上海市交大附中2019-2020学年度高一上学期期末数学试卷(含答案)

合集下载

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。

2020年上海交通大学附属中学高一数学理上学期期末试题含解析

2020年上海交通大学附属中学高一数学理上学期期末试题含解析

2020年上海交通大学附属中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若∈(),且3cos2=sin(),则sin2的值为A.一 B. C.一 D.参考答案:A2. 奇函数在是增函数,且,若函数对所有的,都成立,求实数的取值范围()B. C. 或 D. 或或参考答案:D略3. 设A={}, B={}, 下列各图中能表示从集合A到集合B的映射是( )参考答案:D4. 使根式分别有意义的的允许值集合依次为M、F,则使根式有意义的的允许值集合可表示为()A、 B、 C、 D、参考答案:B5. 已知函数,则f[f(﹣1)]=()A.0 B.1 C.2 D.参考答案:C【考点】分段函数的应用.【分析】由已知中函数,将x=﹣1代入可得答案.【解答】解:∵函数,∴f(﹣1)=1,∴f[f(﹣1)]=f(1)=2,故选:C6. 如果集合中只有一个元素,则的值是()A.0B.0或1C.1D.不能确定参考答案:B7. 如果sin α + cos α > tan α + cot α,那么角α的终边所在的象限是()(A)一或二(B)二或三(C)二或四(D)一或四参考答案:C8. 已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则参考答案:D【分析】利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案。

【详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【点睛】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题。

9. 若某几何体的三视图如图所示,则这个几何体的直观图可以是()A. B.C. D.参考答案:D试题分析:由已知中三视图的上部分有两个矩形,一个三角形,故该几何体上部分是一个三棱柱,下部分是三个矩形,故该几何体下部分是一个四棱柱.考点:三视图.10. 如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;③EG与FH互为异面直线;④EG与AB互为异面直线.其中叙述正确的是 ( )A.①③B.②④C.①②④D.①②③④参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域为______________________参考答案:12. 集合的非空真子集的个数为_____________.参考答案:6略13. 函数的图像恒过的点是______________参考答案:(1,-1)14. 下列四个命题:(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)y=1+x和y=表示相等函数.(5)若函数f(x﹣1)的定义域为[1,2],则函数f(2x)的定义域为.其中正确的命题是(写出所有正确命题的序号)参考答案:(5)【考点】命题的真假判断与应用.【分析】(1),如函数y=﹣,在x>0时是增函数,x<0也是增函数,不能说f(x)是增函数;(2),若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,a>0或a<0,a=b=0时,与x轴没有交点,(3),y=x2﹣2|x|﹣3的递增区间为[1,+∞),(﹣∞,﹣1];(4),y=1+x和y=的对应法则、值域不一样,表示不相等函数.(5),若函数f(x﹣1)的定义域为[1,2]?0≤x﹣1≤1,则函数f(2x)满足0≤2x≤1,定义域为.【解答】解:对于(1),如函数y=﹣,在x>0时是增函数,x<0也是增函数,不能说f(x)是增函数,故错;对于(2),若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,a>0或a<0,a=b=0时,与x轴没有交点,故错,对于(3),y=x2﹣2|x|﹣3的递增区间为[1,+∞),(﹣∞,﹣1],故错;对于(4),y=1+x和y=的对应法则、值域不一样,表示不相等函数,故错.对于(5),若函数f(x﹣1)的定义域为[1,2]?0≤x﹣1≤1,则函数f(2x)满足0≤2x≤1,定义域为,故正确.故答案为:(5)15. 直线被圆截得的弦长为.参考答案:16. 把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是____参考答案:一条直线两点17. 已知关于x,y的不等式组,表示的平面区域内存在点,满足,则m的取值范围是______.参考答案:【分析】作出不等式组对应的平面区域,要使平面区域内存在点点满足,则平面区域内必存在一个C点在直线的下方,A在直线是上方,由图象可得m的取值范围.【详解】作出x,y的不等式组对应的平面如图:交点C的坐标为,直线的斜率为,斜截式方程为,要使平面区域内存在点满足,则点必在直线的下方,即,解得,并且A在直线的上方;,可得,解得,故m的取值范围是:故答案为【点睛】本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域?②求出可行域各个角点的坐标?③将坐标逐一代入目标函数?④验证,求出最优解.三、解答题:本大题共5小题,共72分。

2019年上海交通大学附属中学高一数学文期末试题含解析

2019年上海交通大学附属中学高一数学文期末试题含解析

2019年上海交通大学附属中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为、,则塔高为()A. B. C. D.参考答案:A2. 若P(A)+P(B)=1,则事件A与B的关系是()D3. 函数的图象大致为参考答案:A4. (5分)在空间内,可以确定一个平面的条件是()A.三条直线,它们两两相交,但不交于同一点B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.两两相交的三条直线参考答案:A考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:利用确定平面的条件度四个选项分别分析,得到正确答案.解答:对于选项A,三条直线,它们两两相交,但不交于同一点,满足不共线的三点确定一个平面;对于选项B,如果三条直线过同一个点,可以确定一个或者三个平面;对于选项C,如果三个点在一条直线上,可以有无数个平面;对于选项D,如果三条直线两两相交于一点,确定一个或者三个平面;故选A.点评:本题考查了确定平面的条件,关键是正确利用平面的基本性质解答.5. 如图,在△ABC中,,,若,则()A. B. C. D.参考答案:D∴λ=,μ=..故答案为:D。

6. 函数满足,则的值为()A. B. C. D.参考答案:A7. 若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是()A.若,不存在实数使得;B.若,存在且只存在一个实数使得;C.若,有可能存在实数使得;D.若,有可能不存在实数使得;参考答案:C解析:对于A选项:可能存在;对于B选项:必存在但不一定唯一8. 某程序框图如图所示,该程序运行后输出S的结果是()A. B. C. D.参考答案:C考点:程序框图.专题:计算题;概率与统计.分析:根据题意,该程序框图的意图是求S=1+++的值,由此不难得到本题的答案.解答:解:由题意,k、S初始值分别为1,0.当k为小于5的正整数时,用S+的值代替S,k+1代替k,进入下一步运算.由此列出如下表格因此,最后输出的s=1+++=故选:C点评:本题给出程序框图,求最后输出的s值,着重考查了分数的加法和程序框图的理解等知识,属于基础题.9. 从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()A. 0.38B. 0.62C. 0.7D. 0.68参考答案:A略10. 下列四个关系中,正确的是()A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 函数f(x)=的定义域为。

上海市交大附中高一数学学科期末考试试卷(含答案)(2019.06)

上海市交大附中高一数学学科期末考试试卷(含答案)(2019.06)

交大附中高一期末数学试卷2019.06一. 填空题1. 已知a 、b 为常数,若24lim 123n an bn n →∞++=+,则a b += 2. 已知数列4293n a n=-,若对任意正整数n 都有n k a a ≤,则正整数k = 3. 已知4cos()5πα-=,且α为第三象限角,则tan α的值等于 4. 将无限循环小数0.145化为分数,则所得最简分数为5. 已知△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,222a b c bc =+-,4bc =, 则△ABC 的面积为6. 已知数列{}n a 满足:3122123n n a a a a n+++⋅⋅⋅+=(n *∈N ),设{}n a 的前n 项和为n S , 则5S =7. 三角方程sin2cos x x =在[0,]π内的解集合为8. 将正整数按下图方式排列,2019出现在第i 行第j 列,则i j += 12 3 45 6 7 8 910 11 12 13 14 15 16 ⋅⋅⋅⋅⋅⋅9. 已知()sin(2)3f x x π=+,若对任意x ∈R ,均有()()()f a f x f b ≤≤,则||a b -的最小值为10. 已知数列{}n a 满足11(3)(2)0n n n n a a a a ++--⋅-=,若13a =,则4a 的所有可能值的和为11. 如图△ABC 中,90ACB ∠=︒,30CAB ∠=︒,1BC =,M 为 AB 边上的动点,MD AC ⊥,D 为垂足,则MD MC +的最小值为12. 设01a <<,数列{}n a 满足1a a =,1n a n a a +=,将{}n a 的前100项从大到小排列的得到数列{}n b ,若k k a b =,则k 的值为二. 选择题13. 设无穷数列{}n a 的前n 项和为n S ,则“lim 0n n a →∞=”是“lim 0n n S →∞=”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件14. 若数列{}n a 是等比数列,且0n a >,则数列n b n *∈N )也是等比数 列,若数列{}n a 是等差数列,可类比得到关于等差数列的一个性质为( ) A. 12n n a a a b n ⋅⋅⋅⋅⋅=是等差数列 B. 12n n a a a b n++⋅⋅⋅+=是等差数列C. n b =D. n b = 15. 下列四个函数中,与函数()tan f x x =完全相同的是( ) A. 22tan21tan 2xy x =- B. 1cot y x = C. sin 21cos2x y x =+ D. 1cos2sin 2x y x -= 16. 设1cos 10n n a n π=,12n n S a a a =++⋅⋅⋅+,在1220,,,S S S ⋅⋅⋅中,正数的个数是( ) A. 15 B. 16 C. 18 D. 20三. 解答题17. 已知{}n a 为等差数列,且138a a +=,2412a a +=.(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.18. 已知数列{}n a 满足:14n n a a n ++=.(1)若{}n a 为等差数列,求{}n a 的通项公式;(2)若{}n a 单调递增,求1a 的取值范围.19.函数2()6cos )32xf x x ωω=-(0ω>)在一个周期内的图像如图所示,A 为图像的最高点,B 、C 为图像与x 轴的交点,且为△ABC 正三角形.(1)求ω的值及函数()f x 的值域;(2)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.20. 如图是某神奇“黄金数学草”的生长图,第1阶段生长为竖直向上为1米的枝干,第2,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,,且与旧枝成120°,⋅⋅⋅⋅⋅⋅,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(精确到0.01米)(2)求第13阶段“黄金数学草”的所有枝干的长度之和;(精确到0.01米)(3)求“黄金数学草”最终能长多高?(精确到0.01米)21. 设数列{}n a 的前n 项和为n S ,{}n a 满足11a =,1n n n a a d +-=,n *∈N .(1)若3n n d =,求数列{}n a 的通项公式;(2)若4cos()n d n π=+,求数列{}n S 的通项公式;(3)若{|,}{1,2}n D x x d n *==∈=N ,是否存在数列{}n d 使得1720a =,17195S =?若存在,写出{}n d 前16项的值,若不存在,说明理由.参考答案一. 填空题1. 22. 93.34 4. 8555.6. 1307. 5{}626πππ,,8. 1289.2π 10. 69 11. 32 12. 50二. 选择题13. B 14. B 15. C 16. D三. 解答题17.(1)2n a n =;(2)6k =.18.(1)21n a n =-;(2)1(0,2)a ∈.19.(1)4πω=;(2)()[f x ∈-.20.(1)(3)1f = (2)761[1][1](13)f ⨯-+-= (3)lim ()n f n →∞=. 21.(1)312n -;(2)2232225322122n n n n k S n n n k ⎧-=⎪⎪=⎨⎪-+=-⎪⎩,*k ∈N ; (3)116~d d :2,1,2,1,2,1211,,1⋅⋅⋅个。

2019-2020学年上海市高一(上)期末数学试卷 (2)

2019-2020学年上海市高一(上)期末数学试卷 (2)

2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。

上海市上海交通大学附属中学2019-2020学年高一上学期期末数学试题(解析版)

上海市上海交通大学附属中学2019-2020学年高一上学期期末数学试题(解析版)

2.幂函数 f x
1
【答案】
3
【解析】 【分析】
x a 的图像经过点
1 2, ,则 f 3
______.
2
根据幂函数所过的点 ,代入可求得幂函数解析式 ,即可求得 f 3 的值 .
【详解】幂函数 f x
xa 的图像经过点
1 2,
2
1
代入可得
2a
2
解得 a 1
所以幂函数解析式为 f x x 1
则 f 3 31 1 3
一、填空题
2019 学年交大附中高一年级第一学期期末试卷
1.弧度数为 2 的角的终边落在第 ______象限 .
【答案】 二 【解析】 【分析】 将弧度化为角度 ,即可判断出所在象限 .
【详解】根据弧度与角度关系可知 1rad 57.3o
所以 2rad 114.6o
则弧度数为 2 的角的终边落在第二象限 故答案为 :二 【点睛】本题考查了弧度与角度的关系 ,属于基础题 .
1
故答案为 :
3
【点睛】本题考查了幂函数解析式的求法
,函数求值 ,属于基础题 .
sin cos
3. 已知
sin 2cos
2 ,则 tan 的值为 _______.
【答案】 5 【解析】 【分析】
由齐次式化简方法 ,即可得关于 tan 的方程 ,解方程即可求得 tan 的值 . 【详解】根据齐次式化减法方法 ,将式子上下同时除以 cos 可得 tan 1
2 tan 2 变形可得 tan 1 2 tan 2
解得 tan 5
故答案为 : 5
【点睛】本题考查了齐次式的化简求值
4. cos2 3 8
sin 2 3 8

