变量间的相关关系
变量之间的相关关系(必修优秀课件)_图文
x
年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
距离之和:
越小越好 年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
点到直线距离的平方和:
年龄
求出回归直线的方程为:
Y^ =-2.352x+147.767
(4)当x=2时,y=143.063,因此,这天大约可以卖出143 杯热饮。
练习:
实验测得四组(x,y)的值如下表所示:
x
1
2
3
4
y
2
3
4
5
则y与x之间的回归直线方程为(海南理)对变量x,y观测数据(xi,yi)(i=1,2,...,10),得 散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,...,10),得散点图2,
2112 2110.6
3、求和
解:1、设回归方程 2、求平均数
3、求和 4、代入公式求
的值
5、写出回归直线的回归方程
用“最小二乘法”求回归直线方程的步骤
1、设回归方程 2、求平均数 3、求和
4、代入公式求
的值
5、写出回归直线的方程
三、利用线性回归方程对总体进行估计
例:有一个同学家开了一个小卖部,他为了研究气 温对热饮销售的影响,经过统计,得到一个卖出的 热饮杯数与当天气温的对比表:
变量间的相关关系
2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0
变量间的相关关系及独立性检验
判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。
变量间的相关关系教案
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
变量之间的相关关系
“变量间的相关关系”中的核心概念和思想方法解读及教学建议河北师范大学数学与信息科学学院程海奎《变量间的相关关系》的主要内容为采用定性和定量相结合的方法研究变量之间的相关关系,主要研究线性相关关系.主要概念有“相关关系”、“散点图”、“回归直线和回归直线方程”、“相关系数”等.研究方法为先绘制散点图,直观表示观测数据,定性描述变量间相关关系的类型、方向、相关程度.然后应用最小二乘法确定变量间相关关系的具体表达形式,描述变量间的数量规律,并由一个变量的取值去推测另一个变量的取值.这部分内容涉及到一些重要的统计思想和方法,对学生的学习和教师的教学都有一定的难度.本文就研究对象、核心概念、研究方法、统计思想及相关应用进行简单的解读,提出一些教学建议,希望对教学能提供一些帮助.一、相关概念及统计思想方法1.相关关系——变量间的不确定关系两个变量之间的数量关系有两种不同的类型:一种是函数关系,一种是相关关系.当一个变量取一定的值时,另一个变量有确定的值与之对应,我们称这种关系为确定的函数关系.一般把作为影响因素的变量称为自变量,把与之对应变化的变量称为因变量.当一个变量取一定的数值时,与之对应的另一个变量的值虽然不确定,但它按某种规律在一定的范围内变化,变量间的这种关系称为不确定性的相关关系.或者说两个变量之间确实存在某种关系,但不具备函数关系所要求的确定性.函数关系和相关关系都是指两个变量之间的数量关系.函数关系是两个非随机变量之间的一种确定关系,是一种因果关系.而相关关系是两个变量之间的一种不确定的关系,这两个变量中至少有一个是随机变量.两个相关变量之间可能有内在联系(真实相关),也可能完全不存在内在联系(虚假相关).之所以X和Y之间是相关关系,原因是变量X是影响变量Y的主要因素,但不是唯一因素,还有其他种种因素,而这些因素我们又不能完全把握.研究函数关系,可以用数学分析的方法.例如,已知y和x之间具有线性关系,即,此时只要知道变量的两组取值就可以确定函数表达式.研究相关关系则必须对变量进行多次观测,借助统计的相关思想和方法.例如,有人认为人的体重y 和身高x之间具有近似的二次函数关系,由三个人的身高和体重数据,确定出y和x之间的表达式.这样得到的结果很不可靠,难以使人信服.2.散点图—描述相关关系的直观工具由于相关关系的不确定性,寻找变量X和Y之间的相关关系时,首先要对变量进行观测.设n次观测值为.在直角坐标系中,横轴代表变量X,纵轴代表变量Y,将观测数据用坐标点的形式描绘出来,得到的图形称为散点图.散点图是研究相关关系的直观工具,可以定性的判断相关的方向和程度.如果散点大致分布在一条直线附近,又不完全在一条直线上,说明变量间具有线性相关关系;如果这些点大致分布在一条曲线附近,说明变量间具有非线性相关关系;如果这些点的分布几乎没有什么规则,说明两个变量间没有相关关系.对于线性相关,如果散点从左下角到右上角沿直线分布,那么两个变量正相关,如果散点从左上角到右下角沿直线分布,两个变量负相关.如果散点在整体上和某一直线越接近,表明变量间相关关系越强.3.数据分析方法—相关分析与回归分析对变量间相关关系,在定性分析的基础上,需要进行定量分析.定量分析有相关分析和回归分析两种方法.相关分析是用一个指标(称为相关系数)来反映变量间相关关系的密切程度(见人教A版必修3P85,阅读与思考).回归分析就是根据相关关系的具体形态,选择一个合适的数学模型,来近似表达变量间的平均变化关系.相关分析和回归分析具有共同的研究对象,在具体应用时,需要互相补充.