二次根式经典分类题型
二次根式考试题型汇总
二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。
2)当x≥-1时,求式子√(x+1)+√(1-x)的值。
题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。
例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。
例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。
题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。
已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。
6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。
题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。
二次根式常见题型精析
二次根式题型总结例1、求下列各式有意义的所有x 的取值范围。
();();();();();()13221312411521645332-++-++-----x x x x x xx x x x例2、把下列各根式化为最简二次根式:()()(),()(),19600224750325121003234a b a b a b ca b ≥≥≥≥例3、判断下列各组根式是否是同类根式:();;()当时,,,117531516238534202--<<+-m n n m m n n m mn例4、把下列各式的分母有理化:()();();()11232252323111101-++-+--≤≤a aa aa 例5、计算:()()()11841213233215121333352253121262-++⎛⎝⎫⎭⎪÷÷+⎛⎝ ⎫⎭⎪--+--例6、化简:()()()1424422242242222a ba ba ab ba a a a a a--÷++++++++-例7、化简练习:()()()()()()()()()()·10262633323464411025125522223222222->------>--+++-+-<<⎛⎝ ⎫⎭⎪------st s m m m x x x x x x a b a b a b b a()||例8、化简求值:已知:223223-=+=b a ,求:ab a b 33+的值。
【专项训练】:一、选择题:在以下所给出的四个选择支中,只有一个是正确的。
1、()a a -=-112成立的条件是:A .a ≠1B .a ≥1C .a <1D .a ≤12、把227化成最简二次根式,结果为: A .233B .29C .69D .393、下列根式中,最简二次根式为:A .4xB .x 24-C .x 4D .()x +424、已知t <1,化简1212---+t t t 得: A .22-t B .2t C .2 D .05、下列各式中,正确的是: A .()-=-772B .()-=07072.. C .()-=7722D .()-=07072..6、下列命题中假命题是:A .设()x x x <-=-02,则 B .设x x x<=-012,则C .设x x x <=02,则D .设()x xx <=0222,则7、与23是同类根式的是: A .50 B .32 C .18D .758、下列各式中正确的是: A .235+=B .2323+=C .3434a x x a x -=-D .127390-= 9、下列各式计算正确的是:A .868686142222+=+=+=B .8442x y x y =C .10610610642822-=+-=⨯=·D .--=--=254925495710、计算()()105453515-÷-的结果是:A .-3B .3C .33D .-33二、计算(字母取正数)()()()()·()·()·()()()()()()()()()()15728249656243332454335905181481621462104107294587329322525321043321118412143212712548213931334166933322m m n mnn m a ba a a ÷÷-⎛⎝ ⎫⎭⎪-----+----+++-()1141015075132152232121163621623312a()()·()-++-+-⎡⎣⎢⎤⎦⎥+++++三、1、化简--+a a a 32442、已知:x y =+=-123123,求:x xy y 225-+3、若5的整数部分为a ,小数部分是b求:a b-1的值。
初二数学下册:二次根式10个常考类型题精选
初二数学下册:二次根式10个常考类型题精选考点二次根式1.二次根式的有关概念(1)二次根式:该式子称作二次根式。
注意被开方数a只能是非负数。
并且根式也是非负数。
(2)最简二次根式:被开方数不含分母,不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。
2.二次根式的性质3.二次根式的运算(1)二次根式的加减:先把二次根式化为最简二次根式,再合并同类二次根式。
(2)二次根式的乘除:和(3)二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
二次根式的运算结果一定要化成最简二次根式。
常考的10个类型题点评:关于二次根式的根号内外的“移进”和“移出”,关键是要抓住二次根式的被开方数是非负数这个特点,先确定字母的隐含的取值范围,再结合进行“移进”和“移出”的变形化简;这类题在考试中常出现在考题的填空和选择题中,是正确率比较低的热点考题高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a的值挖出来,从而使问题得以解故④正确;根据垂直平分线的判定并结合图象可知EF是线段BC的垂直平分线,⑤正确故选①④⑤点评:几何的相关计算中往往要通过二次根式的计算或化简来解决不在少数,是中考和各类考试的热点考题;这类题型把二次根式的计算或化简和勾股定理即其它几何知识很好结合在一起考察,是数形结合等思想方法较好体现。
这类题型还很容易与函数及其图象结合在一起。
end。
二次根式各种题型核心题40道——韩春成老师
2
八、比较大小 39. 【中】(2011 南京三中期末考试)若 c 1 , x c c 1 , y c 1 c , z c 2 c 1 ,则 x 、 y 、 z 的大小关系是________. 40. 【中】(北京西城区期末)下列判断正确的是( ) 3 A. 2 3 2 B. 2 2 3 3 C.1
原式 2 【答案】C
1 1 1 4x 1≥ 0 ,故 x ,y ,∴ 可知, 1 4 x ≥ 0 , 2 4 2
题型三: a 2b a b 【答案】C
3 【解析】由题意, a 1 a ≥ 0 , 1 a 0 ,∴ a 3≥0 ,即 a ≤ 0 ,
故 a3 1 a a a 1 a 【答案】D 题型四: a a ≥ 0
题不在多,而在于精!
越付出越富有!
【各章节核心题系列——二次根式 40 题】
(韩春成长期班学员内部资料)
第一部分:题型框架(涵盖 8 大题型)
二次根式的概念和性质
一、 二次根式的定义 题型一:二次根式的定义 题型二:二次根式有意义 二、 二次根式的性质 题型一:
a
2
a
题型二: a 2 a 题型三: a 2b a b 题型四: a a ≥ 0 题型五: a ≥ 0 二次根式的运算及化简求值
越付出越富有!