2019-2020学年上海交大附中高一(上)期末数学试卷

2019-2020学年上海交大附中高一(上)期末数学试卷

2019-2020学年上海交大附中高一(上)期末数学试卷试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.2.(填空题.3分)若幂函数f (x )=x α图象过点 (2,12) .则f (3)=___ . 3.(填空题.3分)已知 sinα+cosαsinα−2cosα =2.则tanα的值为___ . 4.(填空题.3分) cos 23π8−sin 23π8=___ . 5.(填空题.3分)已知lg2=a.10b =3.则log 125=___ .(用a 、b 表示) 6.(填空题.3分)若tanα= 43 ;则cos (2α+ π2 )=___ . 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 9.(填空题.3分)已知α∈(- π2.0).sin (π-2α)=- 12.则sinα-cosα=___10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)=2√33 .tanβ=- 5√311.2α-β的值为___ .12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1 ]= 25.则f (log 2sin17π6)=___ . 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225.则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形D.等腰三角形15.(单选题.3分)已知函数f(x)=log a(6-ax)在x∈[2.3)上为减函数.则a的取值范围是()A.(1.2)B.(1.2]C.(1.3)D.(1.3]16.(单选题.3分)设x1.x2分别是f(x)=x-a-x与g(x)=xlog a x-1(a>1)的零点.则x1+9x2的取值范围是()A.[8.+∞)B.(10.+∞)C.[6.+∞)D.(8.+∞)17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.【正确答案】:[1]二【解析】:根据题意.分析可得π2<2<π.由象限角的定义分析可得答案.【解答】:解:根据题意. π2<2<π.则弧度数为2的角的终边落在第二象限.故答案为:二【点评】:本题考查象限角.涉及弧度制的应用.属于基础题.2.(填空题.3分)若幂函数f(x)=xα图象过点(2,12) .则f(3)=___ .【正确答案】:[1] 13【解析】:根据题意求出幂函数的解析式.再计算f(3)的值.【解答】:解:幂函数f(x)=xα图象过点(2,12) .则2α= 12.解得α=-1.∴f(x)=x-1;∴f(3)=3-1= 13.故答案为:13.【点评】:本题考查了幂函数的定义与应用问题.是基础题.3.(填空题.3分)已知sinα+cosαsinα−2cosα=2.则tanα的值为___ .【正确答案】:[1]5【解析】:利用同角三角函数基本关系式化简已知等式即可得解.【解答】:解:∵ sinα+cosαsinα−2cosα = tanα+1tanα−2=2.∴tanα=5.故答案为:5.【点评】:本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.4.(填空题.3分)cos23π8−sin23π8=___ .【正确答案】:[1]- √22【解析】:利用二倍角公式、诱导公式.求得所给式子的值.【解答】:解:cos23π8−sin23π8=cos 6π8=-cos π4=- √22.故答案为:−√22.【点评】:本题主要考查二倍角公式、诱导公式的应用.属于基础题.5.(填空题.3分)已知lg2=a.10b=3.则log125=___ .(用a、b表示)【正确答案】:[1] 1−a2a+b【解析】:化指数式为对数式.把要求解的式子利用对数的换底公式化为含有lg2和lg3的代数式得答案.【解答】:解:∵10b=3.∴lg3=b.又lg2=a.∴log125= lg5lg12=lg102lg(3×4)=1−lg2lg3+2lg2=1−a2a+b.故答案为:1−a2a+b.【点评】:本题考查了对数的换底公式.考查了对数的运算性质.是基础题.6.(填空题.3分)若tanα= 43;则cos(2α+ π2)=___ .【正确答案】:[1]- 2425.【解析】:利用诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式化简所求即可求解.【解答】:解:∵tanα= 43.∴cos(2α+ π2)=-sin2α= −2sinαcosαsin2α+cos2α= −2tanα1+tan2α= −2×431+169=- 2425.故答案为:- 2425 .【点评】:本题主要考查了诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题. 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .【正确答案】:[1][0. 12 )【解析】:根据分段函数的表达式.分别求出每一段上函数的取值范围进行求解即可.【解答】:解:当x≥1时.f (x )=2x-1≥1. 当x <1时.f (x )=(1-2a )x+3a.∵函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1 的值域为R.∴(1-2a )x+3a 必须到-∞.即满足: {1−2a >01−2a +3a ≥1.解得0≤a < 12 .故答案为:[0. 12 ).【点评】:本题考查了函数的性质.运用单调性得出不等式组即可.难度不大.属于中档题. 8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 【正确答案】:[1] 12【解析】:利用二倍角公式.同角三角函数基本关系式化简即可得解.【解答】:解:∵θ∈(0. π2 ). ∴cosθ>0. ∵2sin2θ=1+cos2θ.∴4sinθcosθ=2cos 2θ.可得tanθ= 12. 故答案为: 12 .【点评】:本题主要考查了二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.9.(填空题.3分)已知α∈(- π2 .0).sin (π-2α)=- 12 .则sinα-cosα=___ 【正确答案】:[1]- √62【解析】:由已知利用诱导公式化简可得sin2α=- 12.进而根据同角三角函数基本关系式即可化简求解.【解答】:解:∵α∈(- π2 .0).sin (π-2α)=sin2α=- 12 . ∴sinα<0.cosα>0.∴sinα-cosα=- √(sinα−cosα)2 =- √1−sin2α =- √1−(−12) =- √62. 故答案为:- √62 .【点评】:本题主要考查了诱导公式.二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 【正确答案】:[1]2【解析】:由题意利用2α+β=(α+β)+α.β=(α+β)-α.结合三角恒等变换公式计算即可.【解答】:解:sin (2α+β)=3sinβ.sin (α+β)cosα+cos (α+β)sinα=3[sin (α+β)cosα-cos (α+β)sinα]. 2sin (α+β)cosα=4cos (α+β)sinα. 又α、β为锐角.所以sinα≠0.cos (α+β)≠0. 所以tan (α+β)cotα= sin (α+β)cosαcos (α+β)sinα=2.故答案为:2.【点评】:本题考查了三角恒等变换应用问题.也考查了三角函数求值问题.是基础题. 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)= 2√33 .tanβ=- 5√311.2α-β的值为___ .【正确答案】:[1]- 2π3【解析】:由题意配角:α=(α-β)+β.利用两角和的正切公式算出tanα的值.再算出tan (2α-β)的值.根据α、β的范围与它们的正切值.推出2α-β∈(-π.0).即可算出2α-β的值.【解答】:解:由tan (α-β)=2√33 .tanβ=- 5√311. ∴tanα=tan[(α-β)+β]= tan (α−β)+tanβ1−tan (α−β)tanβ = 2√33−5√3111−2√33×(−5√311)= √39 . 由此可得tan (2α-β)=tan[(α-β)+α]= tan (α−β)+tanα1−tan (α−β)tanα = 2√33+√391−2√33×√39= √3 . 又α∈(0.π).且tanα= √39 <1. ∴0<α< π4 .又β∈(0.π).tanβ=- 5√311 <0. ∴ π2 <β<π.因此2α-β∈(-π.0).可得-π<2α-β<0. 所以2α-β=- 2π3 . 故答案为:- 2π3 .【点评】:本题考查了两角和与差的正切公式、特殊角的三角函数值等知识.是中档题.解题时注意在三角函数求值问题中“配角找思路”思想.12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1]= 25 .则f (log 2sin17π6)=___ . 【正确答案】:[1]- 75【解析】:根据题意.分析可得f (x )+ 34x +1 为常数.设f (x )+ 34x +1 =t.变形可得f (x )=- 34x +1 +t.分析可得f (t )=- 34t +1 +t= 25 .解可得t 的值.即可得f (x )的解析式.将x=log 2sin 17π6代入可得答案.【解答】:解:根据题意.f (x )是定义域为R 的单调函数.且对任意实数x 都有f[f (x )+34x +1]= 25 .则f (x )+34x +1为常数.设f (x )+34x +1=t.则f (x )=-34x +1+t. 又由f[f (x )+ 34x +1 ]= 25 .即f (t )=- 34t +1 +t= 25 . 解可得t=1. 则f (x )=- 34x +1 +1. ∵sin17π6 = 12.则f (log 2 12 )=f (-1)=- 34−1+1 +1=- 75 ;故答案为:- 75 .【点评】:本题考查函数的单调性的性质以及应用.还考查了三角函数求值.诱导公式.对数的运算.换元法的思想.关键是求出函数的解析式.属于中档题. 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 【正确答案】:B【解析】:由α为第三、四象限角.可得sinα<0.反之不成立.即可判断出结论.【解答】:解:由α为第三、四象限角.可得sinα<0.反之不成立.例如 α=3π2. 故选:B .【点评】:本题考查了三角函数求值、简易逻辑的判定方法.考查了推理能力与计算能力.属于基础题.14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225 .则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.等腰三角形 【正确答案】:B【解析】:将已知式平方并利用sin 2A+cos 2A=1.算出sinAcosA=- 4811250 <0.结合A∈(0.π)得到A 为钝角.由此可得△ABC 是钝角三角形.【解答】:解:∵sinA+cosA= 1225 .∴两边平方得(sinA+cosA )2= 144625 .即sin 2A+2sinAcosA+cos 2A= 144625 . ∵sin 2A+cos 2A=1.∴1+2sinAcosA= 144625 .解得sinAcosA= 12 ( 144625 -1)=- 4811250 <0.∵A∈(0.π)且sinAcosA <0.∴A∈( π2 .π).可得△ABC 是钝角三角形 故选:B .【点评】:本题给出三角形的内角A 的正弦、余弦的和.判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识.属于基础题.15.(单选题.3分)已知函数f (x )=log a (6-ax )在x∈[2.3)上为减函数.则a 的取值范围是( ) A.(1.2) B.(1.2] C.(1.3) D.(1.3]【正确答案】:B【解析】:由已知中f (x )=log a (6-ax )在x∈[2.3)上为减函数.结合底数的范围.可得内函数为减函数.则外函数必为增函数.再由真数必为正.可得a 的取值范围.【解答】:解:若函数f (x )=log a (6-ax )在x∈[2.3)上为减函数. 则 {a >16−3a ≥0 解得:a∈(1.2].故选:B .【点评】:本题考查的知识点是复合函数的单调性.其中根据已知分析出内函数为减函数.则外函数必为增函数.是解答的关键16.(单选题.3分)设x 1.x 2分别是f (x )=x-a -x 与g (x )=xlog a x-1(a >1)的零点.则x 1+9x 2的取值范围是( ) A.[8.+∞) B.(10.+∞) C.[6.+∞) D.(8.+∞) 【正确答案】:B【解析】:函数的零点即方程的解.将其转化为图象交点问题.又有函数图象特点.得到交点的对称问题.从而求解.【解答】:解:由设x1.x2分别是函数f(x)=x-a-x和g(x)=xlog a x-1的零点(其中a>1).可知 x1是方程a x= 1x 的解;x2是方程1x=log a x 的解;则x1.x2分别为函数 y= 1x的图象与函数y=a x和函数y=log a x 的图象交点的横坐标;设交点分别为A(x1. 1x1).B(x2. 1x2)由 a>1.知0<x1<1;x2>1;又因为y=a x和y=log a x 以及 y= 1x的图象均关于直线y=x 对称. 所以两交点一定关于y=x 对称.由于点A(x1. 1x1).关于直线 y=x的对称点坐标为(1x1.x1).所以x1= 1x2.有x1x2=1.而x1≠x2则x1+9x2=x1+x2+8x2≥2 √x1x2 +8x2>2+8=10.即x1+9x2∈(10.+∞)故选:B.【点评】:本题考查了函数的概念与性质、对数函数以及指数函数.17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.【正确答案】:【解析】:(1)利用同角三角函数基本关系式可求cosα.tanα的值.进而根据二倍角的正切函数公式可求tan2α的值.(2)利用同角三角函数基本关系式可求sin(α+β)的值.根据两角差的余弦函数公式可求cosβ的值.【解答】:解:(1)∵α∈(0. π2).sinα= 4√37.∴cosα= √1−sin2α = 17 .tanα= sinαcosα=4 √3 .∴tan2α= 2tanα1−tan2α = 2×4√31−(4√3)2=- 8√347.(2)∵α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.∴α+β∈(0.π).sin(α+β)= √1−cos2(α+β) = 5√314.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(- 1114)× 17+ 5√314× 4√37= 12.【点评】:本题主要考查了同角三角函数基本关系式.二倍角的正切函数公式.两角差的余弦函数公式在三角函数化简求值中的应用.属于基础题.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.【正确答案】:【解析】:(1)根据f(0)=7.求解a的值.再解方程f(x)=5即可.(2)根据奇偶性定义判断即可.【解答】:解:(1)由f(0)=7.即1-a=7.可得a=-6.那么3x+6•3-x=5.∴(3x-2)(3x-3)=0.解得x=1或x=log32.(2)由f(-x)=-a•3x+3-x.当a=-1时.可得f(-x)=f(x)此时f(x)是偶函数.当a=1时.f(-x)=-f(x)此时f(x)是奇函数.当a≠±1时.f(x)是非奇非偶函数.【点评】:本题考查了奇偶性的定义判断和指数函数的化简运算.属于基础题.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.【正确答案】:【解析】:(1)由扇形的周长求出θ的值.再根据题意求出r的取值范围.计算扇形的面积;(2)利用函数解析式求出S的最大值以及r的值.【解答】:解:(1)由题意知.扇形的周长为2r+θr=400.所以θ= 400−2rr;又θ∈(0.2π).所以200π+1<r<200;所以扇形的面积为S= 12θr2= 12• 400−2rr=-r2+200r.其中r的取值范围是(200π+1.200);(2)S(r)=-r2+200r=-(r-100)2+10000.当r=100时.S(r)取得最大值为10000.即半径为r=100m时.绿化区域的面积S最大.最大值10000m2.【点评】:本题考查了根据实际问题选择函数模型的应用问题.是基础题.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.【正确答案】:【解析】:(1)根据条件.对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 );且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时.x2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x 2∈(0.2];同理可以依次推出当x∈(2n-1.2n ]时.f (x )的解析式.即可得当x∈(1.23]时函数y=f (x )的最大值;(2)当x∈(1.23.7]时.23≤23.7≤24.由(1)可得f (x )的解析式.即可得函数值; (3)根据f (1200)=f (b )(实数b >1).解出b 的值.进而求实数b 的最小值即可.【解答】:解:(1)对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 ); 且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时. x 2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x2 ∈(0.2]; 当x∈(4.8]时. x 2 ∈(2.4].f (x )=2f ( x 2 )=4log 2 x4 ∈(0.4]; 当x∈(8.16]时. x 2 ∈(4.8].f (x )=2f ( x 2 )=8log 2 x8 ∈(0.8]; …;当x∈(2n-1.2n ]时. x 2 ∈(2n-2.2n-1].f (x )=2f ( x 2 )=2n-1log 2 x2n−1 ∈(0.2n-1]; 所以x∈(2n-1.2n ]时.f (x )的最大值是2n-1;所以x∈(1.23]时.f (x )= { log 2x ,x ∈(1,2]2log 2x 2,x ∈(2,4]4log 2x 4,x ∈(4,8] .的最大值为f (23)=4log 2 2322 =4; (2)当x∈(1.23.7]时.23≤23.7≤24.所以f (x )的最大值为f (23.7)=23×log 2 23.723 =8×(3.7-3)=5.6; (3)由f (1200)=f (b )(实数b >1). 且1200=210× 7564 .210<210× 7564 <211. 所以f (1200)=210×log 2210×7564210 =210×log 2 7564 .f (b )=f (2× b2 )=2f ( b 2 )=22f ( b22 )=…=2n-1 f ( b2n−1 ); 当 b2n−1 ∈(1.2]时.∴f (b )=2n-1log 2 b2n−1 ;∵f (1200)=f (b ).则210×log 2 7564 =2n-1log 2 b2n−1 ;b=2n-1• (7564)211−n .1<n <11当n=10时.b2n−1 =( 7564 )2∈(1.2];b=29×( 7564)2;当n=9时. b 2n−1 =( 7564 )4∈(1.2];b=28×( 7564 )4;当n=8时. b2n−1 =(7564)8∉(1.2];…29×(7564)2>28×(7564)4;∴实数b的最小值为28×(7564)4=256×(7564)4.【点评】:本题考查了抽象函数及其应用.考查了计算能力.分析解决问题的能力.转化与化归的思想.属于中档题.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.【正确答案】:【解析】:(1)由对数和指数的运算性质.化简可得所求值;(2)由反函数的定义和求解步骤.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).再由指数函数和对勾函数的单调性.对a讨论.可得所求范围;(3)求得y=f-1(x)= 2x+2−x2(x>0).g(x)=1+ k−12x+2−x+1.对k讨论.分k=1.k>1.k<1.判断g(x)的单调性可得g(x)的值域.再由题意可得任意两个尽可能小的函数值不小于另一个尽可能大的函数值.解不等式可得所求范围》【解答】:解:(1)由f(x)=log a(x+ √x2−1).x>1.a>0且a≠1.可得f(2a+2−a2)=log a(2a+2−a2 + √4a+2+4−a4−1)=log a(2a+2−a2 + 2a−2−a2)=log a2a=2.即a2=2a.可得整数a=2或4;(2)由y=f(x)=log a(x+ √x2−1).x>1.可得a y=x+ √x2−1 .即a y-x= √x2−1 . 平方可得a2y-2xa y+1=0.即有x= a y+a−y2.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).f-1(n)<4n+4−n2(n∈N*).即为a n+a−n2<4n+4−n2.若0<a<1.则a n+a-n单调递减.可得14<a<1;可得a的取值范围为(14.1)∪(1.4);(3)若a=2.此时y=f(x)的反函数为y=f-1(x)= 2x+2−x2(x>0).g(x)= 2f−1(x)+k2f−1(x)+1 = 2x+2−x+k2x+2−x+1=1+ k−12x+2−x+1.当k=1时.g(x)=1.符合题意;当k>1时.g(x)在x>0递减.可得g(x)∈(1.1+ k−13).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得1+1≥1+ k−13.解得1<k≤4;当k<1时.g(x)在x>0递增.可得g(x)∈(1+ k−13.1).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得2(1+ k−13)≥1.解得- 12≤k<1.综上可得k的范围是[- 12.4].【点评】:本题主要考查函数恒成立问题解法.注意运用函数的单调性和转化思想.考查反函数的求法.化简整理的运算能力.是一道难题.。