作相关分析需要依靠回归分析表明变量相关的具体形式,而进行回归分析需要通过相关分析表明变量间的相关程度,只有变量间存在高度相关时,由回归分析得到的变量间的具体形式才有意义.相关分析研究变量间的相关的方向和相关程度,它不提供相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况.相关分析不必确定哪个变量是自变量,哪个是因变量,所涉及的两个变量可以都是随机变量.回归分析根据观测数据,确定一个数学方程式(回归方程),根据这个方程式可以由已知量推测未知量,为估算和预测提供一个重要方法.回归分析必须事先确定具有相关关系的变量中哪个为自变量,哪个为因变量.一般地说,自变量是普通变量(人为可以控制其取值),因变量是随机变量.4.最小二乘思想—统计学基础的重要部分当两个变量之间存在相关关系时,由于不确定性,如果只有很少几组变量观测值,很难估计误差的大小.法国法数学家勒让德(Le Gendre,1752—1833)在根据测量数据预测彗星轨道的问题时,发现了如何有效利用全部测量数据的方法.即通过计算得出一组数值,在使数据组的偏差达到最小的意义下,这些数值是最优的.由勒让德的方法得出的数值充分利用了所有数据信息,这个方法现在叫做最小二乘法.人们立即认识到勒让德发现的价值,运用最小二乘法的数学并不难,所以绝大多数从事测量的科学家,都能从这一方法中受益,他们可以充分利用数据.当时最小二乘思想在科学界迅速流传.1809年,德国数学家高斯(Gauss,1777—1855年)在一篇论文中,分析了如何充分利用一系列测量数据来预测天体轨道的问题,在文章中也叙述了最小二乘法,并声称自己发明了这一方法.事实上,勒让德第一个发表了最小二乘法思想,并影响了统计学;高斯也使用了最小二乘法,并且考虑了最小二乘法的误差分析问题,他还发现了最小二乘法理论中的重要结果,它从统计学的角度回答了最小二乘法在缩小误差上的优势,使得在勒让德那里只是处理测量数据的代数方法逐渐渗透到统计数据分析的领域,最小二乘法对统计学就象微积分对于数学中的影响一样深远,高斯的巨大声望使一些历史学家把最小二乘法归功于他.下面通过一个简单问题,阐述最小二乘思想.一段公路,实际长度为a千米,a是未知的,对公路进行n次实际测量,假设测量值为.可是每次测量都有一定的误差,这些误差或正或负,或大或小.应该如何估计a的值呢?直观的想法是a 的值应该最接近这些测量数据,数学描述就是: a的值应该使所有的误差平方和达到最小.当时,达到最小.即用测量数据的平均值作为a的估计值.这里估计参数a所采用的就是最小二乘法的思想.用数理统计知识可以证明这样的估计也是最佳的.最小二乘法的优点是:有效利用了全部测量数据,使误差平方和达到最小,防止了某一极端误差对决定参数估计值取得支配性地位.在计算上只需对参数求偏导数求解线性方程组即可.5.回归直线与回归方程当两个变量之间具有线性相关关系时,散点图中的点大致分布在一条直线附近,这条直线叫做回归直线,这条直线的方程叫做回归方程.数学模型:假设因变量y主要受自变量x的影响,它们之间的数量关系为,其中x 是非随机变量,是未知的常数.是随机误差项,它反映了未列入方程的其它各种因素对y的影响.从而y是随机变量,它可以用由x的值完全确定的部分和随机误差部分来解释.当由观测数据估计出和b时,得到直线回归方程为.将观测数据代入中,得,或,其中为n次观测的误差.求的估计值,使“从整体上看各点与直线的距离最小”.应用最小二乘思想,就是求使误差平方和达到最小的的值.可以用配方法或求偏导数的方针求出的估计值.6.相关系数—变量间线性关系密切程度的度量相关系数是用来衡量两个变量之间线性关系密切程度(强与弱)的一个数量指标.只有了解构造相关系数的统计思想,才能对相关系数有较深刻的理解.下面对相关统计量的意义及构造相关系数的统计思想做一简述.设回归方程为,与对应的回归值为.称为偏差,称为偏差方和.的值越小,反映各偏差普遍较小,数据点整体上比较接近回归直线,说明变量间线性关系比较密切.但是一个绝对量,需要进行调整.为方便引入以下记号:,,,.衡量数据的波动大小,衡量数据的波动大小.,反映主要由的变化引起的间的波动,反映除线性关系之外的各种随机因素引起的间的波动.可以证明:.令,显然,而且越接近1,就越接近0,说明x和y之间的线性关系越密切.当时,x和y正相关,当时,x和y负相关.但由于只与有关,所以不能反映相关的方向.因此定义相关系数如下:,一般越接近1,x和y之间的线性关系越密切.需要注意的两点是:(1)相关系数只衡量变量间线性关系的密切程度,即使变量间具有确定的非线性函数关系,也可能非常接近0.(2)当n 很小时,即使非常接近1,也不表明变量间的线性关系强.例如,无论x和y之间是何种关系,当n=2时,总有.二、教学建议1.“相关关系”的有关概念及定性描述相关关系的概念是描述性的,不必追求形式化上的严格.建议采用案例教学法.对比函数关系,重点突出相关关系的两个本质特征:关联性和不确定性.关联性是指当一个变量变化时,伴随另一个变量有一定的变化趋势;不确定性是指当一个变量取定值时,与之相关的变量的取值仍具有随机性.因为有关联性,才有研究的必要性.因为其不确定性,从少量的变量观测值,很难估计误差的大小,因此必须对变量作大量的观测.但每个观测值都有一定误差,为了消除误差的影响,揭示变量间的本质联系,就必须要用统计分析方法.判断两个变量间是否具有相关关系,一是凭经验及学科专业知识,二是借助散点图.