29. 【中】(北京西城初二下期末)计算:
2( 2 2) ( 7 5)( 7 5)
1 1 1 30. 【中】(沈阳)计算 2 5 1 2 3 3 4 1 2
99 100 1
31. 【中】(湖南省邵阳市中考)阅读下列材料,然后回答问题。 5 2 3 在进行二次根式去处时,我们有时会碰上如 3 , 2 , 3 1 一样的式子,其实我们 还可以将其进一步化简: 5 5 3 5 3 3 ; 3 3 3 (一)
《二次根式》知识点总结-题型分类-复习专用.doc
《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。
V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。
取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。
知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。
专题01 二次根式化简的四种题型全攻略(解析版)
专题01 二次根式化简的四种题型全攻略类型一、利用被开方数的非负性化简二次根式例.= )A .1x ³B .1x ³-C .1x ³或1x £-D .1x ¹±【变式训练1】已知m ,n 为实数,且3n -==________.【详解】依题意可得m -2≥0且2-m ≥0,∴m =2,∴n -3=0∴n =3,=.【变式训练2】已知a ,b ,c 是ABC V ||0b c -=ABC V 的形状是_______.A .3x >B .3x ³C .3x <D .3x £等腰三角形周长.【答案】17【详解】解:由题意得:3030a a -³ìí-³î,解得:a =3,则b =7,若c =a =3时,3+3<7,不能构成三角形.若c =b =7,此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示,化简a b -+-A .b c--B .c b - C .222b c -+D .2b c ++【答案】A 【详解】解:由数轴知:00c b a <,<<,∴0b a -<,∴原式=a b a c----()=a b a c--+-=b c --.故选:A .【变式训练1】已知实数m n、||m n+=_____A.2a b-+B.2a b-C.b-D.b【答案】A【解析】根据数轴上点的位置得:a<0<b,∴a-b<0,则原式=|a|+|a-b|=-a+b-a= -2a+b.故选:A.【变式训练3】已知实数a、b、c.【变式训练4】如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.试化简:c +.类型三、利用字母的取值范围化简二次根式例1.已知,化简:25m -<<5-=__________.【答案】23m -##32m-+A B C .D .【变式训练2】若35x <<+=_______;【答案】0【解析】由题意可知:3-x ≥0,∴2=3x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.类型四、双重二次根式的化简例.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一==1===以上这种化简的步骤叫做分母有理化.(1;(2(2【变式训练1】阅读理解“分母有理化”是我们常用的一种化简的方法7==+设x =-,>故0x >,由22x =33=+-2=解得x -=【答案】5-【详解】解:设x=>∴0x<∴266x=--+,∴212236x=-´=,∴x=5=-,∴原式55=--=-【变式训练2】先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:=①===④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简由于437+=,4312´=,即:227+=, =2====问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +=那么便有:=__________.(3(请写出化简过程)【答案】(11+(2)a b ±>;(3【详解】解:(11===+;)a b >;【变式训练4】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:设()2a m =(其中a 、b 、m 、n 均为正整数),则有222a m n =++,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()2a m +=+,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若()2a m +=,且a 、m 、n 均为正整数,求a 的值;(3.课后作业120-=,那么这个等腰三角形的周长为( )A .8B .10C .8或10D .9【答案】B【详解】解:20-=∴40a -=,20b -=,解得4a =,2b =当腰长为2,底边为4时,∵224+=,不满足三角形三边条件,不符合题意;当腰长为4,底边为2时,∵2464+=>,4402-=<,满足三角形三边条件,此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A B C .D .【答案】AA .2b c-B .2b a -C .2a b --D .2c b-6.已知x、y为实数,4y+,则x y的值等于______.8a b =+.根据这一性质,我们可以将一些“双重二次根式”去掉一层根号,达到化简效果..解:设24+=(a ,b 为非负有理数),则4a b +=++∴43a b ab +=ìí=î①②由①得,4b a =-,代入②得:()43a a -=,解得11a =,23a =∴13b =,21b =∴224(1+==1==请根据以上阅读理解,解决下列问题:(1)__________;(2)(3)的大小,我们可以把a和b分别平方,∵a2=12,b2=18,则a2<b2,∴a<b.请利用“平方法”解决下面问题:(1)比较c=,d=c d(填写>,<或者=).(2)猜想m=n=+(3)=(直接写出答案).10.(1)已知a 、b 4b =+,求a 、b 的值.(2)已知实数a 满足2021a =,求22021a -的值.。
16章.二次根式.题型分类集.(含答案)
第十六章二次根式(一)【二次根式的性质】1.若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3 B.x>3 C.x<3 D.x≤32.若代数式有意义,则x的取值范围是()A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 3.如果代数式有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣24.对于二次根式的性质=中,关于a、b的取值正确的说法是()A.a≥0,b≥0B.a≥0,b>0C.a≤0,b≤0D.a≤0,b<0 5.若式子在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0y==_______.6.已知37.已知=0,那么(a+b)2015的值为()A.1 B.﹣1 C.0 D.8.已知+=0,则x的取值范围为()A.x≤2 B.x<2 C.x≥2 D.x>29.已知=5﹣x,则x的取值范围是.10.下列各式中,正确的是()B.C.D.A.(二)【最简二次根式】1. 下列根式为最简二次根式的是( ) A .2B .C .D .2. 下列根式中,是最简二次根式的是( ) A .B .C .D .3. 下列根式中,最简二次根式为( )A.x 4B.42-xC.4xD.()24+x4. 在式子、、、中,是最简二次根式的有( )A .1个B .2个C .3个D .4个(三)【二次根式的化简】 1. 将化为最简二次根式,其结果是( ) A .B .C .D .2. 当x ≤0时,化简|1﹣x |﹣的结果是 .3. 已知a 、b 、c 是△ABC 三边的长,则化简﹣|a +b ﹣c |的结果为 .4. 当x <0时,化简的结果是( )A .x ﹣1B .1﹣xC .(x ﹣1)2D .x +15. 当m <0时,化简的结果是 .6. 当a >0时,化简的结果是 .7. 当ab <0时,化简的结果是( ) A .﹣aB .aC .﹣aD .a8. 若ab <0,化简二次根式的结果是( )A .B .C .D .9. 把中根号外的(a ﹣1)移入根号内得 .10. 已知n 是正整数,是整数,则n 的最小值为 .(四)【同类二次根式】1.以下二次根式:;是同类二次根式的是()A. ①②B. ②③C. ①④D. ③④2.