2019-2020学年上海中学高一(上)期末数学试卷

2019-2020学年上海中学高一(上)期末数学试卷

2019-2020学年上海中学高一(上)期末数学试卷一、填空题1. 函数f(x)=√2−x +ln (x −1)的定义域为________.2. 设函数f(x)=(x+1)(x−a)x 为奇函数,则实数a 的值为________.3. 已知y =log a x +2(a >0且a ≠1)的图象过定点P ,点P 在指数函数y =f(x)的图象上,则f(x)=________.4. 方程92x+1=(13)x 的解为________.5. 对任意正实数x ,y ,f(xy)=f(x)+f(y),f(9)=4,则f(√3)=________.6. 已知幂函数f(x)=(m 2−5m +7)x m 是R 上的增函数,则m 的值为________.7. 已知函数f(x)={2x (x ≤0)log 2x(0<x ≤1)的反函数是f −1(x),则f −1(12)=________.8. 函数y =log 34|x 2−6x +5|的单调递增区间为________.9. 若函数f(x)=log a (x 2−ax +2)(a >0且a ≠1)满足:对任意x 1,x 2,当x 1<x 2≤a 2时,f(x 1)−f(x 2)>0,则a 的取值范围为________√2) .10. 已知x >0,定义f(x)表示不小于x 的最小整数,若f (3x +f(x))=f(6.5),则正数x 的取值范围为________.11. 已知函数f(x)=log a (mx +2)−log a (2m +1+2x )(a >0且a ≠1)只有一个零点,则实数m 的取值范围为________.12. 已知函数f(x)={log 12(1−x),−1≤x ≤n 22−|x−1|−3,n <x ≤m ,(n <m)的值域是[−1, 1],有下列结论:(1)n =0时,m ∈(0, 2];(2)n =12时,m ∈(12,2];(3)n =[0,12)时,m ∈(n, 2],其中正确的结论的序号为________.二、选择题下列函数中,是奇函数且在区间(1, +∞)上是增函数的是( )A.f(x)=3|x|B.f(x)=1x −xC.f(x)=−x 3D.f(x)=−log 2x+1x−1已知f(x)是定义在R 上的偶函数,且在区间(−∞, 0)上单调递增,若实数m 满足f(|m −1|)>f(−1),则m 的取值范围是( )A.(−∞, 0)∪(2, +∞)B.(−∞, 0)C.(0, 2)D.(2, +∞)如果函数f(x)在其定义域内存在实数x 0,使得f(x 0+1)=f(x 0)+f(1)成立,则称函数f(x)为“可拆分函数”,若f(x)=lg a 2x +1为“可拆分函数”,则a 的取值范围是( )A.(32,3)B.(12,32)C.(32,3]D.(3, +∞]定义在(−1, 1)上的函数f(x)满足f(x)=1f(x−1)+1,当x ∈(−1, 0]时,f(x)=1x+1−1,若函数g(x)=|f(x)−12|−mx −m 在(−1, 1)内恰有3个零点,则实数m 的取值范围是( )A.[14,916)B.(14,916)C.[14,12)D.(14,12) 三.解谷题已知函数f(x)=2x −1的反函数是y =f −1(x),g(x)=log 4(3x +1).(1)画出f(x)=2x −1的图象;(2)解方程f −1(x)=g(x).已知定义在R 上的奇函数f(x)=ka x −a −x ((a >0且a ≠1),k ∈R).(1)求k 的值,并用定义证明当a >1时,函数f(x)是R 上的增函数;(2)已知f(1)=32,求函数g(x)=a 2x +a −2x 在区间[0, 1]上的取值范围.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为Q =6p(t)−1500t −60(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?对于定义域为D 的函数y =f(x),若存在区间[a, b]⊂D ,使得f(x)同时满足,①f(x)在[a, b]上是单调函数,②当f(x)的定义域为[a, b]时,f(x)的值域也为[a, b],则称区间[a, b]为该函数的一个“和谐区间”.(1)求出函数f(x)=x 3的所有“和谐区间”[a, b];(2)函数f(x)=|4x −3|是否存在“和谐区间”[a, b]?若存在,求出实数a ,b 的值;若不存在,请说明理由;(3)已知定义在(2, k)上的函数f(x)=2m −4x−1有“和谐区间”,求正整数k 取最小值时实数m 的取值范围.定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2.(1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1, 1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.参考答案与试题解析2019-2020学年上海中学高一(上)期末数学试卷一、填空题1.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【解析】此题暂无解析此题暂无解答7.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答三.解谷题【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答。

2020-2021学年上海交大附中高一(上)期末数学试卷 (解析版)

2020-2021学年上海交大附中高一(上)期末数学试卷 (解析版)