下面是一些可供选择的例子,教学时可先逐一分析其关联性和不确定性,然后结合散点图,进一步判断相关关系的类型和方向.例5(非线性相关和不相关的例子)对0到18岁之间的未成年人来说,年龄和身高之间具有非线性的相关关系.对成年人来说,年龄和身高之间没有相关关系(散点图略).例6吸烟和患肺部疾病之间不具有因果关系,但具有相关关系.我们引入两值变量X和Y:如果调查了700人,其中400个不吸烟者中有40人患肺部疾病(10%),300个吸烟者中有60个人患肺部疾病(20%),说明吸烟对患肺部疾病有一定的影响.但不吸烟者也可能患肺部疾病,吸烟者也可能不患肺部疾病,因此X和Y之间具有相关关系.例7 有人曾经观察过某一国家历年的国内生产总值与精神病患者的人数的关系,发现两者之间存在较强的正相关.实际上国内生产总值与精神病患者的人数之间没有内在联系,是一种典型的虚假相关.这是因为它们都和人口总量有内在的相关关系.说明:(1)适当例举非线性相关和不相关的例子,有助于对相关关系的全面了解,但我们研究的重点是线性相关关系,而且正相关或负相关只对线性相关有意义.(2)讨论“相关关系”时,对中学生来说,不要求说明哪个变量是随机变量,哪个变量是普通变量.(3)根据学生实际情况,可以从散点图判断线性关系的强弱,进行适当拓展.2.相关关系的定量描述——求回归直线方程本小节的重点是用最小二乘法求回归直线方程.采用探究式教学方式.在给出回归直线和回归直线方程的定义后,提出如下问题:如何求回归直线方程,要求这条直线在整体上与数据点最接近?许多统计思想和方法都比较直观,学生可能提出各种不同的方法,包括教材上列举的方法.为了防止漫无目的,对求回归直线的方法应提出一些基本要求:尽可能利用全部数据,体现整体偏差最小,便于数学计算,结果确定等.离这些要求越来越远的方法,不必多加考虑.通过对有些方法逐步修正,最后引导到使用最小二乘法求回归直线方程.方法1:逐渐移动直线,测量各点到直线的距离,使距离和最小.该方法体现了整体偏差最小的思想,缺点是难以实现,而且测量的方法很难得到确定的结果.方法2:选择两点画直线,使直线两侧的点的个数基本相同.这种方法没有利用全部数据信息,其结果会因人而异.方法3:用多条直线的斜率和截距的平均值作为回归直线的斜率和截距.这种方法既没有利用全部数据信息,也没有体现整体误差最小的思想,结果也不确定.设回归方程为,,是第i个观测值的偏差,是第i个观测点到回归直线的距离.设是回归直线的倾斜角,则.方法4:距离和最小.求a,b使达到最小.这是方法1的数学严格化.方法5:总的偏差和最小.求a,b使达到最小.方法4和方法5是等价的.方法5利用了全部数据,体现整体偏差最小的思想,结果是唯一确定的.唯一的缺点是不便数学计算.方法6偏差平方和最小.求a,b使达到最小.该方法克服了方法5的缺点.这种方法称为最小二乘法.说明:(1)我们的目的是通过探究找到一个求回归方程的“较优”的方法,这里所说的“较优”也是基于直观的思想,在学生现有的知识水平下,无法严格证明.如果对用上面的方法得到直线的“优劣”进行评判,我认为是理解上的偏差,况且也做不到.(2)应用最小二乘法求回归方程是一个纯数学的问题,用配方法显得繁琐,用求偏导数的方法超出了学生的能力要求.对此不做要求,直接给出a,b的公式,不影响对统计方法的理解.(3)也可以按下面的过程展开教学.①提供实际问题情境,从测量数据出发,采用偏差平方和最小的思想(最小二乘思想)求参数的估计值.②通过类比用最小二乘法求回归直线方程.3.回归方程的计算回归方程中a,b的计算公式比较复杂,要求利用计算器或计算机进行计算.为了熟悉公式的构成及相关量的计算过程,建议使用Excel软件中的公式进行计算.以年龄和脂肪含量的关系为例.如下表所示:在相应的单元格内输入数据,第15行为合计.先计算,,在单元格C1,D1,E1中输入相应的公式.通过公式复制然后求和得到:(C15)(D15)(E15),相关系数,,回归方程为.作为拓展还可以计算与对应的回归值,与实际观测值进行比较,了解偏差的大小.由相关系数的大小判断线性关系的强弱.4.回归方程的意义及应用回归直线方程作为变量x和y之间线性关系的代表,它近似描述了x和y之间的数量关系.利用回归方程,当已知x的值时,可以推断y的取值.回归方程中b的意义为:当自变量x改变一个单位时,因变量y的平均改变量.为当时y的估计值,也可以理解为当时y的可能取值的平均值.在教学中下面的实例可供选择.例1主要解释系数b和回归值的意义;例2说明回归方程用于预测时的作用;例3介绍“回归”一词的由来的背景知识,同时也说明了回归方程在揭示了变量间的依存规律时的作用.例1 年龄和脂肪含量之间的回归方程为.(1)解释b(0.5765)的意义;(2)当x=37时,计算相应的值并解释其意义.解(1)回归直线方程中b是直线的斜率,b>0表示随年龄的增长,人体脂肪含量呈现增长的趋势,b=0.5765说明年龄每增加1岁,身体脂肪含量平均增加0.5765%.(2)当x=37时,%,20.9%是37岁的人脂肪含量的一个估计值,可以理解为众多37岁人脂肪含量的平均值.说明:年龄的取值范围为23—61岁,一般在这个年龄范围内估计脂肪含量时误差相对较小,如果估计80岁人的脂肪含量,误差会很大,结果不可靠.例2 某博物馆发现文物被盗,公安刑侦人员经过分析,推测案犯的身高在175㎝左右.刑侦人员是如何推断的呢?原来在现场发现了案犯的脚印,测量脚印的长度为25.5㎝,已知成年人的脚印长x和身高y 之间存在线性相关关系,回归方程为.