是同类二次根式,则a的值为_______.3.下列各式中,能与合并的是()A.B.C.D.4.最简二次根式与是同类二次根式,求3a﹣b的值.(五)【二次根式的运算】1.与结果相同的是()A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣12.下列计算正确的是()A.=﹣2B.+=C.D.=±33.下列计算正确的是()A.3+4=7B.×=C.=3D.4.下列运算错误的是()A.B.C.D.5.下列运算错误的是()A.=3B.3×2=6C.(+1)2=6 D.(+2)(﹣2)=36.计算的值是.7.估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间8. 计算﹣2的结果是 .9. 计算:= .10. 计算(+)(﹣)= . 11. 计算:(﹣1)•=12. 计算=13. 计算 (1); (2);(3). (4)2(23)6-+(5)(1+)(﹣)﹣(2﹣1)2. (6)(2+)2﹣(+)(﹣);(7)011238(1)3π-⨯+++(8).(9)(5+2)2 015(5-2)2 016. (10)解方程:(3+1)(3-1)x =72-18.1. 若x =+1,则代数式x 2﹣2x +2的值为( )A .7B .4C .3D .3﹣22. 若x +y =3+2,x ﹣y =3﹣2,则的值为( ) A .4B .1C .6D .3﹣23. 已知1x =+1x =-22x y xy +的值为______.4. 已知x 1=3+2,x 2=3-2,则x 21+x 22等于5. 已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .6. 已知x =(+),y =(﹣),求下列各式的值:(1)x 2﹣xy +y 2; (2)+.7. 已知1a =,化简求值22112a a a a a -+-+-8. (1)已知:x =,求x 2﹣x +1的值.(2)已知:y =,求代数式的值.①与数轴综合1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.2a﹣b B.﹣2a+b C.﹣b D.b2.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+13.如图,数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)写出实数x的值;(2)求(x+)2的值.②解答题1.定义:若两个二次根式a、b满足a•b=c,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=.(2)若2+与4+m是关于2的共轭二次根式,求m的值.2.已知m,n是两个连续的正整数,m<n,a=mn,求证:是定值且为奇数.1. 观察下列一组等式,然后解答后面的问题 (+1)(﹣1)=1, (+)(﹣)=1, (+)(﹣)=1, (+)(﹣)=1……(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2)利用上面的规律,计算:+++…+(3)请利用上面的规律,比较﹣与﹣的大小.2. 观察下列分母有理化的计算1===-(1) 请用n 表示你所发现的规律____________________.(2) )...1+1.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于()A.98cm2B.60cm2C.48cm2D.38cm22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)3.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)求从40m高空抛物到落地时间;(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?你能得到什么启示?(注:杀伤无防护人体只需要65J的动能)1.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.第十六章二次根式(答案)(一)【二次根式的性质】1.若使二次根式在实数范围内有意义,则x的取值范围是(A)A.x≥3 B.x>3 C.x<3 D.x≤32.若代数式有意义,则x的取值范围是(D)A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 3.如果代数式有意义,则x的取值范围是(B)A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣24.对于二次根式的性质=中,关于a、b的取值正确的说法是(B)A.a≥0,b≥0B.a≥0,b>0C.a≤0,b≤0D.a≤0,b<0 5.若式子在实数范围内有意义,则x的取值范围是(C)A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0y==____2√3___.6.已知37.已知=0,那么(a+b)2015的值为(B)A.1 B.﹣1 C.0 D.8.已知+=0,则x的取值范围为(A)A.x≤2 B.x<2 C.x≥2 D.x>29.已知=5﹣x,则x的取值范围是x≤5 .10.下列各式中,正确的是(B)B.C.D.B.(二)【最简二次根式】1. 下列根式为最简二次根式的是( A ) A .2B .C .D .2. 下列根式中,是最简二次根式的是( D ) A .B .C .D .3. 下列根式中,最简二次根式为( B )A.x 4B.42-xC.4xD.()24+x4. 在式子、、、中,是最简二次根式的有( B )A .1个B .2个C .3个D .4个(三)【二次根式的化简】 1. 将化为最简二次根式,其结果是( D ) A .B .C .D .2. 当x ≤0时,化简|1﹣x |﹣的结果是 1 .3. 已知a 、b 、c 是△ABC 三边的长,则化简﹣|a +b ﹣c |的结果为 2c ﹣2a .4. 当x <0时,化简的结果是( B )A .x ﹣1B .1﹣xC .(x ﹣1)2D .x +15. 当m <0时,化简的结果是 1 .6. 当a >0时,化简的结果是 ﹣ab .7. 当ab <0时,化简的结果是( A ) A .﹣aB .aC .﹣aD .a8. 若ab <0,化简二次根式的结果是( D )A .B .C .D .9. 把中根号外的(a ﹣1)移入根号内得.10. 已知n 是正整数,是整数,则n 的最小值为 14 .(四)【同类二次根式】1.以下二次根式:;是同类二次根式的是( C )A. ①②B. ②③C. ①④D. ③④2.是同类二次根式,则a的值为____3___.3.下列各式中,能与合并的是(D)A.B.C.D.4.最简二次根式与是同类二次根式,求3a﹣b的值.【解答】解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.(五)【二次根式的运算】1.与结果相同的是(A)A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣12.下列计算正确的是(C)A.=﹣2B.+=C.D.=±33.下列计算正确的是(C)A.3+4=7B.×=C.=3D.4.下列运算错误的是(A)A.B.C.D.5.下列运算错误的是(C)A.=3B.3×2=6C.(+1)2=6 D.(+2)(﹣2)=36.计算的值是 1 .7.估计的运算结果应在(C)A.1到2之间B.2到3之间C.3到4之间D.4到5之间8. 计算﹣2的结果是 2 .9. 计算:= 4 .10. 计算(+)(﹣)= 3 . 11. 计算:(﹣1)•= 112. 计算=13. 计算 (1); (2); (1)原式=2+﹣=; (2)原式=×÷=;(3). (4)2(23)6-+(3)原式=(8﹣9)÷(4)2=﹣1; (5)(1+)(﹣)﹣(2﹣1)2. (6)(2+)2﹣(+)(﹣);(5)原式=﹣+﹣3﹣13+4(6)原式 =20+4+3﹣(5﹣2) =4﹣2﹣13. =23+4﹣3 =20+4.(7)011238(1)3π-⨯+++(8).(7)1223++ (8)原式=1+++2﹣=3+.(9)(5+2)2 015(5-2)2 016. (10)解方程:(3+1)(3-1)x =72-18. (9)5-2 2x =62-32x =3 2. x =322.1. 若x =+1,则代数式x 2﹣2x +2的值为( C )A .7B .4C .3D .3﹣22. 若x +y =3+2,x ﹣y =3﹣2,则的值为( B ) A .4B .1C .6D .3﹣23. 已知1x =+1x =-22x y xy +的值为__34____.4. 已知x 1=3+2,x 2=3-2,则x 21+x 22等于 105. 