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ 与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵变频运行的图解
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律q1/q2=n1/n2扬程比例定律h1/h2=(n1/n2)2轴功率比例定律p1/p2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为f1,额定工作点为a,额定流量qa,额定扬程ha,管网理想阻力曲线r1=kq与流量q成正比。
采用节流调节时的实际管网阻力曲线r2,工作点为b,流量qb,扬程hb。
采用变频调速且没有节流的特性曲线f2,理想工作点为c,流量qc,扬程hc;这里qb=qc。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
而比例定律是相似定律作为特例演变而来的。
即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。
水泵变频控制原理图
水泵变频控制原理图
水泵变频控制原理图如下:
首先,电源连接到变频器的输入端,变频器是用来控制电动机的转速的设备。
变频器将电流转换为可调节的频率和电压。
变频器的输出端连接到电动机,它通过变换输出的频率和电压来控制电动机的转速。
电动机的转速与输入的频率成正比,即频率越高,转速越快。
在变频器和电动机之间,有一个传感器用来监测水泵的流量或压力。
传感器将监测到的信号反馈给变频器,变频器根据这些信号调节电动机的频率和电压,以实现所需的流量或压力。
另外,在系统中还设有一个控制器,它接收用户的输入信号,比如设定的流量或压力值。
控制器通过与变频器和传感器的通信,调节变频器的输出,以使水泵达到预设的工作状态。
总之,水泵变频控制的原理是通过变频器、电动机、传感器和控制器等组件的联动,实现对水泵的流量和压力的精确控制。
水泵变频运行分析
水泵变频运行的图解分析方法作者:变频器世界1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵变频运行的图解分析方法
水泵变频运行的图解分析方法1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
凝结水泵进行变频改造的运行分析
凝结水泵进行变频改造的运行分析关键词:凝结水泵;变频改造;节能降耗;运行分析引言乌拉山发电厂装机容量为2×300MW,每台机组配备两台100%容量的工频凝结水泵互为备用,目前已经先后对#4、5机组的凝结水泵进行了变频改造,改造后变频凝结水泵运行,工频凝结水泵备用,每月定期凝结水泵变频切换,用以干燥电机绕组和保证其处于良好备用状态。
凝结水泵变频投运后,既实现了凝结水泵水量的自动调整又降低了厂用电率,实现了节能降耗的目标。
1变频技术节能应用分析1.1节能原理根据水泵的特性分析如下水泵是一种平方转矩负载,其转速n与水量Q、压力p、转矩T及水泵的轴功率P的关系如下式所示:Q∝n p∝T∝n2P∝Tn∝n3转速:n 水量:Q 压力:p 转矩: T轴功率:P上式表明,水泵的水量与其转速成正比,水泵的压力与其转速的平方成正比,水泵的轴功率与其转速的立方成正比。
当电动机驱动水泵时,电动机的轴功率P(kW)可按下式计算。
P=Qp·10-3/ηcηb式中Q-水量,m3/sp-压力,Paηb-水泵的效率ηc-传动装置效率,直接传动时为1。
由上式我们可以做出变频调速控制时的特性曲线图。
由此特性曲线可以看出水泵在低速时节电比较显著,转速越高节电越不明显,如果转速到额定值时,不但不节约电能反而浪费能源。
结论:变频器不宜超载超速运行,否则将变为耗电设备,并使变频器难以承受。
1.2 随着我厂凝结水泵变频器的投运,克服了凝结水泵在运行中存在的性能调节差,能耗高,效益较低,维护工作量大等难题。
凝结水主调门开度平均只能达到45%左右,电机恒速转动,约有50%的能量白白消耗在主调门开度上。
同时,因科技含量低、设备运行可靠性不高,这样影响了机组的安全稳定运行。
日常维护量大,影响了机组的安全稳定运行。
通过变频改造,水泵水量与压力的调节,由通过调节主调门开度改为通过变频器调节电机速度来控制水泵的吸水量,主调门开度可以开到100%。
变频恒压水泵工作原理及常见故障处理与保养
位值变化,可能是停水或设备故障导致, 水压变化过快对设备及管网损伤比较大, 应及时处理。
谢谢观看
•
具有完备的电气安全保护及电机故障跨越功能
变频恒压供水工作模式介绍
• 1.变频泵固定工作模式: • 投入:当用水量小于一台泵在工频恒压条件下的流量,由一台变频泵调速恒压供水;
当用水量增大时,变频泵的转速上升,当变频泵转速上升到工频转速,而用水量进一 步增大,由变频供水控制器自动启动一台工频泵投入,该工频泵提供的流量是恒定的 (工频转速恒压下的流量),其余各并联工频泵按相同的原理投入。
置积分值过大或微分值过小。 楼主先看看变频器是什么牌的,拨打相应的客 服电话,询问PID设置里的积分参数和微分参数是,然后积分值下调或微分值 上调(如果微分参数不为零),在看看供水是否还是不稳定
水泵启动瞬间压力很大?