因此可以从脚印的长度,推断其大致身高,为破案提供重要线索.例3 英国遗传学家高尔顿(Francis Galton,1822-1911年)在子女与父母相像程度遗传学研究方面,取得了重要进展.高尔顿的学生卡尔·皮尔逊(Karl Pearson,1857-1936年)在继续这一遗传学研究的过程中,测量了1078个父亲及其成年儿子的身高.用x表示父亲的身高,y表示儿子的身高(单位为英寸).求得回归方程为(如图所示),发现了一个重要的规律.主要计算结果及描述见下表:时,时,高尔顿和皮尔逊把这种现象称为“回归效应”,现在人们把由一个变量的变化去推断另一个变量变化的方法统称为回归分析.参考文献[1] 袁卫,庞皓,曾五一.统计学.高等教育出版社,2000年.[2] 魏宗舒等.概率论与数理统计教程.高等教育出版社,1983年.[3] (美)John Tabak 著,杨静译.不明确的科学.商务印书官,2008年。
3 变量间的相关关系
第二章 统 计
对预处理后的数据, 容易算得 x =0, y =3.2. ^b=-4×-21+42-+242×+4-2+114+ 2 2×19+4×29 =24600=6.5,
栏目 导引
第二章 统 计
栏目 导引
第二章 统 计
②函数关系与相关关系的区别与联系 确定性关系
栏目 导引
第二章 统 计
非确定性
栏目 导引
第二章 统 计
栏目 导引
第二章 统 计
(2)两个变量相关关系的判断 ①散点图的概念 将样本中n个数据点(xi, yi)(i=1,2, …, n)描 在平直角坐标系中得到的图形. ②正相关与负相关 a. 正相关: 散点图中的点散布在从左下角 到右上角的区域. b. 负相关: 散点图中的点散布在从左上角 到右下角的区域.
栏目 导引
第二章 统 计
【名师点评】 求线性回归直线方程的步骤如下: (1)列表表示 xi, yi, xiyi;
, xiyi;
i=1 i=1
(3)代入公式计算 b, a 的值; (4)写出线性回归直线方程.
栏目 导引
第二章 统 计
互动探究 2. 如果把本题中的y的值: 2.5及4.5分别改 为2和5, 如何求回归直线方程.
栏目 导引
第二章 统 计
做一做 1.下列变量之间的关系不是相关关系的是 () A. 二次函数y=ax2+bx+c中, a, c是已知 常数, 取b为自变量, 因变量是判别式 Δ=b2-4ac B. 光照时间和果树亩产量 C. 降雪量和交通事故发生率
栏目 导引
第二章 统 计
D. 每亩田施肥量和粮食亩产量 解析: 选A.在A中, 若b确定, 则a, b, c都是常 数, Δ=b2-4ac也就唯一确定了, 因此, 这两 者之间是确定性的函数关系; 一般来说, 光 照时间越长, 果树亩产量越高; 降雪量越大, 交通事故发生率越高; 施肥量越多, 粮食亩 产量越高. 所以B, C, D是相关关系. 故选A.
两个变量间具有相关关系可以说明它们之间具有因果关系
两个变量间具有相关关系可以说明它们之间具有因果
关系
两个变量之间既可以是一种因果关系,也可能是一种相关关系,两个变量间有相关关系并不必然就有因果关系。
两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
变量之间的相关关系
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
变量间的相关关系教案
变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
变量之间的相关关系和茎叶图知识(小结)
在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
2、在研究两个变量之间是否存在某种关系时,必须 从散点图入手。对于散点图可以作出如下判断:
(1)函数关系:如果所有样本点都落在某一函数 曲线上,就用该函数来描述变量之间的关系,即变 量之间具有函数关系;(自变量取值一定时,因变 量取值唯一确定) (2)变量之间相关关系:如果所有的样本点都落 在某一曲线附近,变量之间就有相关关系;(自变 量取值一定时,因变量取值带有一定的随机性)
乙
2, 5, 1, 4, 0
5 4 6, 1, 6, 7, 9 9
叶
茎
叶
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计 图上没有原始数据信息的损失,所有数据信息都可以 从茎叶图中得到;二是茎叶图中的数据可以随时记录, 随时添加,方便记录与表示。 (2)茎叶图只便于表示两位有效数字的数据,而 且茎叶图只方便记录两组的数据,两个以上的数据虽 然能够记录,但是没有表示两个记录那么直观,清晰。
3、正相关(教材P86)
散点图散布在从左下角到右上角的区域。
特点:一个变量随另一个变量变大而变大。(类似 于单调增函数) 4、负相关(教材P86) 散点图散布在从左上角到右下角的区域。 特点:一个变量随另一个变量变大而变小。(类似 于单调减函数)
4、回归直线(教材P87)
如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具 有线性相关关系,这条直线叫做回归直线。 这条直线的方程叫做回归直线方程(简称回 归方程)。
练习:
下表一组数据是某车间30名工人加工零件的个数, 设计一个 茎叶图表示这组数据,并说明这一车间的生产情况.