已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= 2 .6. 已知x =(+),y =(﹣),求下列各式的值:(1)x 2﹣xy +y 2; (2)+. 解:x =(+),y =(﹣), x +y =(+)+(﹣)=,xy =(+)×(﹣)=,(1)x 2﹣xy +y 2;=(x +y )2﹣3xy =()2﹣3×=;(2)+====12.7. 已知1a =,化简求值22112a a a a a -+-+- 11-a 338. (1)已知:x =,求x 2﹣x +1的值.(2)已知:y =,求代数式的值.【解答】解:(1)∵x ==+1, ∴x 2﹣x +1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=4+; (2)∵1﹣8x ≥0,8x ﹣1≥0,∴x =,则y =, ∴=﹣==1.①与数轴综合1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( A )A.2a﹣b B.﹣2a+b C.﹣b D.b2.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为(A)B.B.1+C.2+D.+13.如图,数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)写出实数x的值;(2)求(x+)2的值.解:(1)由数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,得=1,解得,(1)当x=2﹣时,(x+)2=4.②解答题1.定义:若两个二次根式a、b满足a•b=c,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=2.(2)若2+与4+m是关于2的共轭二次根式,求m的值.【解答】解:(1)∵a与是关于4的共轭二次根式,∴a=4,∴a==2,故答案为:2;(2)∵2+与4+m是关于2的共轭二次根式,∴(2+)(4+m)=2,∴4+m===4﹣2,∴m=﹣2.2.已知m,n是两个连续的正整数,m<n,a=mn,求证:是定值且为奇数.【解答】证明:∵m和n是两个连续的正整数,m<n,∴n=m+1,∴a=mn=m(m+1),∴===(m+1)﹣m =1,∴是定值且为奇数1.1. 观察下列一组等式,然后解答后面的问题 (+1)(﹣1)=1, (+)(﹣)=1, (+)(﹣)=1, (+)(﹣)=1……(1)观察以上规律,请写出第n 个等式: (+)(﹣)=1 (n 为正整数).(2)利用上面的规律,计算:+++…+(3)请利用上面的规律,比较﹣与﹣的大小. 【解答】解:(1)根据题意得:第n 个等式为(+)(﹣)=1;故答案为:(+)(﹣)=1;(2)原式=﹣1+﹣+…+﹣=﹣1=10﹣1=9;(3)﹣=,﹣=, ∵<,∴﹣>﹣.2. 观察下列分母有理化的计算1===-(3) 请用n 表示你所发现的规律____________________.(4) )...1+(1)n n nn -+=++111(2)20151.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于(C)A.98cm2B.60cm2C.48cm2D.38cm22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)【解答】解:(1)长方形ABCD的周长=2×()=2(8+7)=16+14(米),答:长方形ABCD的周长是16+14(米),(2)通道的面积==56﹣(13﹣1)=56(平方米),购买地砖需要花费=6×(56)=336﹣72(元).答:购买地砖需要花费336﹣72元;3.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)求从40m高空抛物到落地时间;(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?你能得到什么启示?(注:杀伤无防护人体只需要65J的动能)【解答】解:(1)由题意知h=40m,t====2(s),(2)不正确,理由如下:当h2=80m时,t2===4(s),∵4≠2×2,∴不正确,(3)当t=6s时,6=,h=180m,鸡蛋产生的动能=10×0.05×180=90(J),启示:严禁高空抛物.1.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=m2+7n2,b=2mn;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.【解答】解:(1)设a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均为整数),则有a=m2+7n2,b=2mn;故答案为m2+7n2,2mn;(2)∵6=2mn,∴mn=3,∵a、m、n均为正整数,∴m=1,n=3或m=3,n=1,当m=1,n=3时,a=m2+3n2=1+3×9=28;当m=3,n=1时,a=m2+3n2=9+3×1=12;即a的值为为12或28;(3)设+=t,则t2=4﹣+4++2=8+2=8+2=8+2(﹣1)=6+2=(+1)2,∴t=+1.。
专题01 二次根式重难点题型分类(解析版)八年级数学下册重难点题型分类高分必刷题(人教版)
专题01二次根式重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《二次根式》这一章的四类重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含四类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一二次根式的双重非负性第一层非负性:被开方数0≥1.(2022春·a 的取值范围是()A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2【详解】解:由题意得,a 10,a 2+≥≠,解得,a ≥-1且a ≠2,故答案为:C.2.(2019·1有意义时,x 应满足的条件是______.3.(青竹湖)函数x x y 2-=中,自变量x 的取值范围是.【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(2022秋·山东济南)若a ,b 都是实数,b ﹣2,则a b的值为_____.5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是.【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11,①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6.(2022春·21a -,那么()A .12a <B .12a ≤C .12a >D .12a ≥7.(2018·广东广州)如图,数轴上点A 表示的数为a ,化简:a=_____.8.(2021·湖南娄底)2,5,m )A .210m -B .102m -C .10D .49.(2020·四川攀枝花)实数a 、b +-().A .2-B .0C .2a -D .2b10.(2021春·山东淄博)已知实数a ,b ,c 在数轴上的位置如图所示,化简:||a【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.则原式()a a c c a b a b =-++---=-.11.(2021春·全国)探究题:=_,=,=,=,=,=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若x<2=;=;(3)若a,b,c题型二二次根式的乘除12.(2021春·=____.14.(2022春·=____._____.15.(2022春·16.(2023春·()B C D.A19.(2021秋·八年级课时练习)计算:-⋅;(1(-,(2(15)(20.(2022秋·八年级课时练习)计算:21.(2021秋·上海虹口)计算:(1(;(2)0,0)a b ÷>>题型三最简二次根式22.(2022春·天津)下列二次根式中,最简二次根式是()A .2个B .3个C .4个D .5个不是最简二次根式,不符合题意,综上,是最简二次根式的有24.(2022秋·a的值是()A.2B.3C.4D.5m=__________.25.(2020秋·题型四二次根式的混合运算26.(2021春·全国)计算:(1)1|3|-+---(2)27.(2021春·新疆乌鲁木齐)计算:28.(2021春·全国)(1)﹣529.(2022秋·陕西西安)已知a =2b =2(1)a 2﹣3ab +b 2;(2)(a +1)(b +1).30.(2021秋·上海)已知3x =+求:2267x x x x ++++的值.31.(雅实)已知a =b =,求值:(1)a b +;(2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b ab ab ab++-==(2)原式=(a b)2ab +=⨯=32.(广益)先化简,再求值:322222222a b a b a ab a ab b a b +-÷++-,其中2a =-2b =+。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