2020-2021学年上海交大附中高一(上)期末数学试卷一、填空题(共6小题).1.设集合M={x|x2﹣mx+6=0,x∈R},且M∩{2,3}=M,则实数m的取值范围是.2.设a,b,c为正实数,则的最小值为.3.若函数y=f(x)的解析式为f(x)=,则f[f(x)]=.4.(8分)若函数y=f(x)的解析式为,则f(﹣2021)+f(﹣2020)+…+f(﹣1)+f(0)+f(1)+f(2)+…+f(2021)=.5.(8分)所有0到1之间且分母不大于10的最简分数按照从小到大的次序组成一个数列,则的后一项为.6.(8分)已知a,b为正实数,则的取值范围是.二、选择题(共2小题).7.(8分)已知h>0,则“|a﹣b|<2h”是“|a﹣1|<h”且|b﹣1|<h的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件8.(8分)已知f(x)=3x2﹣x+4,g(x)为多项式,若f(g(x))=3x4+18x3+50x2+69x+48,那么g(x)的各项系数和可能为()A.8B.9C.10D.11三、解答题(共3题,共42分)9.(16分)已知a为一个给定的实数,函数.(1)若a=1,t为正实数,利用单调性的定义证明:“0<t≤1”是“函数在区间(0,t]上是严格减函数”的充要条件;(2)若函数,x∈(0,+∞)无最小值,求实数a的取值范围.10.(10分)求证:二次函数y=x2可以表示为两个在R上严格增的多项式函数的差.11.(16分)若数列{a n}对任意连续三项a i,a i+1,a i+2,均有,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列:①等差数列:1,2,3,4,5,…;②等比数列:;(2)跳跃数列{a n}满足对任意正整数n均有,求首项a1的取值范围.参考答案一、填空题(共6小题).1.设集合M={x|x2﹣mx+6=0,x∈R},且M∩{2,3}=M,则实数m的取值范围是.解:因为集合M={x|x2﹣mx+6=0,x∈R},且M∩{2,3}=M,所以2∈M,或3∈M或M=∅,当2∈M时,4﹣2m+6=0,解得m=5;当3∈M时,9﹣3m+6=0,解得m=5;当M=∅时,△=(﹣m)2﹣24<0,解得,所以实数m的取值范围为.故答案为:.2.设a,b,c为正实数,则的最小值为.解:设a+b=u,b+c=v,c+a=t,则u>0,v>0,t>0,则a+b+c=(u+v+t),a=(u﹣v+t),b=(u+v﹣t),c=(﹣u+v+t),=++,=(+++++﹣3)=[(+)+(+)+(+)﹣3]≥(2+2+2﹣3)=,当且仅当u=v=t,即a=b=c时取得等号,则≥.所以的最小值为:.故答案为:.3.若函数y=f(x)的解析式为f(x)=,则f[f(x)]=1.解:若x为有理数,则f(x)=1,所以f(f(x))=f(1)=1,若x是无理数,则f(x)=0,则f(f(x))=f(0)=1,故答案为:1.4.(8分)若函数y=f(x)的解析式为,则f(﹣2021)+f(﹣2020)+…+f(﹣1)+f(0)+f(1)+f(2)+…+f(2021)=4044.解:因为=,所以f(﹣x)+f(x)=+=2,则f(﹣2021)+f(﹣2020)+…+f(﹣1)+f(0)+f(1)+f(2)+…+f(2021)=2021×2+2=4044.故答案为:40445.(8分)所有0到1之间且分母不大于10的最简分数按照从小到大的次序组成一个数列,则的后一项为.解:结合题意,把[0,1]分成10份,则==0.6,=0.7,故所求的数在(0.6,0.7)之间,=,=≈0.667>=0.625故所求的数在(0.6,0.625)之间,而<,不合题意,故分母小于7时均不合题意,故的后一项是,故答案为:.6.(8分)已知a,b为正实数,则的取值范围是[,1).解:=,令=x>0,f(x)=,则f′(x)==,令5x﹣2﹣1>0,化为:17x2﹣10x﹣7>0,解得x>1.∴0<x<1时,函数f(x)单调递减,x>1时,函数f(x)单调递增.又f(0)=,f(1)=,x→+∞时,f(x)→1.∴f(x)∈[,1).∴的取值范围是[,1).二、选择题(每小题8分,共16分)7.(8分)已知h>0,则“|a﹣b|<2h”是“|a﹣1|<h”且|b﹣1|<h的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解:由|a﹣1|<h且|b﹣1|<h得|a﹣b|=|a﹣1+1﹣b|≤|a﹣1|+|1﹣b|<2h,所以“|a﹣b|<2h”是“|a﹣1|<h且|b﹣1|<h”的必要条件;不妨令h=1,a=0.5,b=﹣0.3,|a﹣1|=0.5<1,而|b﹣1|=1.3>1,因而“|a﹣b|<2h”是“|a﹣1|<h且|b﹣1|<h”的充分条件.故选:B.8.(8分)已知f(x)=3x2﹣x+4,g(x)为多项式,若f(g(x))=3x4+18x3+50x2+69x+48,那么g(x)的各项系数和可能为()A.8B.9C.10D.11解:由题意得g(x)的表达式是二次式,设g(x)=ax2+bx+c,∴f(g(x))=3(ax2+bx+c)2﹣(ax2+bx+c)+4=3a2x4+6abx3+(3b2+6ac﹣a2)x2+(6bc﹣b)x+3c2﹣c+4=3x4+18x3+50x2+69x+48,∴,解得,∴a+b+c=8.故选:A.三、解答题(共3题,共42分)9.(16分)已知a为一个给定的实数,函数.(1)若a=1,t为正实数,利用单调性的定义证明:“0<t≤1”是“函数在区间(0,t]上是严格减函数”的充要条件;(2)若函数,x∈(0,+∞)无最小值,求实数a的取值范围.【解答】证明:(1)a=1时,y=f(x)=x+,(充分性):若0<t≤1,设0<x1<x2≤t≤1,则f(x1)﹣f(x2)===(x1﹣x2)•>0,所以f(x1)>f(x2),故函数在区间(0,t]上是严格减函数,(必要性):若函数在区间(0,t]上是严格减函数,设0<x1<x2≤t,则f(x1)﹣f(x2)===(x1﹣x2)•>0,因为x1﹣x2<0,x1x2>0,所以x1x2﹣1<0,所以0<t≤1,故“0<t≤1”是“函数在区间(0,t]上是严格减函数”的充要条件;(2)若函数,x∈(0,+∞)无最小值,当a>0时,根据对勾函数的性质知,函数在x=时取得最小值,不符合题意;当a≤0时,f(x)=x+在∈(0,+∞)上单调递增,没有最小值,符合题意.故a≤0.10.(10分)求证:二次函数y=x2可以表示为两个在R上严格增的多项式函数的差.【解答】证明:∵g(x)=x3+x2+x+是在R上严格增的多项式函数,且k(x)=x3+x+也是在R上严格增的多项式函数,显然,二次函数y=x2=g(x)﹣k(x),∴二次函数y=x2可以表示为两个在R上严格增的多项式函数的差.11.(16分)若数列{a n}对任意连续三项a i,a i+1,a i+2,均有,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列:①等差数列:1,2,3,4,5,…;②等比数列:;(2)跳跃数列{a n}满足对任意正整数n均有,求首项a1的取值范围.解:(1)根据“跳跃数列”的定义,得:①等差数列:1,2,3,4,5,…不是跳跃数列;②等比数列:1,﹣,,﹣,,…是跳跃数列.(2)a n+1﹣a n=(19﹣﹣5a n),a n+2﹣a n+1=(﹣5a n﹣19)(19﹣﹣5a n),a n+2﹣a n=(a n﹣2)(a n﹣3)(19﹣﹣5a n),①若a n+1>a n,则a n+1>a n+2>a n,此时a n∈(,2);②若a n+1<a n,则a n+1<a n+2<a n,此时a n∈(3,);若a n∈(,2),则a n+1=∈(3,),∴a n∈(﹣2,2),若a n∈(3,),则a n+1=∈(﹣2,2),∴a n∈(3,),∴a1∈(﹣2,2)∪(3,),此时对任何正整数n,均有a1∈(﹣2,2)∪(3,).。

上海市交大附中2019-2020学年高一上学期期末数学试卷 (有解析)

上海市交大附中2019-2020学年高一上学期期末数学试卷 (有解析)