134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
变量间的相关关系
变量间的相关关系1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。
这就是我们这节课要共同探讨的内容————变量间的相关关系。
例1、根据样本数据作出散点图,直观感知变量之间的相关关系。
在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。
下面我们就用这些方法来研究相关关系。
看这样一组数据:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系?结论:随着年龄增长,脂肪含量在增加。
用x轴表示年龄,y轴表示脂肪。
一组样本数据就对应着一个点。
2、散点图这个图跟我们所学过的函数图象有区别,它叫作散点图。
3、判断正、负相关、线性相关:请观察这4幅图,看有什么特点?图1呈上升趋势,图2呈下降趋势。
这就像函数中的增函数和减函数。
即一个变量从小到大,另一个变量也从小到大,或从大到小。
对于图1中的两个变量的相关关系,我们称它为正相关。
图2中的两个变量的相关关系,称为负相关。
后面两个图很乱,前面两个图中点的分布呈条状。
从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。
我们称图1、2中的两个变量具有线性相关关系。
这条直线叫做回归直线。
图3、4中的两个变量是非线性相关关系1、找回归直线下面我们再来看一下年龄与脂肪的散点图,图12图图3图4从整体上看,它们是线性相关的。
如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。
这条直线可以作为两个变量具有线性相关关系的代表。
能否画出这条直线?多种方法展示总结:所有的点离这条直线最近的方案最好。
从整体上看,各点与此直线的距离和最小。
变量间的相关关系
变量间的相关关系 【知识梳理】(1)相关关系:当自变量的取值一定时,因变量的取值带有 ,那么这两个变量之间的关系叫做 ,如果一个变量的值由小变大时,另一个变量的值也由小到大,这种相关称为 ,反之,如果一个变量的值由小变大,另一个变量的值由大到小,这种关系为 (2)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做回归直线. (3)线性回归方程方程y=ˆbx+ˆa 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中ˆb , ˆa 是待定参数.ˆˆb a ⎧=⎪⎨=⎪⎩【基础练习】1.(2009·海南高考题)对变量x ,y 有观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关2.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程ˆy=ˆb x +ˆa 表示的直线一定过定点________.3. (原创题)经研究表明,学生的体重y(单位:kg)与身高x(单位:cm)有很强的线性相关关系,其回归方程为y=0.75x-68.2,如果一个学生的身高为170 cm ,则他的体重( ) A. 一定是59.3 kg B. 一定大于59.3 kg C. 有很大的可能性在59.3 kg 左右 D. 一定小于59.3 kg 【互动探究】【例1】(1)如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?画出散点图,并判断它们是否有相关关系【例2】 三点(3,10),(7,20),(11,24)的回归方程是( )A.y ∧=-5.75+1.75xB.y ∧=1.75x +5.75C.y ∧=-1.75x +5.75 D.y ∧=-1.75x -5.75练习:一家保险公司调查其总公司营业部的加班程度,收集了5周中每周加班工作时间y (小时)与签发新保单数目x 的数据如下表:【例3】(2007·广东卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =ˆbx +ˆa ; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)练习: (原创题)某服装厂引进新技术,其生产服装的产量x (百件)与单位成本y (元)满足回归直线方程y =149.36-16.2x ,则以下说法正确的是( ) A. 产量每增加100件,单位成本下降16.2元 B. 产量每减少100件,单位成本上升149.36元 C. 产量每增加100件,单位成本上升16.2元 D. 产量每减少100件,单位成本下降16.2元【当堂检测】1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形相对应的是( ) A .a —①,b -②,c -③ B .a -②,b -③,c -①C .a -②,b -①,c -③D .a -①,b -③,c -② 2.(2010·湖南,3)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200 C.y ∧=-10x -200 D.y ∧=10x -200 3.设有一线性回归方程为y =2-1.5x ,则变量x 增加一个单位时,y 平均减少________个单位. 4.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是( ) A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.235.若施化肥量x kg 与水稻产量y kg 在一定范围内线性相关,若回归方程为y ^=5x +250.当施化肥量为80 kg 时,预计水稻的产量为________.6. 实验测得4组(x,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为 ( ) A. y =x+1B. y =x+2C. y =2x+1D. y =x-17.具有线性相关关系的两个变量满足如下关系:A. y =0.56x +997.4B. y =0.63x -231.2C. y =50.2x +501.4D. y =60.4x +400.7 8. 一般来说,一个人的脚越长,他的身高就越高.现对10名成年人的脚长x 与身高y 进行测量,得如下数据(单位:作出散点图后,发现散点在一条直线附近.经计算得到一些数据:x =24.5,y =171.5,()()101iii x x y y =--=∑577.5, ()2101ii x x =-∑=82.5.某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长26.5 cm ,请你估计案发嫌疑人的身高为 cm.。