初二二次根式经典题型
初二二次根式经典题型一、二次根式的概念与性质相关题型1. 题型:判断二次根式- 题目:下列各式中,哪些是二次根式?- √( - 5),√(a)(a≥0),sqrt[3]{8},√(frac{1){3}},√(x^2)+1。
- 解析:- 二次根式的定义是形如√(a)(a≥0)的式子。
对于√( - 5),被开方数 - 5<0,不满足二次根式定义中被开方数是非负数的条件,所以它不是二次根式。
- √(a)(a≥0)符合二次根式的定义,是二次根式。
- sqrt[3]{8}是三次根式,不是二次根式,因为二次根式的根指数是2。
- √(frac{1){3}},被开方数(1)/(3)>0,满足二次根式的定义,是二次根式。
- √(x^2)+1,因为x^2≥0,所以x^2+1>0,满足二次根式的定义,是二次根式。
2. 题型:二次根式有意义的条件- 题目:当x取何值时,二次根式√(x - 2)有意义?- 解析:- 二次根式有意义的条件是被开方数大于等于0。
- 对于√(x - 2),令x - 2≥0,解得x≥2。
所以当x≥2时,二次根式√(x - 2)有意义。
3. 题型:二次根式的性质运用- 题目:化简√(( - 3)^2)。
- 解析:- 根据二次根式的性质√(a^2)=| a|。
- 对于√(( - 3)^2),这里a = - 3,则√(( - 3)^2)=| - 3|=3。
二、二次根式的运算相关题型1. 题型:二次根式的乘法- 题目:计算√(3)×√(6)。
- 解析:- 根据二次根式乘法法则√(a)×√(b)=√(ab)(a≥0,b≥0)。
- 对于√(3)×√(6),则√(3)×√(6)=√(3×6)=√(18)=√(9×2)=3√(2)。
2. 题型:二次根式的除法- 题目:计算(√(24))/(√(6))。
- 解析:- 根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(a≥0,b>0)。
专题02 《二次根式》计算、解答题重点题型分类(解析版)
专题02 《二次根式》计算、解答题重点题型分类专题简介:本份资料专攻《二次根式》中“二次根式的性质与化简”、“二次根式的乘除法”、“二次根式的加减法”、“二次根式的混合运算”、“二次根式的化简求值”计算、解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:二次根式的性质与化简方法点拨:(1)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.(2)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.1.化简:(1(2(3(4(50,0)>>a b【答案】(1)(2)(3)(4)13;(5)2【分析】先将被开方数进行因数分解或因式分解,再应用积的算术平方根的性质,将能开得尽方的因数或因式开出来即可.【详解】解:(1===(2===;(3===;(413===;(52=【点睛】本题主要考查了利用二次根式的性质化简,解题的关键在于能够熟练掌握相关求解方法.2.已知数a,b,c在数轴上的位置如图所示:【答案】0【分析】由三个数在数轴上的位置即可确定它们的符号及大小关系,从而可确定a -b 及c -a 的符号,最后可化简绝对值与二次根式,从而可求得结果.【详解】由数轴知:0c b a<<<∴0a b ->,0c a -<=-b -(a -b )-(c -a )-(-c )=-b -a +b +a -c +c=0【点睛】本题考查了算术平方根的性质、绝对值的化简、数轴上数的大小关系等知识,注意:当a 为负数a .3.已知实数a ,b【答案】1a b +-【分析】根据题意得:2,b 2a >-< ,可得20,30a b +>-< ,然后根据二次根式的性质化简原式,即可求解.【详解】解:根据题意得: 2,b 2a >-< ,∴20,30a b +>-< ,23a b =+--()23a b =++-1a b =+- .【点睛】本题主要考查了二次根式的性质,有理数的大小比较,根据题意得到2,b 2a >-< 是解题的关键.4.已知130a -£-£+.【答案】5【分析】先解不等式组可得23,a ££则有10,40,a a +>-<再化简二次根式即可得到答案.【详解】解:130a -£-£Q ,23,a \££10,40,a a \+>-<4-14 5.a a =++-=【点睛】本题考查的是一元一次不等式组的解法,二次根式的化简,解本题的关键是得到“10,40a a +>-< ”.5.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一====1===以上这种化简的步骤叫做分母有理化.(1 (2【答案】(2【分析】(1(2)根据分母有理化的步骤进行化简,即可求解.(2【点睛】本题主要考查了分母有理化,明确题意,理解分母有理化的步骤是解题的关键.6a ,b ,使a b m +=,ab n =,即22m +==0)a b ==>>.,这里7m =,12n =,由于437+=,4312´=,所以22+==,2===(1(2(3【答案】(11+;(2(3【详解】解:(1)∴4m =,3n =,∵314+=,313´=,∴224+==,1===;(2),∴13m =,42n =,∵7613+=,7642´=,∴2213+===∴8m =,15n =,∵358+=,3515´=,∴228+=====【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.7这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平1====;再如:==请用上述方法探索并解决下列问题:(1=,=;(2)若2()a m+=+,且a,m,n为正整数,求a的值.【答案】(13;(2)a的值为46或14【分析】(1)根据题意利用完全平方公式和二次根式的性质进行求解即可;(2)由222()5a m m n+==++,可得225a m n=+,62mn=,则3mn=,再根据a,m,n为正整数,可得1m=,3n=或3m=,1n=,由此求解即可.【详解】解:(1===3===-.3-;(2)∵222()5a m m n+==++,225a m n\=+,62mn=,∴3mn=又∵a,m,n为正整数,1m\=,3n=或3m=,1n=,∴当1m=,3n=时,2215346a=+´=;当3m=,1n=时,2235114a=+´=.综上所述,a的值为46或14.【点睛】本题主要考查了完全平方公式和二次根式的性质化简,解题的关键在于能熟练掌握完全平方公式.8.(阅读材料)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如=(12.善于思考的小明进行了以下探索:若设a +=(m +)2=m 2+2n 2+2a 、b 、m 、n 均为整数),则有a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +法.请你仿照小明的方法探索并解决下列问题:(问题解决)(1)若a +=(m +2,当a 、b 、m 、n 均为整数时,则a = ,b = .(均用含m 、n 的式子表示)(2)若x =(m +2,且x 、m 、n 均为正整数,分别求出x 、m 、n 的值.(拓展延伸)(3= .【答案】(1)m 2+5n 2,2mn ;(2)当m =1,n =2时,x=13;当m =2,n =1时,x =7;(3.【分析】(1)利用完全平方公式展开可得到用m 、n 表示出a 、b ;(2)利用(1)中结论得到4=2mn ,利用x 、m 、n 均为正整数得到12m n =ìí=î或21m n =ìí=î,然后利用x =m 2+3n 2计算对应x 的值;(3)=m +,两边平方(25m +=+,可得22651m n mn ì+=í=î消去n 得42560m m -+=,可求m【详解】解:(1)设a +m +2=m 2+5n 2+2a 、b 、m 、n 均为整数),则有a =m 2+5n 2,b =2mn ;故答案为m 2+5n 2,2mn ;(2)∵(22232x m m n +=+=++∴4=2mn ,∴mn =2,∵x 、m 、n 均为正整数,∴12m n =ìí=î或21m n =ìí=î,当m =1,n =2时,x =m 2+3n 2=1+3×4=13;当m =2,n =1时,x =m 2+3n 2=4+3×1=7;即x 的值为为13或7;(3=m +,∴(25m +=+,∴226522m n mn ì+=í=î,∴1n m=,22165m m æö+=ç÷èø,∴42560m m -+=,∴(m 2-2)(m 2-3)=0,∴m,m∴n =n =.