上海市交大附中2019-2020学年高一上学期期末数学试卷一、选择题(本大题共4小题,共12.0分) 1. 若α∈R ,则“α=0”是“sinα<cosα”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2. 若θ是△ABC 的一个内角,且sinθ⋅cosθ=−18,则sinθ−cosθ的值为( )A. 54B. ±√52C. √52D. −√523. 已知函数f(x)=3x2−ax+1在区间[12,1]上为减函数,则a 的取值范围为( )A. [2,+∞)B. (−∞,1]C. (−∞,2]D. [1,+∞)4. 已知函数f(x)=ax 3−3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A. (1,+∞)B. (2,+∞)C. (−∞,−1)D. (−∞,−2)二、填空题(本大题共12小题,共36.0分) 5. 460∘的终边在第__________象限.6. 已知幂函数f (x )=k ·x α的图象过点(12,√22),则f (x )=_______.7. 已知tanα=3,则4sinα−2cosα7cosα+3sinα=_____,sinα(sinα+cosα)=_________. 8. 若sin (x −3π4)cos (x −π4)=−14,则cos 4x =________. 9. 已知:5a =3,log 54=b ,用a ,b 表示log 12536=________. 10. 已知α∈(−π2,0),sin(π−2α)=−12,则sinα−cosα=______ 11. 已知函数f(x)={(3−2a)x +3a,x <12x ,x ≥1的值域为,则实数a 的取值范围是_______.12. 已知tan (π4+θ)=3,则sin2θ−2cos 2θ=_______.13. 已知sin (π4+α)⋅sin (π4−α)=16,α∈(π2,π),则sin4α的值为________. 14. 若sinβ=3sin(2α−β),则2tan(α−β)+tanα的值为________. 15. 已知tanα=2,tanβ=3,α,β∈(0,π2),则α+β的值为______ .16. 若函数f(x)有反函数,且对任意实数x ∈R ,都有f(f(x)+ln(x +1))=e −2(e 为自然对数的底数),则f(e 2−1)=___________. 三、解答题(本大题共5小题,共60.0分)17. 已知sinα=4√37,cos(β−α)=1314,且0<α<β<π2.(1)求tan2α值; (2)求cosβ值.18. 函数f (x )=log 4(1+x )+log 4(1−x ).(1)判断函数f (x )的奇偶性,并证明; (2)求f (√22)的值.19. 某学校为迎接国庆70周年,需制一扇形框架结构OAB ,如图所示.已知扇形框架结构OAB 的圆心角弧度,半径OA =r 米,两半径部分的装饰费用为60元/米,弧线AB部分的装饰费用为90元/米,装饰总费用为1200元,记花坛的面积为f(r).(1)将θ用r表示,并求出r的取值范围;(2)当r为多少时,f(r)最大并求出最大值.20.定义域为R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2−2x.(1)当x∈[−4,−2]时,求f(x)的解析式;(2)当x∈[−4,−2]时,f(x)≥118(3t−t)恒成立,求实数t的取值范围.21.设函数f(x)=log a x(0<a<1).(1)若f(x2−x)>f(2),求x的取值范围;(2)记f(x)的反函数为g(x),若a+k·g(x−1)≥0在[2,+∞)上恒成立,求实数k的最小值.-------- 答案与解析 --------1.答案:A解析:本题考查充要条件的判定方法,是基础题.解:∵“α=0”可以得到“sinα<cosα”,等,当“sinα<cosα”时,不一定得到“α=0”,如α=π3∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.2.答案:C解析:本题考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于较易题.先由条件判断sinθ>0,cosθ<0,得到sinθ−cosθ=√(sinθ−cosθ)2=√1−2sinθcosθ,把已知条件代入运算,可得答案.,解:∵θ是△ABC的一个内角,且sinθcosθ=−18∴sinθ>0,cosθ<0,∴sinθ−cosθ>0,.故选C.3.答案:A解析:本题考查复合函数单调性,属于基础题.设t=x2−ax+1,由复合函数的单调性可得t=x2−ax+1在[12,1]上单调递减,结合二次函数的性质可得结论.解:设t=x2−ax+1,因为函数y=3t在R上为增函数,若函数f(x)=3x2−ax+1在区间[12,1]上单调递减,则t=x2−ax+1在区间[12,1]上单调递减,则a2≥1,解得a≥2,故选A.4.答案:D解析:解:∵f(x)=ax3−3x2+1,∴f′(x)=3ax2−6x=3x(ax−2),f(0)=1;①当a=0时,f(x)=−3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3−3x2+1在(−∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3−3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3−3x2+1在(−∞,0)上没有零点;而当x=2a时,f(x)=ax3−3x2+1在(−∞,0)上取得最小值;故f(2a )=8a2−3⋅4a2+1>0;故a<−2;综上所述,实数a的取值范围是(−∞,−2);故选:D.由题意可得f′(x)=3ax2−6x=3x(ax−2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.5.答案:二解析:∵460∘=360∘+100∘,由于角100∘的终边落在第二象限,故角460∘的终边也落在第二象限.6.答案:√x解析:本题考查求幂函数的解析式,属于基础题,由幂函数f (x )=k ·x α的图象过点(12,√22)求出k ,α即可.解:∵幂函数f (x )=k ·x α的图象过点(12,√22),∴k =1,且(12)α=√22,解得,k =1,且α=12,∴f (x )=x 12=√x . 故答案为√x .7.答案:58;65解析:本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题. 直接利用同角三角函数基本关系式化弦为切求解. 解:由tanα=3,得4sinα−2cosα7cosα+3sinα=4tanα−23tanα+7=4×3−23×3+7=58,sinα(sinα+cosα)=sin 2α+sinαcosα==tan 2α+tanαtan 2α+1=32+332+1=65,故答案为58;65.8.答案:12解析:本题考查诱导公式的应用及二倍角公式,属基础题.解:∵sin(x−3π4)=−cos(π2+x−3π4)=−cos(x−π4),∴cos2(x−π4)=14,,∴cos(2x−π2)=−12,即sin2x=−12,∴cos4x=1−2sin22x=12.故答案为12.9.答案:2a+b3解析:本题考查对数的运算以及对数的换底公式,属于基础题.把所求对数换成以5为底,再由对数运算法则转化.解:由题log12536=log536log5125=log59+log543,又5a=3,log54=b,所以log12536=2a+b3.故答案为2a+b3.10.答案:−√62解析:本题主要考查了诱导公式,二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.由已知利用诱导公式化简可得sin2α=−12,进而根据同角三角函数基本关系和二倍角公式即可化简求解.解:∵α∈(−π2,0),sin(π−2α)=sin2α=−12, ∴sinα<0,cosα>0,∴sinα−cosα=−√(sinα−cosα)2=−√1−sin2α=−√1−(−12)=−√62. 故答案为:−√62.11.答案:[−1,32)解析:本题考查分段函数的值域问题,属于基础题.利用函数的值域是R ,当x ≥1时,y =2x ≥2,当x <1时,y =(3−2a)x +3a 的值域为(−∞,A),A ≥2,通过一次函数的性质求解即可.解:因为f(x)的值域是R ,当x ≥1时,y =2x ≥2, 故当x <1时,y =(3−2a)x +3a 的值域为(−∞,A),A ≥2,∴{3−2a >03−2a +3a ≥2,解得:−1≤a <32.即实数a 的取值范围是:[−1,32). 故答案为:[−1,32).12.答案:−45解析:本题主要考查三角函数的化简,属于基础题 解:sin2θ−2cos 2θ=2sinθcosθ−2cos 2θsin 2θ+cos 2θ=2tanθ−2tan 2θ+1,,∴tanθ=12∴原式=−45 故答案为−45.13.答案:−4√29解析:【分析】本题考查了二倍角公式与诱导公式,根据诱导公式与二倍角公式可知cos2α=13,然后由二倍角公式以及同角三角函数的基本关系式求解即可.解:因为sin (π4+α)⋅sin (π4−α)=sin (π4+α)⋅cos (π4+α)=16, 所以sin (π2+2α)=13,即cos2α=13, 又α∈(π2,π),则2α∈(π,2π),所以sin2α=−√1−cos 22α=−√1−(13)2=−2√23,故sin4α=2sin2α⋅cos2α=2×13×(−2√23)=−4√29.14.答案:0解析:由已知可得sin[α−(α−β)]=3sin[(α−β)+α],利用两角和与差的正弦函数公式,同角三角函数基本关系式可得−2tan(α−β)=tanα,由此化简所求即可得结果. 解:∵sinβ=3sin(2α−β),∴sin[α−(α−β)]=3sin[(α−β)+α], ∴sinαcos(α−β)−cosαsin(α−β)=3sin(α−β)cosα+3cos(α−β) sinα, ∴−2sinαcos(α−β)=4cosαsin(α−β),即tanα=−2tan(α−β), ∴2tan(α−β)+tanα=0,故答案为:0.15.答案:3π4解析:【分析】由题意可得α+β∈(0,π),且tan(α+β)=tanα+tanβ1−tanαtanβ=−1,从而求得α+β的值. 本题主要考查两角和的正弦公式的应用,根据三角函数的值求角,属于基础题.【解答】解:由tanα=2,tanβ=3,α,β∈(0,π2),可得α+β∈(0,π),且tan(α+β)=tanα+tanβ1−tanαtanβ=2+31−2×3=−1,故α+β=3π4,故答案为:3π4. 16.答案:e −3解析:本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键,属于中档题.先利用单调性求出函数解析式,再代入即可求解解:因为函数f(x)有反函数,所以f(x)是单调函数,令f(x)+ln(x +1)=t ,则f(x)=t −ln(x +1),由f(f(x)+ln(x +1))=e −2得f(t)=e −2,所以f(t)=t −ln(t +1)=e −2,所以t =e −1,所以f(x)=e −1−ln(x +1),所以f(e 2−1)=e −3.故答案为:e −3.17.答案:解:(1)∵0<α<β<π2,∴0<β−α<π2,∵sinα=4√37,cos(β−α)=1314, ∴cosα=17,sin(β−α)=3√314, ∴tanα=4√3,∴tan2α=2tanα1−tan 2α=8√31−48=−8√347.(2)由(1)可知cosα=17,sin(β−α)=3√314, cosβ=cos(α+β−α)=cosαcos(β−α)−sinαsin(β−α)=17×1314−4√37×3√314=−2398.解析:本题主要考查了两角和与差的正切函数,同角三角函数基本关系的应用.考查了学生对基础公式的熟练应用.(1)根据题意求得tanα的值,进而利用正切的二倍角公式求得答案.(2)求得cosα和sin(β−α)的值,进而利用两角和与差的余弦函数公式求得答案.18.答案:解:(1)由题意可得x 应当满足{1+x >01−x >0, ∴−1<x <1,∴定义域关于原点对称, 又f(−x)=log 4(1−x )+log 4(1+x )=f(x),∴f(x)为偶函数;(2)f(√22)=log 4(1+√22)+log 4(1−√22) =log 4((1+√22)×(1−√22)) =log 4(1−(√22)2)=log 412=−12.解析:本题主要考查函数的奇偶性及对数运算.(1)先求函数的定义域,再验证f(x)与f(−x)的关系,从而判断函数的奇偶性;(2)f(√22)=log 4(1+√22)+log 4(1−√22)计算为log 4((1+√22)×(1−√22)),化简可求值.19.答案:解:(1)扇环的圆心角为θ,则,所以,又0<θ<2,则4<r<10,.(2)f(r)=12θ⋅r2=2r(10−r)3,4<r<10,f(r)=−2r23+20r3,当r=−2032×(−23)=5米时,f(r)max=f(5)=503平方米.解析:本题考查利用数学知识解决实际问题,考查扇形的弧长公式,扇形的面积公式,属于基础题.(1)利用扇形的弧长公式,结合装饰总费用为1200元,可求θ关于r的函数关系式,再由θ的取值范围,可求r的取值范围;(2)根据扇形的面积公式,可列出f(r)的解析式,再由二次函数的性质,可得f(r)的最大值,以及r 的值.20.答案:解:(1)设x∈[−4,−2],则x+4∈[0,2],∵当x∈[0,2]时,f(x)=x2−2x,∴f(x+4)=(x+4)2−2(x+4)=x2+6x+8,又∵f(x+2)=3f(x),∴f(x+4)=3f(x+2)=9f(x)=x2+6x+8,∴f(x)=19(x2+6x+8),(2)∵x∈[−4,−2]时,f(x)=19(x2+6x+8)=19(x+3)2−19,当x=−3时,f(x)min=f(−3)=−19,则由f(x)≥118(3t−t)恒成立,可得−19≥3t−t18,整理可得,(t−3)(t+1)t≥0,∴−1≤t<0或t≥3.解析:本题主要考查了利用已知抽象函数的关系求解函数的解系式,解题的关键是由已知推出f(x+ 4)=9f(x),而函数的恒成立问题往往转化为函数的最值的求解,属于中档试题.(1)先设x∈[−4,−2],则x+4∈[0,2],结合已知当x∈[0,2]时,f(x)=x2−2x可求f(x+4),由f(x+ 4)=3f(x+2)=9f(x),代入可求f(x);(2)由x∈[−4,−2]时,f(x)=19(x2+6x+8)=19(x+3)2−19,结合而成函数的性质可求f(x)的最小值,而由f(x)≥118(3t−t)恒成立,可得f(x)min≥3t−t18,解不等式可求t的范围.21.答案:解:(1)由f(x2−x)>f(2)及0<a<1,得0<x2−x<2,解得−1<x<0或1<x<2,所以x的取值范围是(−1,0)∪(1,2).(2)因为g(x)为f(x)的反函数,所以g(x)=a x.由a+k·a x−1≥0在区间[2,+∞)上恒成立及a x−1>0,得k⩾−(1a)x−2在区间[2,+∞)上恒成立.因为x≥2,所以x−2≥0.因为0<a<1,所以1a >1,所以−(1a)x−2⩽−1,所以k≥−1,即实数k的最小值为−1.解析:本题考查反函数的求解,对数函数及其性质,不等式的恒成立问题,属于中档题.(1)根据对数函数的单调性将原不等式转化为0<x2−x<2,并注意真数大于零即可求解;(2)由题意,知g(x)=a x,原不等式可转化为k⩾−(1a )x−2,故原问题可转化为k⩾−(1a)x−2在区间[2,+∞]上恒成立求解.。

交大附中高一上期末(2020.1)

交大附中高一上期末(2020.1)


11.已知 , (0, ) ,且 tan( ) 2 3 , tan 5 3 , 2 的值为

3
11
12.已知
f(x)
是定义域为
R
的单调函数,且对任意实数
x
,都有
f
f
(x)
3 4x 1
2 5
,则
f
log2
sin
17 6
的值为

二、选择题
13.“ sin 0 ”是“ 为第三、四象限角”的( )
19.高境镇要修建一个扇形绿化区域,其周长为 400 m ,所在圆的半径为 r ,扇形的圆心角 的弧度数为 , (0, 2 ) . (1)求绿化区域面积 S 关于 r 的函数关系式,并指出 r 的取值范围; (2)所在圆的半径为 r 取何值时,才能使得绿化区域的面积 S 最大,并求出此最大值.
20.已知函数 y f(x) 的定义域为 (1, ) ,对于定义域内的任意实数 x ,有 f(2x) 2f(x) 成 立,且 x (1, 2] 时, f(x) log2 x . (1)当 x (1, 23] 时,求函数 y f(x) 的最大值; (2)当 x (1, 23.7 ] 时,求函数 y f(x) 的最大值; (3)已知 f(1200) f(b) (实数 b 1 ),求实数 b 的最小值.
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14. A 为三角形 ABC 的一个内角,若 sin A cos A 12 ,则这个三角形的形状为( ) 25
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
15.已知函数 f(x) loga (6 ax) 在 x [2,3) 上为减函数,则 a 的取值范围是( )