两个变量间相关关系的举例
两个变量间相关关系的举例相关关系是指两个变量之间的变化是否存在某种联系或者依赖。
在统计学中,我们可以通过计算相关系数来度量两个变量之间的相关程度。
下面,我将为你举例说明两个变量间的相关关系。
举例一:首先,我们来看身高和体重之间的相关关系。
身高和体重是人体的两个重要指标,一般来说,身高越高,体重也会相应增加。
我们可以通过一个调查统计来验证这种关系。
在调查中,我们随机选择了1000名男性被试,记录了他们的身高和体重。
通过运用统计学方法,我们计算得到了身高和体重之间的相关系数为0.8,这说明身高和体重之间存在着强正相关关系。
也就是说,身高增加会促使体重的增加。
举例二:其次,让我们来考察学习时间和考试成绩之间的相关关系。
有一种常见的观点是,学习时间越多,考试成绩也会越好。
我们可以通过一个实验证明这种关系。
我们在一所学校中随机选取了500名学生,将他们分为两组:一组进行了加强学习时间的训练,每天学习4个小时;另一组保持正常学习时间,每天学习2个小时。
在经过一段时间的训练后,我们进行了一次考试,记录了两组学生的考试成绩。
通过对比两组学生的考试成绩,我们发现加强学习时间组的平均分高于正常学习时间组,这说明学习时间和考试成绩之间存在着正相关关系。
举例三:再次,让我们来研究睡眠时间和工作效率之间的相关关系。
一般来说,充足的睡眠对于提高工作效率很重要。
为了验证这个假设,我们进行了一项睡眠实验。
我们让20名被试者进行七天的实验,在前三天,他们每晚只睡4个小时;在后四天,他们每晚睡眠时间恢复到正常的8个小时。
在每天的工作结束后,我们记录了被试者当天的工作成绩。
通过实验数据的分析,我们发现在睡眠时间缺乏的前三天,被试者的工作效率明显降低;而在恢复充足睡眠的后四天,工作效率也得到了明显的提高。
这表明睡眠时间和工作效率之间存在着正相关关系。
以上三个例子表明,两个变量之间的相关关系可以通过实验证明或者调查统计来证实。
将变量之间的相关关系研究清楚,对我们了解事物的本质以及提高效率具有重要意义。
变量间的相关关系教案
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,掌握相关系数的定义和计算方法。
2. 培养学生运用相关系数分析实际问题,判断变量间的关系。
3. 引导学生利用图表和数据进行推理和分析,提高学生的数据分析能力。
二、教学内容:1. 相关关系的概念和性质2. 相关系数的定义和计算方法3. 相关系数的大小与变量间关系的强度和方向4. 实际问题中的相关关系分析三、教学重点与难点:1. 重点:相关关系的概念、相关系数的定义和计算方法,相关系数的大小与变量间关系的判断。
2. 难点:相关系数计算公式的理解和应用,实际问题中的相关关系分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实例认识相关关系。
2. 利用图表和数据进行分析,帮助学生理解相关系数的含义和作用。
3. 结合生活中的实际问题,培养学生运用相关系数分析和解决问题的能力。
五、教学准备:1. 准备相关关系的实例和数据,制作PPT进行展示。
2. 准备相关系数计算器,方便学生进行实践操作。
3. 准备一些实际问题,用于课堂讨论和分析。
六、教学过程:1. 引入:通过一个简单的实例,如身高和体重之间的关系,引导学生思考变量间的关系。
2. 讲解相关关系的概念和性质,解释相关系数的作用。
3. 讲解相关系数的定义和计算方法,引导学生理解相关系数的大小与变量间关系的强度和方向。
4. 进行实际问题分析,让学生运用相关系数判断变量间的关系。
5. 总结本节课的重点内容,布置课后作业。
七、课堂练习:1. 让学生使用相关系数计算器,计算给定数据集的相关系数。
2. 让学生分析实际问题中的相关关系,判断变量间的关系强度和方向。
3. 让学生解释相关系数在实际问题中的应用和意义。
八、课堂讨论:1. 引导学生讨论实际问题中的相关关系,分享彼此的想法和观点。
2. 引导学生从相关系数的角度分析实际问题,提出解决方案。
3. 鼓励学生提出问题,促进课堂互动和思考。
九、课后作业:1. 让学生完成相关关系练习题,巩固所学知识。
变量间的相关关系、统计案例
2.独立性检验思想的理解 独立性检验的思想类似于反证法,即要确定“两个变量 X 与 Y 有关 系”这一结论成立的可信度,首先假设结论不成立,即它们之间没有关 系,也就是它们是相互独立的,利用概率的乘法公式可推知, (ad-bc) nad-bc2 接近于零,也就是随机变量 K = 应该很小,如 a+bc+da+cb+d
A.y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心( x , y ) C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 kg D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg
【名师点评】 求样本数据的线性回归方程的步骤 第一步,计算平均数 x , y ;
2 第二步,求和i∑ x y , ∑ x ; i i =1 i=1 i n n
∑ xi- x yi- y ∑ x y -n x y =1 =1 i i i i ^= 第三步,计算b = n 2 , n 2 2 ∑ xi- x ∑ x -n x i=1 i=1 i ^= y -b ^x; a ^x+a ^. 第四步,写出回归方程^ y=b
2
由于 9.967>6.635, 所以在犯错误的概率不超过 0.01 的前提下认为该 地区的老年人是否需要帮助与性别有关.
• (3)由(2)的结论知,该地区老年人是否需 要帮助与性别有关,并且从样本数据能看 出该地区男性老年人与女性老年人中需要 帮助的比例有明显差异,因此在调查时, 先确定该地区老年人中男、女的比例,再 把老年人分成男、女两层并采用分层抽样 方法,比采用简单随机抽样方法更好.
• 考向二 回归方程的求法及回归分析 • [例2] (2013年淄博模拟)某种产品的宣传 费支出x与销售额y(单位:万元)之间有如 下对应数据:
变量之间的相关关系
变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?