∴m n ìïíïîm nìïí=ïî====.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.一元高次方程,二元方程组,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1.计算(1)(2;(3;(4【答案】(1)12;(2(3)34;(4)【分析】(1)根据二次根式乘除运算法则从左到右顺序计算即可;(2)根据二次根式乘除运算法则从左到右顺序计算即可;(3)先化简二次根式,根据二次根式乘除运算法则从左到右顺序计算即可;(4)根据二次根式除运算法则转化为乘法计算,再化简即可.【详解】解:(1)原式==12;(2)原式=64(3)原式=´´=34;(4)原式=【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.2.若y =+【分析】根据二次根式的被开方数是非负数,可得不等式组,根据解不等式组,可得x ,根据x 的值可得y的值,再根据二次根式的除法,可得答案.2x -3≥0,3-2x ≥0,即x =32,y=【点睛】本题考查了二次根式有意义的条件,利用二次根式的被开方数是非负数得出不等式组是解题关键.3==的值.【答案】4【分析】根据二次根式分母有理化计算即可;2=+2==原式===+224==;【点睛】本题主要考查了二次根式分母有理化和乘除运算,准确化简是解题的关键.4.若99a和b ,求4312ab a b ---的值【答案】37-【分析】先求出99a ,b 的值,再代入求值即可.【详解】∵34∴12,95,∴99,995=4,∴a =3,b=4∴原式=3)(443)-3(4-12-13﹣12-=37-.【点睛】本题考查了无理数的估算,无理数都可以写成整数部分+小数部分的形式,从而得到小数部分=这个无理数﹣整数部分,这是解题的关键.5.(13=,求a的值;(2能够合并,求a的值,并求出这两个二次根式的积.【答案】(1)a=7;(2)a=8,两个二次根式的积为5.【分析】(1)两边同时平方得关于a的方程,求解即可;(2)根据同类二次根式的意义可求出a的值,从而确定二次根式,进一步得出答案.【详解】解:(1)3=∴a+2=32解得a=7(2=能够合并=解得a=8∴5=.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.6.如图,从一个大正方形中裁去面积为215cm和224cm的两个小正方形,求留下部分的面积.【答案】2【分析】先根据两个小正方形的面积可求得它们的边长,进而可得大正方形的边长,再利用大正方形的面积减去两个小正方形的面积列式计算即可求得答案.【详解】解:∵两个小正方形的面积分别为215cm和224cm,∴=,∴∴留下部分(即阴影部分)的面积是21524--152241524=++--=2)cm =,答:留下部分的面积为2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决本题的关键.7.在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 线段比()()PS PS PT ST k PTPS PT ST ì<ïï=íïïî….已知点(0,1)A ,(1,0)B .(1)点(2,0)Q 关于线段AB 的线段比k = ;(2)点(0,)C c 关于线段AB的线段比k =c 的值.【答案】(1(2)3c =或c =.【分析】(1)求出QA 、QB 、AB ,根据线段比定义即可得到答案;(2)方法同(1),分0c >和0c …讨论.【详解】解:(1)∵(0,1)A ,(1,0)B ,(2,0)Q ,∴AB =QA ,1QB =,根据线段比定义点(2,0)Q 关于线段AB的线段比QB k AB ==;;(2)∵(0,1)A ,(1,0)B ,(0,)C c ,∴AB =|1|AC c =-,BC =2212AC c c =+-,221BC c =+,当0c >时,22AC BC <,即AC BC <,由(0,)C c 关于线段AB的线段比k =,解得3c =或1c =-(舍去),∴3c =,当0c …时,22AC BC …,即AC BC …,由(0,)C c 关于线段AB 的线段比k ==,解得c =c =,∴c =综上所述,点(0,)C c 关于线段AB 的线段比k 3c =或c =【点睛】本题考查坐标与图形的性质,解题的关键是读懂线段比的定义,找出“临界点”列不等式.8.先阅读下面的解题过程,然后再解答:a ,b ,使a b m +=,ab n =,即22m +=,=)a b ==>7m =,12n =因为437+=,4312´=即227+=所以2===根据上述方法化简:(1(2【答案】(1(2【分析】根据a b m +=,ab n =,即22m +==代入计算即可;【详解】(1)根据题意,可知13m =,42n =,因为6713+=,6742´=,即2213+=====(2)根据题意,可知8m =,15n =,因为538+=,5315´=即228+===【点睛】本题主要考查了二次根式的化简求值,准确计算是解题的关键.9.材料1:因为无理数是无限不循环小数,所以无理数的小数部分我们不可能全部写出来.比如:π等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料2:2.5的整数部分是2,小数部分是0.5,小数部分可以看成是2.5−2得来的.材料3:任何一个无理数,都夹在两个相邻的整数之间,如23<<<<.根据上述材料,回答下列问题:(1的整数部分是,小数部分是.+的值.(2)5+5<<,求a ba b(3)已知3x y=+,其中x是整数,且0<y<1,求x+4y的倒数.【答案】(1)44-;(2)13;(3【分析】(1的整数部分和小数部分;(2(3的整数部分,得到x的值,从而表示出y,求出x+4y的结果,再求x+4y的倒数即可.【详解】解:(1)<∴45<,的整数部分是4,故答案为:44;(2)<<,∴12<,∴67<<,∵5<<,a b∴a=6,b=7,∴a+b=13;(3)∵12,∴1+3<2+3,∴4<5,∴x=4,y1,x+4y)∴x+4ya≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.1+(2)()14---.【答案】(1);(2【分析】(1)先化简二次根式,然后再进行二次根式的加减运算;(2)根据绝对值、化简二次根式、立方根可直接进行求解.【详解】解:(1)原式=+(2)原式134+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.2.计算或化简下列各题:(1)2021(1)(+--;(2)【答案】(1)1-;(2.【分析】(1)根据二次根式的加减运算法则计算即可;(2)去掉绝对值符号,根据二次根式的加减运算法则计算即可.【详解】(1)解:原式=(1)-+=1;(2)解:原式==【点睛】本题考查了二次根式的加减混合运算,熟练掌握二次根式的加减运算法则是解题的关键.3.先化简再求值:当a =时,求a【答案】21,1a -【分析】本题应先根据二次根式的性质把原式进行化简,再将a 的值代入即可求解.【详解】解:当a a -1>0,∴原式=a =a +(a -1)=2a ﹣1∴原式1.故答案为:2a ﹣1;1【点睛】本题考查了二次根式的性质化简求值,熟知二次根式的性质是解题的关键.4.已知【答案】2y-【分析】先根据已知条件判断出0y < ,30x -£ ,再根据0y < ,3x £ 化简即可.【详解】解:0=<Q ,0y \< ,30x -£ ,3x \£ ,=413x y x =-+---413x y x =-+--+2y =- .5.嘉琪准备完成题目“计算:()﹣”时,发现“■”处的数字印刷不清楚,(1)他把“■”处的数字猜成6,请你计算()﹣(2)他妈妈说:“”通过计算说明原题中“■”是几?【答案】(1)0;(2)原题中“■”是152【分析】(1)先去括号,然后根据二次根式加减运算法则进行计算即可;(2)将原式进行整理,设“■”为m【详解】解:(1)(﹣)﹣==0;(2)设“■”为m ,-=,解得:152m =,∴原题中“■”是152.【点睛】本题考查了二次根式的加减混合运算,熟练掌握运算法则是解本题的关键.6.阅读下列内容:因为139<<,所以13<<11.