• 1.要检查管道是否有阻塞现象,造成压力突变(因为流量变小),要检
查管道是否有漏水现象,造成压力不能保持。
程序中使用的元器件及其功能说明
器件地址 VD100 VD104 VD108 VD112 VD116 VD120 VD124 VD204 VD208 VD212 VD250 VB300 VB301 VD310
功能 压力实际值 压力设定值 PID计算值
比例系数 采样时间 积分时间 微分时间 变频器运行频率下限值 生活供水频率上限值 消防供水频率上限值 实际运行频率值 变频工作泵的泵号 工频运行泵的总台数 倒泵时间存储器
耗;
• 回路漏渗、水流旁通,增加无效流量,增加水泵能耗; • 系统回路阻力严重不平衡,增加主机能耗和水泵能耗; • 水泵质量偏差,效率偏低,增加能耗。
在客户用水时,有很大噪音,水的压力也不 是很稳,请问这是什么原因造成的?
水泵变频运行的特性曲线
水泵变频运行的特性曲线The manuscript was revised on the evening of 2021水泵变频运行的特性曲线(一)1?引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2?水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。
变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3?以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泵变频运行的图解分析方法The Graphic Analysis Method of Pump Speed Variable Running作者:北京永基凯奇自动化技术有限公司吴自强摘要:本文以图解的方式分析了水泵变频运行时的特性曲线,以及水泵并联运行时的特性,为水泵变频运行时的节能分析和计算提供了一种简易的分析方法。
英文摘要:The article analyzes the characteristic curve of pump speed variable r unning, and the characteristic of pump parallel running to use graphic analysis method. And offers a sample analysis method for analyzing and calculating the energy saving of pump speed variable running.关键词:水泵变频运行特性曲线工作点1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
而比例定律是相似定律作为特例演变而来的。
即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。
(2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。
因此其运行工况与标准工况相同,可以应用比例定律。
但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。
(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。
(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。
比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。
图1中工作点A 和C就完全适合这种工况,可以使用比例定律。
(5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。
在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。
并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。
水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。
由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。
4 单台水泵变频运行的图解分析(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0。
水泵的扬程只有大于净扬程时才能出水。
因此管网阻力曲线的起始点就是该净扬程的高度,见图2。
图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。
变频后的特性曲线F2,工作点B。
流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB-H0,为克服管网阻力达到所需流量QB时的附加扬程。
由于管网阻力曲线与图1不同,因此不满足相似定律。
(2) 图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。
因此R1成为理想的管网阻力曲线。
但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。
如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载。
因此实际额定工作点应该向A 点左上方偏移,见图3。
图3 实际工作点向A点偏移(3) 图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。
变频器在50Hz下运行时的实际最大工作点C,实际最大流量QC(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。
实际工作点C的参数只能通过实际测试才能得出。
当在变频器频率为F2时的特性曲线F2,实际工作点B。
实际工作点与净扬程的差△H=HB-H0=K2QB2,为克服实际管网阻力达到所需流量QB时的附加扬程。
工作点B的实际扬程HB=K2QB2+H0。
5 相同性能曲线水泵工频并联运行时的图解分析(1) 两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行。
并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合。
同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。
(2) 水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定。
并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
图4 水泵并联运行特性(3) 图4为两台相同性能泵并联工作的总性能曲线与工作点。
其中A为任意一台泵单泵运行时的工作点,净扬程H0。
B为两台泵并联运行时单台泵的工作点。
F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。
并联运行的工作点C点的流量QC=2QB,扬程HC=HB。
管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和。
(4) 两台相同性能的水泵并联运行有如下特点:l HC=HB>HA:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程。
l QC=2QB<2QA:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。
因此并联运行时的总流量,不能达到两台单泵的流量和。
l 管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。
l 并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。
6 不同性能水泵并联运行的图解分析6.1 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5中:图5 扬程不同的水泵并联运行特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。
(3) F3为并联水泵的总性能曲线,工作点C,扬程HC,流量QC= QA2+ QB2。
6.2 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程。
(2) QC=QA2+QB2<QA1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。
因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。
关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图6所示。
图6 扬程不同、流量不同水泵并联特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。
(3) F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。
6.4 关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程HA1,更大于小泵单泵运行时的扬程HB1。
(2) QC=QA2+QB2<QA1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。
因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。
(3) 两泵并联运行时,扬程低的水泵并联运行时流量减少更快。
(4) 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象。
7 变频泵与工频泵并联运行时的图解分析7.1 变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。
图7中:图7 变频泵与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A1。
(2) F2为变频泵在频率F2时的性能曲线,变频泵在频率F2单独运行时的工作点B1。
(3) F3为变频和工频水泵并联运行的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。