2019-2020学年上海市高一(上)期末数学试卷

2019-2020学年上海市高一(上)期末数学试卷

2019-2020学年上海市高一(上)期末数学试卷第I卷(选择题)一、选择题(本大题共4小题,共12.0分)1.“x2<1”是“x<1”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2.下列函数中,既是偶函数,又在(−∞,0)上单调递减的是()A. y=1xB. y=e−xC. y=1−x2D. y=x23.设函数f(x)=e x−e−x,g(x)=lg(mx2−x+14),若对任意x1∈(−∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A. −13B. −1 C. −12D. 04.设f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},如果A是只有一个元素的集合,则A与B的关系为()A. A=BB. A⫋BC. B⫋AD. A∩B=⌀第II卷(非选择题)二、填空题(本大题共12小题,共36.0分)5.函数y=ln(3−2x)的定义域是______ .6.函数f(x)=x2,(x<−2)的反函数是______ .7.设实数a满足log2a=4.则log a2=______ .8.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为减函数,则m=______ .9.函数y=log2[(x−2)2+1]的单调递增区间是________10.方程:log2(22x+1−6)=x+log2(2x+1)的解为______ .11.已知关于x的方程2kx2−2x−5k−2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是______.12. 已知a >0且a ≠1,设函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1,则实数a 的取值范围为____________.13. 设f(x)的反函数为f −1(x),若函数f(x)的图象过点(1,2),且f −1(2x +1)=1,则x =__________.14. 已知函数f(x)=2|x |+x 2在区间[−2,m]上的值域是[1,8],则实数m 的取值范围是__________.15. 若关于x 的方程ln(x −2)+ln(5−x)=ln(m −x)有实根,实数m 的取值范围是______ .16. 函数f(x)=lnx −14x +34x −1.g(x)=−x 2+2bx −4,若对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立,则实数b 的取值范围是 .三、解答题(本大题共5小题,共60.0分)17. 设函数f (x )=4x 2+4x, (1)用定义证明:函数f (x )是R 上的增函数;(2)化简f (t )+f (1−t ),并求值:f (110)+f (210)+f (310)+⋯+f (910);(3)若关于x 的方程k ⋅f (x )=2x 在(−1,0]上有解,求k 的取值范围.18. 设集合A ={x|log 12(x 2−5x +6)=−1},B ={x|a x−2<(1a )2x−7,a >1},求A ∩B .19.某商场经调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.20.求下列函数的定义域(1).f(x)=log3(x−5)(2)f(x)=√x+2+11−x21.已知函数g(x)=ax2−2ax+1+b,(a≠0,b>1)在区间[2,3]上的最大值为4,最.小值为1,设函数f(x)=g(x)x(1)求a,b的值及函数f(x)的解析式;(2)若不等式f(2x)−2x−k≥0在x∈[−1,1]时恒成立,求实数k的取值范围.答案和解析1.【答案】A【解析】【分析】本题主要考查充分条件与必要条件,基础题.根据充分必要条件的定义,分别证明充分性,必要性,从而得出答案.【解答】解:由x2<1解得−1<x<1⇒x<1,但x<1不能推出−1<x<1,所以“x2<1”是“x<1”成立的充分不必要条件.故选A.2.【答案】D是奇函数;y=e−x,不是偶函数;y=1−x2是偶函数,但是在(−∞,0)【解析】解:y=1x上单调递增,y=x2满足题意.故选:D.判断函数的奇偶性以及函数的单调性即可.本题考查二次函数的性质,函数的奇偶性以及函数的单调性,是基础题.3.【答案】A【解析】解:∵f(x)=e x−e−x在(−∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2−x+1)的值域包含(−∞,0],4),显然成立;当m=0时,g(x)=lg(−x+14)的值域包含(−∞,0],当m≠0时,要使g(x)=lg(mx2−x+14的最大值大于等于1,则mx2−x+14∴{m<04m×14−(−1)24m≥1,解得−13≤m<0,综上,−13≤m≤0,∴实数m的最小值−13故选:A.由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于m的不等式组求解.本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.4.【答案】A【解析】【分析】本题考查集合的相等,但关键难点是二次函数和复合函数的的解的问题,属中高档试题,难度较大,A只有一个元素,所以f(x)=x只有一个实数解,记作x0,则f(x)−x= (x−x0)2,f(x)=(x−x0)2+x,由此得出f[f(x)]=x,化简并提取公因式,可以证明此方程也有且只有一个零点x0,即可证明A=B.【解答】解:∵A只有一个元素,∴f(x)=x只有一个实数解,记作x0,则f(x)−x=x2+(b−1)x+c=(x−x0)2,∴f(x)=(x−x0)2+x,∴f[f(x)]=[(x−x0)2+x−x0]2+[(x−x0)2+x]=(x−x0)4+2(x−x0)3+2(x−x0)2+x,令f[f(x)]=x,即(x−x0)4+2(x−x0)3+2(x−x0)2+x=x(∗),则(x−x0)4+2(x−x0)3+2(x−x0)2=0,即[(x−x0)2+2(x−x0)+2](x−x0)2=0,∵(x−x0)2+2(x−x0)+2=0的判别式△=4−8=−4<0,∴无解,∴方程(∗)也只有一个实数解x0,综上所述A=B,故选A.5.【答案】(−∞,32)【解析】解:由3−2x>0,得x<32.∴原函数的定义域为(−∞,32).故答案为:(−∞,32).直接由对数式的真数大于0求解x的取值范围得答案.本题考查了函数的定义域及其求法,是基础题.6.【答案】y=−√x,(x>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数f(x)=x2,(x<−2),则y>4.可得x=−√y,所以函数的反函数为:y=−√x,(x>4).故答案为:y=−√x,(x>4).7.【答案】14【解析】解:∵实数a满足log2a=4,∴a=24=16,∴log a2=log162=lg2lg16=lg24lg2=14.故答案为:14.利用对数性质、运算法则、换底公式求解.本题考查对数式求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.8.【答案】−1【解析】解:知m2−m−1=1,则m=2或m=−1.当m=2时,f(x)=x3在(0,+∞)上为增函数,不合题意,舍去;当m=−1时,f(x)=x−3在(0,+∞)上为减函数,满足要求.故答案为−1根据幂函数的定义列出方程求出m的值;将m的值代入f(x)检验函数的单调性.本题考查幂函数的定义:形如y=xα的函数是幂函数;考查幂函数的单调性与α的正负有关.9.【答案】[2,+∞)【解析】【分析】本题主要考查复合函数的单调性.设t=(x−2)2+1,则y=log2t,分别找出函数t和y 的单调区间,利用同增异减即可求出结果.【解答】解:∵函数y=log2[(x−2)2+1],∴函数的定义域为R,设t=(x−2)2+1,则y=log2t,∵t在x∈(−∞,2)上单调递减,在[2,+∞)上单调递增,又∵y=log2t在定义域上单调递增,∴函数y=log2[(x−2)2+1]的单调增区间为[2,+∞).故答案为[2,+∞).10.【答案】{log23}【解析】解:由22x+1−6>0,得2×4x>6,即4x>3,则方程等价为log2(22x+1−6)=x+log2(2x+1)=log22x+log2(2x+1)=log22x(2x+1),即22x+1−6=2x (2x +1),即2(2x )2−6=(2x )2+2x ,即(2x )2−2x −6=0,则(2x +2)(2x −3)=0,则2x −3=0即2x =3,满足4x >3,则x =log 23,即方程的解为x =log 23,故答案为:{log 23}根据对数的运算法则进行化简,指数方程进行求解即可.本题主要考查对数方程的求解,根据对数的运算法则进行转化,结合指数方程,一元二次方程进行转化求解是解决本题的关键.11.【答案】(−∞,−43)∪(0,+∞)【解析】【分析】本题考查二次函数根的分布问题,属于中档题.利用二次函数的性质即可求解.【解答】解:令f(x)=2kx 2−2x −5k −2,因为关于x 的方程2kx 2−2x −5k −2=0的两个实数根一个小于1,另一个大于1, 则函数f(x)有两个不同的零点,且一个小于1,一个大于1.显然k ≠0,且{k <0f(1)=−3k −4>0或{k >0f(1)=−3k −4<0, 解出k <−43或k >0.故答案为(−∞,−43)∪(0,+∞). 12.【答案】[13,1)【解析】【分析】本题主要考查了分段函数,函数的最值,以及对数函数的性质,属于中档题.直接求解即可.【解答】解:∵函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1, ∴函数f(x)存在最大值,则由对数函数的性质可知0< a <1,且, 即,即a ≥13, 所以13≤a <1,故答案为[13,1). 13.【答案】12【解析】由题意函数f(x)的图象过点(1,2),则其反函数的性质一定过点(2,1),又f −1(2x +1)=1,故2x +1=2,解得x =12. 14.【答案】[0,2]【解析】【分析】本题考查根据函数值域求参数范围,属于基础题.判断f(x)的奇偶性,再根据单调性求解即可.【解答】解:函数f(x)=2|x |+x 2是R 上的偶函数,当−2≤x ≤0时,函数递减,所以f(−2)=8,f(0)=1,所以可得0≤m ≤2.故答案为[0,2].15.【答案】(2,6]【解析】解:由题意,{x −2>05−x >0, 解得,2<x <5;ln(x −2)+ln(5−x)=ln(m −x)可化为(x −2)(5−x)=m −x ;故m =−x 2+8x −10=−(x −4)2+6;∵2<x <5,∴2<−(x −4)2+6≤6;故答案为:(2,6].由题意得{x −2>05−x >0,从而解得2<x <5;从而化ln(x −2)+ln(5−x)=ln(m −x)为(x −2)(5−x)=m −x ;从而求解.本题考查了方程的根与函数图象的关系应用,属于基础题.16.【答案】(−∞,√142]【解析】 【分析】本题考查不等式恒成立问题,利用导数求函数的定值 【解答】由对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立, 可得f min (x 1)⩾g max (x 2),又f(x)=lnx −14x +34x −1,易得f ′(x )=−(x−1)(x−3)4x 2,当0<x <1时,f ′(x )<0,故f (x )在(0,1)上递减, 当1<x <2时,f ′(x )>0,故f (x )在(1,2)上递增, 故f min (x )=f (1)=−12.g(x)=−x 2+2bx −4=−(x −b )2+b 2−4,当b ≤1时,g (x )在[1,2]上递减,故g max (x )=g (1)=2b −5≤−12,得b ≤94,又b ≤1,故b ≤1;当1<b <2时,g max (x )=g (b )=b 2−4≤−12,得−√142<b ≤√142,又1<b <2,故1<b ≤√142; 当b ≥2时,g (x )在[1,2]上递增,故g max (x )=g (2)=4b −8≤−12,得b ≤158,又b ≥2,故无解;综上所述,b 的取值范围是 (−∞,√142].17.【答案】(1)证明:设任意x 1<x 2,则f(x 1)−f(x 2)=4x 12+4x 1−4x 22+4x 2=2(4x 1−4x 2)(2+4x 1)(2+4x 2), ∵x 1<x 2,∴4x 1<4x 2,∴4x 1−4x 2<0,又2+4x 1>0,2+4x 2>0.∴f(x 1)−f(x 2)<0, ∴f(x 1)<f(x 2), ∴f(x)在R 上是增函数; (2)对任意t ,f(t)+f(1−t)=4t 2+4t +41−t 2+41−t =4t 2+4t +42⋅4t +4=2+4t 2+4t =1,∴对于任意t ,f(1)+f(1−t)=1,(110)+f(910)=1,f(210)+f(810)=1,∴f(110)+f(210)+f(310)+⋯+f(910)=4+f(510)=92,(3)根据题意可得4x 2+4x·k =2x ,∴k =2+4x 2x,令t =2x ∈(12,1],则k =t +2t ,且在(12,1]单调递减, ∴ k ∈[3,92).【解析】本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力. (1)根据函数单调性定义进行证明;(2)根据指数幂的运算法则进行化简可得f(1)+f(1−t)=1,即可求出f(110)+f(210)+f(310)+⋯+f(910)的值, 方程k ⋅f(x)=2x 可化为:4x 2+4x ·k =2x ,令t =2x ∈(12,1],则可分离出参数k ,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域.18.【答案】解:A ={x|log 12(x 2−5x +6)=−1}={x|x 2−5x +6=2}={1,4}, B ={x|a x−2<(1a )2x−7,a >1}={x|a x−2<a 7−2x }={x|x −2<7−2x}={x|x <3},∴A ∩B ={1}.【解析】解对数方程求得A ,解指数不等式求得B ,再根据两个集合的交集的定义求得A ∩B .本题主要考查对数方程、指数不等式的解法,两个集合的交集的定义,属于中档题.19.【答案】解:(1)由函数图象可知:当5⩽x ⩽8时,Q =−52x +25;当8<x ⩽12时,Q =−x +13;所以得到分段函数Q ={−52x +25,5⩽x ⩽8−x +13,8<x ⩽12; 设月利润与商品每吨定价x 的函数为f (x ),则根据题意得f (x )=Q (x −5)−10, 即f (x )={(−52x +25)(x −5)−10,5⩽x ⩽8−(x −9)2+6,8<x ⩽12={−52(x −152)2+458,5⩽x ⩽8−(x −9)2+6,8<x ⩽12,所以当5⩽x ⩽8时,在x =125,f (x )的取值最大,f (125)=458;当8<x ⩽12时,在x =9,f (x )取值最大,f (9)=6. 所以,当x =9时,f (x )取最大值为6.综上:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.【解析】本题考查了分段函数模型的应用,函数的最值,二次函数的性质,属于中档题. (1)看函数图象知,函数是分段函数,所以分别求两段区间的函数.(2)根据题意得到利润函数式为f (x )=Q (x −5)−10,然后把函数Q (x )展开就又得到利润的分段函数,再分别求两个区间的最大值,然后作比较就可以得到整个函数的最大值,即最大利润.20.【答案】(1)解:根据题意得,x −5>0,解得x >5,即定义域为{x|x >5}(2)解:根据题意可得,{x +2≥01−x ≠0,解得x ≥−2且x ≠1,即定义域为{x|x ≥−2且x ≠1}.故答案为{x|x ≥−2且x ≠1}.【解析】(1)本题主要考查了函数的定义域,属于基础题.(2)本题主要考查了函数的定义域,属于基础题.21.【答案】解:(1)由于二次函数g(x)=ax 2−2ax +1+b 的对称轴为x =1,由题意得:当a >0,{g(2)=1+b =1g(3)=3a +b +1=4,解得{a =1b =0(舍去)当a <0,{g(2)=1+b =4g(3)=3a +b +1=1,解得{a =−1b =3>1∴a =−1,b =3 故g(x)=−x 2+2x +4,f(x)=−x +4x +2 (2)法一:不等式f(2x )−2x −k ≥0,即−2x +42x +2−2x ≥k ,∴k ≤−2⋅2x +42x +2设g(x)=−2⋅2x+42x+2,在相同定义域内减函数加减函数为减函数所以g(x)在[−1,1]内是减,故g(x)min=g(1)=0.∴k≤0,即实数k的取值范围为(−∞,0].法二:不等式f(2x)−2x−k≥0,即−2x+42x+2−2x−k≥0,∴−2x⋅(2x)2+(2−k)⋅2x+4≥0,令t=2x∈[12,2],∴化为g(t)=−2⋅t2+(2−k)⋅t+4≥0恒成立,因为g(t)图像开口向下.故只需{g(12)≥0 g(2)≥0。