试解决下列问题:(1的整数部分和小数部分;(2)若已知8+a ,8的整数部分是b ,求34ab a b -+的值.【答案】(1的整数部分是33-;(2)34ab a b -+13.【分析】(1的大小即可;(2,a 、b 的值,代入计算即可.【详解】解:(1)∴3<4,的整数部分是3-3;(2)∵34,∴11<12,∴a ,∵34,∴-4<-3,∴4<5,∴b =4,∴ab -3a +4b=)×4-3×)+4×4,答:ab -3a +4b .【点睛】本题考查估算无理数的大小,理解算术平方根的定义是解决问题的前提,求出a 、b 的值是正确解答的关键.7111111112=+-=+;111112216=+-=+;1111133112=+-=+.(1)请你根据上面三个等式提供的信息,猜想.(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).【答案】(1)111441+-+,1120,1119+2)11(1)n n ++【分析】(11120的结果为11380;(2)第n 1与1n(n 1)+的和.【详解】解:(11111144120=+-=+;1111119191380=+-=+;故答案是:111441+-+,1120,11119191+-+,11380;(2)通过观察等式右边为1与1n(n 1)+的和,故第n 11(1)n n =++.【点睛】本题考查了二次根式的加减法:解题的关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.8.观察下列一组等式,解答后面的问题:=﹣1,==应用计算:(1(2= ;(3+LL= .【答案】(1(2(310【分析】(1),然后利用平方差公式计算;(2)利用题中的计算结果和(1)小题的计算结果找出规律求解;(3)先分母有理化,然后合并即可.【详解】解:(1=(2、(3...+10.10.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法是解决问题的关键.考点4:二次根式的混合运算方法点拨:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的; (2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式.1.计算:(1)3)(−5)(2))(3)()×(4)()2018×(3)2018【答案】(1)2)2(3)-30(4)12.已知1x=+,求代数式229-+的值.x x【答案】11.【分析】先将代数式配方,然后再把1x =+代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=.【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.3.如图,一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,点A 所表示的数为,设点B 所表示的数为m .(1)求m 的值;(2)求|m ﹣1|+(2)(4﹣m )的值.【答案】(1)2m =(21【分析】(1)根据一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,可得2AB =,再由点A 表示的数为B 表示的数为m ,即可得到(2m -=,由此求解即可;(2)根据(1)求出的结果,代入m 的值,根据实数的混合计算法则求解即可.【详解】解:(1)由题意得:2AB =,∵点A 表示的数为,点B 表示的数为m ,∴(2m -=,∴2m =-;(2)∵2m =-∴(()124m m -+--(21242=--+-(122=-+-142=-+-1.【点睛】本题主要考查了实数与数轴,实数的混合运算,平方差公式,解题的关键在于能够根据题意求出2m =4.某居民小区有块形状为长方形ABCD 的绿地,长方形绿地的长BC AB长方形绿地中修建一个长方形花坛(即图中阴影部分)1)米.(1)长方形ABCD 的周长是 米;(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m 2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)【答案】(1)(2)600元【分析】(1)由长方形的周长等于相邻两边和的2倍,再计算二次根式的加法,后计算乘法即可;(2)先求解通道的面积,再乘以单价即可得到答案.(1)解:Q 长方形绿地的长BC AB\ 长方形ABCD 的周长为:(2=2答:长方形ABCD 的周长为:米.故答案为:(2)11-131=-+ =11212100,-=Q 通道要铺上造价为6元/m 2的地砖,则购买地砖需要花费:1006600´=,答:购买地砖需要花费600元.【点睛】本题考查的是二次根式的加法与二次根式的乘法及混合运算的应用,熟练的进行二次根式的的化简与运算是解本题的关键.5.阅读下列材料,然后回答问题这样的式子,我们可以将其分母有理化:1====;1====-.(1(2【答案】(12)1【分析】(1)法一:原式==(2):原式=(1=;===;(2)解:原式=+=+=.1【点睛】本题考查了二次根式的分母有理化,二次根式的加法运算,平方差公式等知识.解题的关键在于正确的将分式中的分母有理化.6.在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化.比如:(1==.(21试试看,将下列各式进行化简:(1(2(3【答案】(11;(3)2【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可.【详解】解:==;(211++¼+,1,=3-1=2.【点睛】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法.7.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下方法将其进一步1===,化简:(1)(2)【答案】(1(2【分析】(1)利用分母有理化的形式进行化简;(2,然后分母有理化,最后进行二次根式的乘法运算.【详解】解:(1===;L(2+=L2=L==【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和平方差公式是解决问题的关键.81====.==2根据以上解法,试求:(1n为正整数)的值;(2×××【答案】(1(2)9【分析】(1)由题意根据材料所给出的解法进行分析计算求解即可;(2)根据题意直接依据材料所给出的解法得出规律进行计算即可.【详解】解:(1==;(2×××1=×××110=-+9=.【点睛】本题考查二次根式的运算,熟练掌握二次根式分母有理化的方法是解题的关键.考点5:二次根式的化简求值方法点拨:(1)数形结合法:用坐标轴和数学表达式相结合,达到快速化简的目标。
专题01 《二次根式》选择、填空重点题型分类(解析版)
专题01 《二次根式》选择、填空重点题型分类专题简介:本份资料专攻《相交线与平行线》中“二次根式的定义”、“二次根式有意义的条件”、“最简二次根式”、“分母有理化”、“同类二次根式”选择、填空重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:二次根式的定义方法点拨:一般地,我们把形如(a≥0)的式子叫做二次根式,称为二次根号.二次根式的两个要素:①根指数为2;②被开方数为非负数.1x>0x>0)中,二次根式有( )A.5个B.4个C.3个D.2个【答案】Ca³.x>0x>0)中,(x>0,共3个.故选:C.【点睛】此题考查了二次根式的定义,解题的关键是熟练掌握二次根式的定义.二次根式:一般地,a³.的代数式叫做二次根式,其中02,当x=1时,此二次根式的值为( )A.2B.±2C.4D.±4【答案】A【分析】将x取值代入二次根式求值即可.【详解】解:当x=12==,故选:A.【点睛】本题考查二次根式的计算,注意算数平方根开出来是正数,这一点是本题关键.3.下列式子中,一定属于二次根式的是()A B C D【答案】D【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【详解】解:A 、被开方数为非负数,所以A 不合题意;B 、x ≥﹣2时二次根式有意义,x <﹣2时没意义,所以B 不合题意;C 为三次根式,所以C 不合题意;D D 符合题意.故选:D .【点睛】本题考查二次根式的定义,注意选项中各式的形式及未知数取值范围是解本题的关键.4.当0x =的值等于()A .4B .2CD .0【答案】B【分析】把0x =解题即可【详解】解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.5.已知,2a 应满足什么条件 ( )A .a >0B .a≥0C .a =0D .a 任何实数【答案】Ba 的取值范围即可得到答案.