变量间的相关关系教案
变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。
通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。
1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。
在本课程中,我们将关注两种类型的变量:定量变量和分类变量。
1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。
相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。
第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。
它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。
2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。
2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。
2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。
第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。
它适用于非正态分布的数据或有序分类变量。
3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。
3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。
3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。
第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。
高中数学必修三-变量间的相关关系
变量间的相关关系知识集结知识元变量之间的相关关系知识讲解1、变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系.当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系.2、线性相关和非线性相关:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系.3、两个变量相关关系与函数关系的区别和联系(1)相同点:两者均是两个变量之间的关系.(2)不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例题精讲变量之间的相关关系例1.用线性回归模型求得甲、乙、丙3组不同的数据的线性相关系数分别为0.81,-0.98,0.63,其中___(填甲、乙、丙中的一个)组数据的线性相关性最强.例2.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)例3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.例4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.两个变量的线性相关知识讲解1.散点图【知识点的知识】1.散点图的概念:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念:从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合.3.正相关和负相关:(1)正相关:对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到右上角的区域内.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散布在从左上角到右下角的区域.3、注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系.4、散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形.特点是能直观表现出影响因素和预测对象之间的总体关系趋势.优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系.散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度.2.线性回归方程【概念】线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.【实例解析】例:对于线性回归方程,则=解:,因为回归直线必过样本中心(),所以.故答案为:58.5.方法就是根据线性回归直线必过样本中心(),求出,代入即可求.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.【考点点评】这类题记住公式就可以了,也是高考中一个比较重要的点.3.最小二乘法【概念】最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达.【例题解析】例:关于x与y有如表数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程为y=0.7x+0.35.解:∵由题意知,,∴=0.7∴要求的线性回归方程是y=0.7x+0.35,故答案为:y=0.7x+0.35.集体步骤就是先做出x,y的平均数,代入的公式,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【考点解析】最小二乘法一般在线性拟合中应用的比较多,主要是一种方法,能够熟记如何操作就可以了,剩下的就是计算要认真.例题精讲两个变量的线性相关例1.'2018年9月17日,世界公众科学素质促进大会在北京召开,国家主席习近平向大会致贺信中指出,科学技术是第一生产力,创新是引领发展的第一动力某企业积极响应国家“科技创新”的号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据{x i,y i)(i=1,2,3,4,5,6),如表(1)求出p的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价:x(百元)的线性国归方程y=bx+a(计算结果精确到整数位);(3)用表示用正确的线性回归方程得到的与x对应的产品销的估计值当销售数据(x i,y i)的残差的绝对值|y i-y|<1时,则将销售数据称为一个“有效数据”现从这6组销售数中任取2组,求抽取的2组销售数据都是“有效数据”的概率.参考公式及数据=y i=80,=1606,=91,,'例2.'某地种植常规稻α和杂交稻β,常规稻α的亩产稳定为485公斤,今年单价为3.70元/公斤,估计明年单价不变的可能性为10%,变为3.90元/公斤的可能性为70%,变为4.00的可能性为20%.统计杂交稻β的亩产数据,得到亩产的频率分布直方图如图①.统计近10年杂交稻β的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(x i,y i)(i=1,2,..10),并得到散点图如图②.(1)根据以上数据估计明年常规稻α的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻β的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻β的亩产超过795公斤的概率;(3)①判断杂交稻β的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;②调查得知明年此地杂交稻β的种植亩数预计为2万亩.若在常规稻α和杂交稻β中选择,明年种植哪种水稻收入更高?统计参考数据:=1.60,=2.82,(x i)(y i)=-0.52,(x i)2=0.65,附:线性回归方程=bx+a,b=.'当堂练习单选题练习1.用模型y=ce kx拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+2,则c=()A.e2B.e4C.2D.4练习2.根据最小二乘法由一组样本点(x i,y i)(其中i=1,2,…,300),求得的回归方程是=x+,则下列说法正确的是()A.至少有一个样本点落在回归直线=x+上B.若所有样本点都在回归直线=x+上,则变量间的相关系数为1C.对所有的解释变量x i(i=1,2….300).bx i+的值一定与y i有误差D.若回归直线=x+的斜率b>0,则变量x与y正相关练习3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14练习4.根据如下样本数据得到的回归直线方程为=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0练习5.下列表格所示的五个散点数据,用最小二乘法得出y与x的线性回归直线方程为,则表格中m的值应为()A.8.3B.8.2C.8.1D.8练习6.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程,则实数a的值为()A.37.3B.38C.39D.39.5练习1.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)练习2.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为_____.练习3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.练习4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.练习1.'2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如表:(1)从表中所给的7个贫困发生率数据中心任选两个,求两个都低于5%的概率;(2)设年份代码x=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率y与年份代码x的相关情况,并预测2019年贫困发生率.'练习2.'某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用x i与年销售量y i(i=1,2…,10)的数据,得到散点图如图所示.(1)利用散点图判断y=a+bx和y=c∙x d(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令u i=lnx i,v i=lny i,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求y关于x的回归方程;(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18y-x(其中e≈2.71828),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+的斜率和截距的最小二乘估计分别为=,=.'基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表(1)观察数据看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001):(2)求y关于x的线性回归方程,并预测该公司2019年4月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲,乙两款车型报年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆行科学模拟测试,得到两款单车使用寿命表如下经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?参考数据(x i)2=17.5,(y i)2=76,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归方程=x中斜率和截距的最小二乘估计公式分别为=,=近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a∙b x拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据表中v i=lgy i,=lgy i②参考公式:对于一组数据(u1,v1),(u2,v2)…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=-β.'习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x的高度为ycm,测得一些数据图如下表所示作出这组数的散点图如图.(1)请根据散点图判断,y=ax+b与y=c+d中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数)附:=,参考数据:'某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为,=,=-。
两个变量的相关关系
.
知识回顾
1 相关关系
①变量之间除了函数关系之外,还有相关关系,即从总的变 化趋势来看变量之间存在着某种关系,但这种关系又不能用 函数精确表达出来.
②两个变量之间产生相关关系的原因是许多不确定的随机 因素的影响.
③需要通过样本来判断变量之间是否存在相关关系.