2019-2020学年上海交大附中高一上学期期末考数学试卷含详解

2019-2020学年上海交大附中高一上学期期末考数学试卷含详解

2019-2020学年上海交大附中高一(上)期末数学试卷一、填空题1.弧度数为2的角的终边落在第象限.2.若幂函数f(x)=xα图象过点,则f(3)=.3.已知=2,则tanα的值为.4.=.5.已知lg2=a,10b=3,则log125=.(用a、b表示)6.若tanα=;则cos(2α+)=.7.已知函数f(x)=的值域为R,则实数a的取值范围是.8.已知θ∈(0,),2sin2θ=1+cos2θ,则tanθ=.9.已知α∈(﹣,0),sin(π﹣2α)=﹣,则sinα﹣cosα=10.已知锐角α,β满足sin(2α+β)=3sinβ,则tan(α+β)cotα=.11.已知α,β∈(0,π),且tan(α﹣β)=,tanβ=﹣,2α﹣β的值为.12.已知f(x)是定义域为R的单调函数,且对任意实数x,都有f[f(x)+]=,则f(log2sin)=.二、选择题13.“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.A为三角形ABC的一个内角,若sin A+cos A=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形15.已知函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则a的取值范围是()A.(1,2)B.(1,2]C.(1,3)D.(1,3]16.设x1,x2分别是f(x)=x﹣a﹣x与g(x)=x log a x﹣1(a>1)的零点,则x1+9x2的取值范围是()A.[8,+∞)B.(10,+∞)C.[6,+∞)D.(8,+∞)三、解答题17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.18.已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.19.高境镇要修建一个扇形绿化区域,其周长为400m,所在圆的半径为r,扇形的圆心角的弧度数为θ,θ∈(0,2π).(1)求绿化区域面积S关于r的函数关系式,并指数r的取值范围:(2)所在圆的半径为r取何值时,才能使绿化区域的面积S最大,并求出此最大值.20.已知函数y=f(x)的定义域为(1,+∞),对于定义域内的任意实数x,有f(2x)=2f(x)成立,且x∈(1,2]时,f(x)=log2x.(1)当x∈(1,23]时,求函数y=f(x)的最大值;(2)当x∈(1,23.7]时,求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1),求实数b的最小值.21.已知函数f(x)=log a(x+).x∈(1,+∞),a>0且a≠1.(1)若a为整数,且f()=2,试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f﹣1(x),若f﹣1(n)<(n∈N*),试确定a的取值范围;(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x),令g(x)=,若对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试卷解析一、填空题1.【解答】解:根据题意,<2<π,则弧度数为2的角的终边落在第二象限,故答案为:二2.【解答】解:幂函数f(x)=xα图象过点,则2α=,解得α=﹣1,∴f(x)=x﹣1;∴f(3)=3﹣1=.故答案为:.3.【解答】解:∵==2,∴tanα=5.故答案为:5.4.【解答】解:=cos=﹣cos=﹣,故答案为:.5.【解答】解:∵10b=3,∴lg3=b,又lg2=a,∴log125=.故答案为:.6.【解答】解:∵tanα=,∴cos(2α+)=﹣sin2α====﹣.故答案为:﹣.7.【解答】解:当x≥1时,f(x)=2x﹣1≥1,当x<1时,f(x)=(1﹣2a)x+3a,∵函数f(x)=的值域为R,∴(1﹣2a)x+3a必须取到﹣∞,即满足:,解得0≤a<,故答案为:[0,).8.【解答】解:∵θ∈(0,),∴cosθ>0,∵2sin2θ=1+cos2θ,∴4sinθcosθ=2cos2θ,可得tanθ=.故答案为:.9.【解答】解:∵α∈(﹣,0),sin(π﹣2α)=sin2α=﹣,∴sinα<0,cosα>0,∴sinα﹣cosα=﹣=﹣=﹣=﹣.故答案为:﹣.10.【解答】解:sin(2α+β)=3sinβ,sin(α+β)cosα+cos(α+β)sinα=3[sin(α+β)cosα﹣cos(α+β)sinα],2sin(α+β)cosα=4cos(α+β)sinα,又α、β为锐角,所以sinα≠0,cos(α+β)≠0,所以tan(α+β)cotα==2.故答案为:2.11.【解答】解:由tan(α﹣β)=,tanβ=﹣,∴tanα=tan[(α﹣β)+β]===,由此可得tan(2α﹣β)=tan[(α﹣β)+α]===.又α∈(0,π),且tanα=<1,∴0<α<,又β∈(0,π),tanβ=﹣<0,∴<β<π,因此2α﹣β∈(﹣π,0),可得﹣π<2α﹣β<0,所以2α﹣β=﹣.故答案为:﹣.12.【解答】解:根据题意,f(x)是定义域为R的单调函数,且对任意实数x都有f[f(x)+]=,则f(x)+为常数,设f(x)+=t,则f(x)=﹣+t,又由f[f(x)+]=,即f(t)=﹣+t=,解可得t=1,则f(x)=﹣+1,∵sin=,则f(log2)=f(﹣1)=﹣+1=﹣;故答案为:﹣.二、选择题13.【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.【解答】解:∵sin A+cos A=,∴两边平方得(sin A+cos A)2=,即sin2A+2sin A cos A+cos2A=,∵sin2A+cos2A=1,∴1+2sin A cos A=,解得sin A cos A=(﹣1)=﹣<0,∵A∈(0,π)且sin A cos A<0,∴A∈(,π),可得△ABC是钝角三角形故选:B.15.【解答】解:若函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则解得:a∈(1,2].故选:B.16.【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),可知x1是方程a x=的解;x2是方程=log a x的解;则x1,x2分别为函数y=的图象与函数y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及y=的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以x1=,有x1x2=1,而x1≠x2则x1+9x2=x1+x2+8x2≥2+8x2>2+8=10,即x1+9x2∈(10,+∞)故选:B.三、解答题17.【解答】解:(1)∵α∈(0,),sinα=,∴cosα==,tanα==4,∴tan2α===﹣.(2)∵α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣,∴α+β∈(0,π),sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=(﹣)×+×=.18.【解答】解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x)2﹣5•3x+6=(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.19.【解答】解:(1)由题意知,扇形的周长为2r+θr=400,所以θ=;又θ∈(0,2π),所以<r<200;所以扇形的面积为S=θr2=•=﹣r2+200r,其中r的取值范围是(,200);(2)S(r)=﹣r2+200r=﹣(r﹣100)2+10000,当r=100时,S(r)取得最大值为10000,即半径为r=100m时,绿化区域的面积S最大,最大值10000m2.20.【解答】解:(1)对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立,所以f(x)=2f();且x∈(1,2]时,f(x)=log2x∈(0,1];所以当x∈(2,4]时,∈(1,2],f(x)=2f()=2log2∈(0,2];当x∈(4,8]时,∈(2,4],f(x)=2f()=4log2∈(0,4];当x∈(8,16]时,∈(4,8],f(x)=2f()=8log2∈(0,8];…;当x∈(2n﹣1,2n]时,∈(2n﹣2,2n﹣1],f(x)=2f()=2n﹣1log2∈(0,2n﹣1];所以x∈(2n﹣1,2n]时,f(x)的最大值是2n﹣1;所以x∈(1,23]时,f(x)=,的最大值为f(23)=4log2=4;(2)当x∈(1,23.7]时,23≤23.7≤24,所以f(x)的最大值为f(23.7)=23×log2=8×(3.7﹣3)=5.6;(3)由f(1200)=f(b)(实数b>1),且1200=210×,210<210×<211,所以f(1200)=210×log2=210×log2,f(b)=f(2×)=2f()=22f()=…=2n﹣1f();当∈(1,2]时,∴f(b)=2n﹣1log2;∵f(1200)=f(b),则210×log2=2n﹣1log2;b=2n﹣1•,1<n<11当n=10时,=()2∈(1,2];b=29×()2;当n=9时,=()4∈(1,2];b=28×()4;当n=8时,=()8∉(1,2];…29×()2>28×()4;∴实数b的最小值为28×()4=256×()4.21.【解答】解:(1)由f(x)=log a(x+),x>1,a>0且a≠1,可得f()=log a(+)=log a(+)=log a2a=2,即a2=2a,可得整数a=2或4;(2)由y=f(x)=log a(x+),x>1,可得a y=x+,即a y﹣x=,平方可得a2y﹣2xa y+1=0,即有x=,可得f﹣1(x)=(若a>1,x>0;若0<a<1,x<0),f﹣1(n)<(n∈N*),即为<,若0<a<1,则a n+a﹣n单调递减,可得<a<1;可得a的取值范围为(,1)∪(1,4);(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x)=(x>0),g(x)===1+,当k=1时,g(x)=1,符合题意;当k>1时,g(x)在x>0递减,可得g(x)∈(1,1+),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得1+1≥1+,解得1<k≤4;当k<1时,g(x)在x>0递增,可得g(x)∈(1+,1),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得2(1+)≥1,解得﹣≤k<1.综上可得k的范围是[﹣,4].。

上海市高一上学期期末数学试题(解析版)

上海市高一上学期期末数学试题(解析版)