2 正关系、负相关、散点图
. 方案2、在图中选两点作直线,使直线两侧
的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再求出这些直线的 斜率和截距的平均值作为回归直线的斜率和截距。而得回归方 程。 如图:
从上表发现,对某个人不一定有此规律,但对很多个体放在 一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
如图:
脂肪含量 40 35
30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
x,
y,
x2, i
xi
y i
;
i 1
i 1
第三步:代入公式计算b,a的值;
第四步:写出直线方程。
练习:书P92A组1、3
作业:P94 A组 2
我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线叫回归方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80
-10
0
散落在直线的附近
有相同的变化趋势
有相反的变化趋势
系列1
10
20
30
40
线性相关 正相关
负相关
初步探索,直观感知
左面的散点图中,点散布在从左下角 到右上角的区域,对于两个变量的这种相 关关系,我们将它称为正相关。
右面的散点图中,点散布在从左上角 到右下角的区域,对于两个变量的这种相 关关系,我们将它称为负相关。
20
0
0
0
问题4 20
40
60
80
-10
0
10
20
30
40
(1)两个散点图的有什么共同之处?
(2)两个散点图的点的分布有什么不同?
初步探索,直观感知 探究三:线性相关、正相关、负相关
40 35 30 25 20 15 10
5 0
0
20
40
60
180
160
140
120
100 系列1
80
60
40
20
0
3).如果所有的样本点都落在某一直线附近, 变量之间就有线性相关关系 .
散点图:用来判断两个变量是否具有相关关系.
判断下列图形中具有线性相关关系的两个 变量是
C
初步探索,直观感知 探究三:线性相关、正相关、负相关
40
180
35
160
30
140
25
120
100
20
系列1
系列1
80
15
60
10
40
5
变量之间的相关关系
两个变量间存在着某种关系,带 有不确定性(随机性),不能用函数
关变系精量确地间表的达出相来,关我们关说这系两个
变量具有相关关系.
初步探索,直观感知
探究一: 两个变量间的相关关系
问题1、对于两个变量之间的关系, 我们之前学过,函数关系是一种确定性 关系。那么下列变量与变量之间哪些是 函数关系,哪些是相关关系?
回归直线
脂肪含量
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
如何具体的求出这个回归直线方程呢?
整体上最接近
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
回归直线
i 1
i1
n
xi yi nx y
b
i1 n
,a y bx
xi2 nx 2
i1
第四步,写出回归方程
2.回归直线经过样本点中心(x, y)
高斯的假定:(平均数天然合理)
例.(广东高考)下表提供了某厂节能降耗技术 改造后生产甲产品过程中记录的产量x吨与相应 的生产能耗y(吨标准煤)的几组对照数据.
400
10
200
5
0
0
0
20
40
60
80
0
5
10
15
观察左面散点图,发现这些点大致
分布整体上看大致在一条__直__线__附近,我们 就称这两个变量之间具有线性相 关关系, 这条直线叫做_回__归__直__线__。
散点图 说明
1).如果所有的样本点都落在某一函数曲线上, 就用该函数来描述变量之间的关系,即变量之 间具有函数关系. 2).如果所有的样本点落在某一函数曲线附近, 变量之间就有相关关系。
x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图. (2)根据上表数据用最小二乘法求出y关于x 的线性回归方程. (3)由(2)预测技改后生产100吨甲产品的 生产能耗是多少吨标准煤?
(参考数值:3 2.5+43+54+64.5=66.5)
解:(1)根据题意,作图可得, (2)由系数公式可知,
①请正同方学形们边试长举与几面个积现之实间生的活关中系相关关 系的②例圆子的。半径与圆的周长之间的关系
③年龄与人体的脂肪含量之间的关系 ④数学成绩与物理成绩之间的关系.
相关关系
初步探索,直观感知 如何进行数据分析? 探究二:散点图
问题2、在一次对人体脂肪含量和年龄的关 系的研究中,研究人员获得了一组样本数据:
xi yi nx y
b i1 n
i 1 n
(xi x)2
xi2 nx 2
i1
i1
a y bx
利用公式可求得年龄和人体脂肪含量
的样本数据的回归方程为
yÙ = 0.577x - 0.448
由此我们可以根据一个人的年龄预测
其体内脂肪含量的百分比的估计值.若某人
65岁,则其体内脂肪含量的百分比约为多
少?
0.577×65-0.448=345037.1
30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
小结
1.求样本数据的线性回归方程,可按 下列步骤进行:
第一步,计算平均数 x , y
第二步,求和 第三步,计算
n
n
, xi yi
xi 2
实际上,求回归直线的关键是如何用数学的方 法来刻画“从整体上看,各点与此直线的距离最 小”.
Q = (y1-bx1-a)2 + (y2-bx2-a)2 +…+ (yn-bxn-a)2 问题归结为:a,b取什么值时Q最小,即总体和最小.
这一方法叫最小二乘法
计算回归方程的斜率与截距的一般公式:
n
n
(xi x)( yi y)
b
66.5 4 4.5 3.5 86 4 4.52
0.7
a 3.5 0.74.5 0.35
yˆ 所以线性回归方程为 =0.7x+0.35;
(3)x=100时, yˆ =0.7x+0.35=70.35,
所以预测生产100吨甲产品的生产能耗为70.35吨标准煤.
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
初步探索,直观感知
问题3 下面两个散点图中点的分
布有什么不同?
种植西红柿,施肥量与产量
年龄与脂肪含量之间的散点图
之间的散点图
40
1200
35
1000
30
25
800
20
系列6010
系列1
15
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
根据上述数据,人体的脂肪含量与 年龄之间有怎样的关系?
脂肪含量