一、填空题1.已知集合,,则______. {}1,A x x x =∈Z {}|04B x x =<<A B = 【答案】{2,3}【分析】根据交集的定义求解判断.【详解】因为,, {}1,A x x x =∈Z {}|04B x x =<<由交集的定义可得. {}{}|14,2,3A B x x x ⋂=<<∈=Z 故答案为:{2,3}2.若,则_____82log 3x =-x =【答案】; 14【解析】根据对数运算与指数运算的关系可直接求得结果.【详解】,.82log 3x =- 23184x -∴===故答案为:. 143.不等式的解集是______. 113x <【答案】()(),03,-∞+∞ 【分析】两边同乘以,变为一元二次不等式解出解集即可. 23x 【详解】解:因为,所以,两边同时乘以可得: 113x <0x ≠23x ,解得或,所以解集为:23x x <0x <3x >()(),03,-∞+∞ 故答案为:()(),03,-∞+∞ 4.用反证法证明命题:“若 , 且 ,则 和 中至少有一个小于2”0x >0y >2x y +>1yx+1x y +时,应假设___. 【答案】两者都大于或等于2 11,x yy x++【分析】由反证法思想:先否定原结论并推出矛盾,故只需写出原结论的否命题即可. 【详解】由于“,中至少有一个小于”的反面是“,都大于或等于”, 1x y +1y x +21x y +1yx+2故用反证法证明命题: “若且,则,中至少有一个小于”时,应假设0,0x y >>2x y +>1x y +1yx+2,都大于或等于. 1x y +1yx+2故答案为:和都大于或等于 . 1x y +1yx+25.已知幂函数在区间是减函数,则实数的值是__________.()223222mm y m m x--=--()0,∞+m 【答案】3【详解】∵幂函数在区间是减函数()223222mm y m m x--=--()0,+∞∴,解得: 22221320m m m m ⎧--=⎨--<⎩3m =故答案为36.函数且的图象必经过一个定点,则这个定点的坐标是_____. 1()1(0x f x a a -=+>1)a ≠【答案】(1,2)【分析】令,得, 10x -=1x =()2f x =【详解】令,则有10x -=1x = 0()12f x a =+=所以过定点 ()f x (1,2)故答案为:(1,2)【点睛】处理与指数函数有关的函数过定点时是利用且. 01a =(0a >1)a ≠7.函数的最大值为________ y =【分析】首先求出函数的定义域,然后判断函数的单调性,利用单调性即可求出最大值.【详解】函数的定义域为,y =1,22⎡⎤-⎢⎥⎣⎦函数在上是增函数,y =1,22x ⎡⎤∈-⎢⎥⎣⎦函数上是减函数,y =1,22x ⎡⎤∈-⎢⎥⎣⎦根据结论:增函数减函数增函数,-=函数在上是增函数,∴y =1,22x ⎡⎤∈-⎢⎥⎣⎦当 2x =【点睛】本题考查了利用函数的单调性求函数的最值,属于基础题.8.已知关于x 的不等式有实数解,则a 的取值范围是______. 112x a x --≤-+【答案】2a ≥【分析】分离参数转化为能成立问题,再利用绝对值不等式求解. 【详解】由题意得,min (|1||2|1)a x x ≥-++-因为,当时等号成立, |1||2||1||2||12|3x x x x x x -++=-++≥-++=21x -≤≤所以. 2a ≥故答案为:.2a ≥9.函数在区间上单调递减,且为奇函数.若,则满足的的()f x (,)∞∞-+(1)1f =-1(2)1f x -≤-≤x 取值范围是 .【答案】[1,3]【分析】根据函数的奇偶性以及函数的单调性即可求出x 的范围即可. 【详解】因为f (x )为奇函数, 所以f (﹣1)=﹣f (1)=1,于是﹣1≤f (x ﹣2)≤1等价于f (1)≤f (x ﹣2)≤f (﹣1), 又f (x )在(﹣∞,+∞)单调递减, ∴﹣1≤x ﹣2≤1, ∴1≤x ≤3. 故答案为[]1,3【点睛】本题考查函数的单调性和奇偶性的综合应用,考查转化思想,属于基础题. 10.当,时,则的取值范围是______. lg lg a b =a b <2+a b 【答案】()3,+∞【分析】先,,得到,,,推出,, lg lg a b =a b <01a <<1b >lg lg a b -=1ab =122+=+a b b b令,,用定义法判断该函数单调性,即可得出结果. 1()2=+f x x x1x >【详解】因为,,所以,,, lg lg a b =a b <01a <<1b >lg lg a b -=即, lg lg lg 0a b ab +==因此,所以, 1ab =122+=+a b b b令,, 1()2=+f x x x1x >任取,则121x x <<,1212121212121211111()()222()()2⎛⎫⎛⎫⎛⎫⎛⎫-=+-+=-+-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭f x f x x x x x x x x x x x x x 因为,所以,, 121x x <<120x x -<12120->x x 因此,即, 1212121()()()20⎛⎫-=--<⎪⎝⎭f x f x x x x x 12()()f x f x <所以函数在上单调递增, 1()2=+f x x x(1,)+∞所以,即的取值范围是.()(1)3>=f x f 2+a b ()3,+∞【点睛】本题主要考查由函数单调性求取值范围,熟记函数单调性的定义,以及对数的运算性质即可,属于常考题型.11.若函数的值域为,则实数的取值范围是________ 231()21x x f x x m x ⎧≤=⎨-+>⎩(,3]-∞m 【答案】(2,5]【分析】分类讨论,先由求出的取值范围,再结合时二次函数的单调性求解值域即可 1x ≤3x 1x >【详解】当时,,;1x ≤1333x ≤=()(]0,3f x ∈当时,是减函数,,要满足,此时应满足1x >()22x m f x -=+()(),2f x m ∈-∞-()(,3]f x ∞∈- ,即(]20,3m -∈(2,5]m ∈故答案为(2,5]【点睛】本题考查根据分段函数值域求解参数问题,解题关键在于确定在临界点处的取值范围,属于中档题12.已知,函数在区间上有两个不同零点,则的取值范,a b R ∈()af x x b x=++()0,1()21a b a ++围是________. 【答案】10,16⎛⎫⎪⎝⎭【分析】设函数的两个不同的零点分别为,且,用表示后利用基()f x 12,x x 12x x <12,x x ()21a b a ++本不等式可求的取值范围.()21a b a ++【详解】设函数在上的两个不同的零点分别为,()f x ()0,112,x x则为的两个不同的解, 12,x x 20x bx a ++=所以,,12x x b +=-12x x a =故()()()222121212*********a b a x x x x x x x x x x x x ++=+--+=--+,()()()()121212121111x x x x x x x x =--=--由基本不等式可得,,()111014x x <-≤()221014x x <-≤故,因,故等号不可取, ()()1212101116x x x x <--≤12x x ≠所以的取值范围为.()21a b a ++10,16⎛⎫ ⎪⎝⎭故答案为:.10,16⎛⎫⎪⎝⎭【点睛】本题考查函数的零点、二次函数的图象和性质和基本不等式,注意用二次方程的根表示目标代数式,本题属于难题.二、单选题13.已知,条件:,条件:,则是的( ) ,a b R ∈p a b >q lg lg 1a b >+p q A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】根据充分性、必要性的定义,结合对数的运算性质和对数函数的性质进行判断即可. 【详解】若,则有,因此有,故; lg lg 1a b >+lg lg10a b >100a b >>a b >反之,若,当其中有负数时,不成立,故是的必要不充分条件. a b >q p q 故选:B14.下列函数中,值域是的是 ()0,+∞A . B . 2y x =211y x =+C . D .2x y =-()lg 1(0)y x x =+>【答案】D【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :的值域为;2y x =[)0,+∞对于B :,,, 20x ≥ 211x ∴+≥21011x ∴<≤+的值域为; 211y x ∴=+(]0,1对于C :的值域为;2x y =-(),0-∞对于D :,,,0x > 11x ∴+>()lg 10x ∴+>的值域为;()lg 1y x ∴=+()0,+∞故选D .【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题. 15.已知定义域为R 的函数满足:对任意,恒成立,则函数()y f x =,x y R ∈()()()f x y f x f y +=-( )()y f x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数【答案】C【解析】利用赋值法,再根据函数的奇偶性定义,即可求解. 【详解】令,则, 0x y ==()()()0000f f f =-=令,则,0x =()()()()0f y f f y f y =-=-令,则,即, y x =-()()(0)f f x f x =--()()=f x f x -所以函数既是奇函数又是偶函数. ()f x 故选:C.【点睛】判定函数的奇偶性的常见方法:(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称,再化简解析式验证货等价形式是否成立;()()f x f x -=±()()0f x f x -±=(2)图象法:若函数的图象关于原点对称,可得函数为奇函数;若函数的图象关于轴对称,可y 得函数为偶函数;(3)性质法:设的定义域分别为,那么它们的公共定义域上,奇+奇=奇,奇奇()(),f x g x 12,D D ⨯=偶,偶+偶=偶,偶偶=偶,奇偶=奇.⨯⨯16.设函数的定义域为D ,若函数满足条件:存在,使在上的值域为()f x ()f x [,]a b D ⊆()f x [,]a b ,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是[,]22a b()f x 2()(2)x f x log t =+t( ) A .B .C .D .1(0,]2(0,1)1(0,)41(,)4+∞【答案】C【详解】函数为“倍增函数”,且满足存在,使在上的值域为2()log (2)xf x t =+[,]a b D ⊆()f x [],a b ,所以在上是增函数 ,则,即, 方程,22a b ⎡⎤⎢⎥⎣⎦()f x [,]a b 22log (2)2log (2)2a b a t b t ⎧+=⎪⎪⎨⎪+=⎪⎩222222a a b b t t ⎧+=⎪⎨⎪+=⎩∴有两个不等实根且两根都大于零,设,有两个不等实根都大2220x xt -+=22(0)xm m =>20m m t -+=于零, , 解得,选C.121214000t x x x x t ∆=->⎧⎪+>⎨⎪=>⎩104t <<【点精】本题为自定义信息题,属于创新题型,解决自定义信息题,首先要把新定义读懂,所谓“倍缩函数”就是要满足它的定义要求的函数,函数的定义域为D ,若函数满足条件:存()f x ()f x 在,使在上的值域为,就是要求自变量取值于[a,b],对应的值域为[],a b D ⊆()f x [],a b ,22a b ⎡⎤⎢⎥⎣⎦[,]22a b ,对于所给函数按照“倍缩函数”的定义,列出需要满足的要求,化简转化后解不等式求出结论.三、解答题17.已知关于x 的不等式的解集为S . 50mx x m-<-(1)当时,求集合S ;3m =(2)若且,求实数m 的取值范围. 5S ∈7S ∉【答案】(1)5,33S ⎛⎫= ⎪⎝⎭(2) 5,1(5,7]7⎡⎫⎪⎢⎣⎭【分析】(1)将代入后,将分式不等式转化为一元二次不等式求解; 3m =(2)根据元素与集合的关系,转化为不等关系,列式求m 的取值范围. 【详解】(1)当时,, 3m =()()35035303x x x x -<⇔--<-解得:,533x <<所以不等式的集合为;533S x x ⎧⎫=<<⎨⎬⎩⎭(2)若且,5S ∈7S ∉则或,解得:或,55057507m m m m-⎧<⎪⎪-⎨-⎪≥⎪-⎩550570m m m -⎧<⎪-⎨⎪-=⎩57m <≤517m ≤<所以的取值范围是.m 5,1(5,7]7⎡⎫⎪⎢⎣⎭ 18.函数的定义域为,关于的不等式的解集为.()f x =A x 22(23)30x a x a a -+++≤B (Ⅰ)求集合;A (Ⅱ)若,试求实数的取值范围. AB A = a 【答案】(Ⅰ)(Ⅱ). (1,2)A =[1,1]-【详解】试题分析:(Ⅰ)函数有意义,则真数大于零,被开方数不小于零,分母不等于零,据此求解不等式组可得()1,2.A =(Ⅱ)求解二次不等式可得 结合可知 据此得到关于实数a 的不等式[],3.B a a =+,A B A ⋂=.A B ⊆组,求解不等式组可得的取值范围是. a []1,1-试题解析: (Ⅰ)函数则集合()f x =10,20,x x ->⎧⎨->⎩()1,2.A =(Ⅱ)解不等式()222330,x a x a a -+++≤可得. 解得 ()()30x a x a ---≤[],3.B a a =+若则,A B A ⋂=.A B ⊆所以解得:1,3 2.a a ≤⎧⎨+≥⎩1 1.a -≤≤则的取值范围是.a []1,1-19.已知函数,其中. ()y f x =()2a f x x x=-(1)讨论函数的奇偶性:()y f x =(2)若函数在区间上是严格增函数,求实数a 的取值范围.[)1,+∞【答案】(1)详见解析 (2) 2a ≥-【分析】(1)分和两种情况讨论函数的奇偶性;0a =0a ≠(2)根据条件转化为当时,,参变分离后,转化为求的范121x x ≤<()()120f x f x -<()1212x x x x +围,即可求参数的取值范围.【详解】(1)当时,, 0a =2()f x x =所以的定义域为,关于原点对称, ()f x R 又,所以是偶函数;2()()f x x f x -==()f x 当时,,所以, 0a ≠(1)1,(1)1f a f a =--=+(1)(1),(1)(1)f f f f -≠-≠-所以是非奇非偶函数;()f x (2)由题意得任取且,则恒成立,12,[1,)x x ∈+∞12x x <()()12f x f x <即,即,, 221212a a x x x x -<-222121a a x x x x -<-()()()12212112a x x x x x x x x -<-+因为,所以,, 121x x ≤<121x x >120x x -<所以恒成立,()1212a x x x x >-+又,所以,则, 122x x +>()12122x x x x +>()12122x x x x -+<-所以.2a ≥-20.某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量250x ()C x 不足件时,(万元).当年产量不小于件时,(万8021()103C x x x =+8010000()511450C x x x=+-元). 每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完. 50(1)写出年利润(万元)关于年产量(件)的函数解析式; ()L x x (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?【答案】(1) 2140250,0803()100001200(80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩(2)当产量为100件时,最大利润为1000万元【分析】(1)分两种情况进行研究,当0<x <80时,投入成本为(万元),根据年21()103C x x x =+利润=销售收入−成本,列出函数关系式,当x ≥80时,投入成本为(万10000()511450C x x x=+-元),根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案; (2)根据年利润的解析式,分段研究函数的最值,当0<x <80时,利用二次函数求最值,当x ≥80时,利用基本不等式求最值,最后比较两个最值,即可得到答案. 【详解】(1)∵①当0<x <80时,根据年利润=销售收入−成本,∴;2211()50102504025033L x x x x x x =---=-+-②当x ≥80时,根据年利润=销售收入−成本, ∴. 1000010000()505114502501200()L x x x x x x=--+-=-+综合①②可得,;2140250,0803()100001200(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩(2)①当0<x <80时,,2211()40250(60)95033L x x x x =-+-=--+∴当x =60时,L (x )取得最大值L (60)=950万元; ②当x ≥80时,,10000()1200()120012002001000L x x x =-+≤-=-=当且仅当,即x =100时,L (x )取得最大值L (100)=1000万元. 10000x x=综合①②,由于950<1000,∴当产量为100件时,该厂在这一商品中所获利润最大,最大利润为1000万元21.已知函数,若存在常数,使得对定义域内的任意,都有()y f x =()0k k >D ()1212,x x x x ≠成立,则称函数是定义域上的“利普希兹条件函数”.()()1212f x f x k x x -≤-()y f x =D k -(1)判断函数是否为定义域上的“利普希兹条件函数”,若是,请证明:若不是,21y x =+11,22⎡⎤-⎢⎥⎣⎦1-请说明理由;(2)若函数是定义域上的“利普希兹条件函数”,求常数的最小值; y =[]1,4k -k (3)是否存在实数,使得是定义域上的“利普希兹条件函数”,若存在,求实数m 1my x =-[)2,+∞1-的取值范围,若不存在,请说明理由.m 【答案】(1)是,证明见解析 (2)12(3)存在,11m -≤≤【分析】(1),由,()()()221212*********f x f x x x x x x x x x x x ---=---=-⋅+-121122x x -≤<≤得,即可解决;(2)由题知均有成立,不妨设12120,1xx x x ->+<1212|()()|||f x f x k x x -≤-12x x >,得,得,即可解决;(3)k ≥=2114x x ≤<≤1142<<由题得,不妨设,得,又,即可解()()()21121211m x x x x x x -≤---12x x <()()()12min ||11m x x ≤--122,2x x ≥>决. 【详解】(1)由题知,函数,定义域为, 21y x =+11,22⎡⎤-⎢⎥⎣⎦所以,()()()221212*********f x f x x x x x x x x x x x ---=---=-⋅+-不妨设,12x x <因为, 121122x x -≤<≤所以,12120,1x x x x ->+<所以,()()1212f x f x x x -<-所以是利普希兹条件函数21y x =+1-(2)若函数是“利普希兹条件函数”,()4)f x x =≤≤k -则对于定义域上任意两个,[1,4]1212,()x x x x ≠均有成立,1212|()()|||f x f x k x x -≤-不妨设,则 12x x>k ≥=因为,2114x x ≤<≤所以, 1142<<所以的最小值为.k 12(3)由题意得在上恒成立, 121211m m x x x x -≤---[)2,+∞即, ()()()21121211m x x x x x x -≤---不妨设, 12x x <所以, ()()()12min ||11m x x ≤--因为, 122,2x x ≥>所以,||1m ≤所以. 11m -≤≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档