【详解】a 的取值范围是0a ³a 的取值范围是任意实数,故a 应满足的条件是0a ³,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件.6.我们把形如b (a ,b 3无理数,则2是( )A B C型无理数D型无理数【答案】B【分析】先根据完全平方公式和二次根式的性质进行计算,再得出选项即可.【详解】解:2故选:B.【点睛】此题考查完全平方公式和二次根式的性质,能正确根据公式和性质展开是解题的关键.7.如果x=1是关于x=x的一个实数根,那么k=_____.【答案】0【分析】先把x=1代入方程,两边平方求出k的值.【详解】解:把x=11,两边平方,得1+k=1,解得k=0.经检验,k=0符合题意.故答案为:0.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.8.(a+6)2=0,则2b2﹣4b﹣a的值是_____.【答案】0【分析】根据非负数的性质可得关于a、b的方程,进一步即可求出a和b2﹣2b的值,然后代入所求代数式进行计算即可.【详解】解:由题意得,a+6=0,b2﹣2b+3=0,解得:a=﹣6,b2﹣2b=﹣3,∴2b2﹣4b﹣a=2(b2﹣2b)﹣a=2×(﹣3)﹣(﹣6)=﹣6+6=0.故答案为:0.【点睛】本题考查了完全平方式和二次根式的非负性,属于常考题型,熟练掌握基本知识是关键.考点2:二次根式有意义的条件方法点拨:(1)对于二次根式有意义的条件求取值范围类题型,关键是掌握二次根式中的被开方数是非负数以及分式分母不为零。
二次根式经典难题(含答案)
二次根式经典难题(含答案)1.当x满足x+2+1-2x有意义时。
2.若-m+1/(m+1)有意义,则m的取值范围是什么。
3.当x满足1-x为二次根式时。
4.在实数范围内分解因式:x^4-9=(x^2+3)(x^2-3),x^2-22x+2=(x-11+3√3)(x-11-3√3)。
5.若4x^2=2x,则x的取值范围是0和1/2.6.已知(x-2)^2=2-x,则x的取值范围是{x|x≤2+√2或x≥2-√2}。
7.化简:x^2-2x+1(x+1)的结果是(x-1)^2.8.当1≤x≤5时,(x-1)^2+x-5=x^2-2x+5.9.把a-1/a的根号外的因式移到根号内等于|a-1|。
10.使等式(x+1)(x-1)=x-1/x+1成立的条件是x不等于1.11.若a-b+1与a+2b+4互为相反数,则(a-b)^2005=1.12.在式子x^2(x,2,y+1)(y=-2),-2x(x,3,3),x^2+1,x+y中,二次根式有2个。
14.下列各式一定是二次根式的是a2+1.15.若2a=3,则(2-a)^2-(a-3)^2等于5-2a。
16.若A=(a^2+4)^4,则A=(a^2+2)^2.18.能使等式x/(x-2)=x-2成立的x的取值范围是{x|x≠2且x≥2}。
19.计算:(2a-1)^2+(1-2a)^2的值是4a^2-4a+2.20.下面的推导中开始出错的步骤是(2)。
21.当a≤0,b≤0时,ab^3=-a^2b。
23.去掉下列各根式内的分母:(1) 2y/3x(x)。
(2) (x-1)/(x^5(x+1))(x-1)。
24.已知x^2-3x+1=0,求x^2+1/x^2-2的值为-1/3.25.已知a,b为实数,且1+a-(b-1)/(1-b)=0,求a^2005-b^2006的值为a^2005-b^2005.2.若 $2m+n-2$ 和 $33m-2n+2$ 都是最简二次根式,则$m=11,n=24$。
专题01二次根式(5个知识点7种题型1个易错点)(解析版)
专题01二次根式(5个知识点7种题型1个易错点)【目录】【倍速学习四种方法】【方法一】脉络梳理法知识点1:二次根式的概念二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a (a ≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【变式1】下列式子,哪些是二次根式,哪些不是二次根式:,1x 0x >),,1x y+0,0x y ³³).0x >)、0,0x y ³³1x 、1x y+不是二次根式.的根指数分别为3、4,不是二次根式;1x 、1x y+是分式,不是二次根式.【变式2】下列各式中,二次根式的个数有 ()A .2个B .3个C .4个D .5个【答案】B .当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.知识点2:二次根式有意义的条件二次根式有意义的条件是被开方数是非负数.注意:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.【例2】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)12x ³;(2)2x £.【解析】(1)由12102x x -³³,得:;(2)由202x x -³£,得:.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【变式】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)0x >;(2)2x <.【解析】(1)由100x x x ì³ï>íï¹î,得:; (2)由102220x x x ì-³ï<-íï-¹î,得:.【总结】考查式子有意义的条件,式子有意义的时候式子的每一个部分都有意义.知识点3:二次根式的性质性质1(0)a a =³;性质2:2(0)a a =³;性质3=(0a ³,0b ³);性质4=(0a ³,0b >).【例3】求下列二次根式的值:(1;(2;(3(4.【答案】(1)4;(2)5;(3)4)3p -.【解析】(14==;(25==;(3===(433p p =-=-.【总结】考查二次根式的性质1,确保开方出来的结果非负.【例4】计算下列各式的值:(1)2;(2); (3)2;(4)2;(5)2;(6)22-;(7)2(0)x ³;(8)2 ;(9)2.【答案】(1)18;(2)23;(3)916;(4)0;(5)14;(6)30-;(7)1x +;(8)2a ;(9)221a a ++.【解析】根据二次根式性质2即可得出结果,注意(5)小题中两部分分别平方.【总结】考查二次根式的性质2.【例5】化简:(1(20)m ³;(3)(4【答案】(1)32);(3)232y x ;(4)2-【解析】(1)由二次根式非负性3270x ³,可得0x ³,原式3==;(2)由二次根式非负性3120mn ³,结合0m ³,可得0n ³,原式===;(3)原式=223642y y x x ==;(4)由二次根式非负性33240x y -³,即有()30xy £,可得0xy £,原式2==-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例6】化简:(10)y <;(2).【答案】(1);(2【解析】(1)原式=(136y´-=;(2)原式() ()xx><,∴=.【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.(0)0(0)(0)a aaa a>=-<î.【例7】(2022秋•虹口区校级月考)已知,则x的取值范围是( )A.B.C.D.或【解答】解:等式左边=|2﹣3|x||,它要等于2+3x,则x≤0且2+3x≥0,所以≤x≤0.故选:B.【变式】(2022秋•浦东新区校级月考)若m,n为任意实数,则下列各式成立的是( )A .=m+nB.+=m+nC.=D.【解答】解:=|m+n|,A错误;+=|m|+|n|,B错误;≠+,C错误;=(m+n)2,D正确,故选:D.知识点5:化简二次根式利用二次根式的性质进行化简;化简二次根式的步骤:①把被开方数分解因式;②利用二次根式的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【变式1】化简:(100)ab bc ><,;(20)a b <<【答案】(1)-;(2)22a b -.【解析】(1=-; (2)原式=2222a b a b -=-.【变式2】化简下列二次根式:(100)x y ³³,;(2(3(0)a a -<.【答案】(1)5 (2) 3.14p -; (3)2a -.【解析】(15==(2 3.14 3.14p =-=-π;(32a a a a -=--=-.【方法二】实例探索法题型1:求二次根式被开方数中所含字母的取值范围2.若11)--有意义,则x 的取值范围是______.【答案】10x x ³¹且.【解析】∵11)--=,∴01010x x ³³ìí¹-¹î,解得:.3.求使下列二次根式有意义的实数x 的取值范围.(1;(2【答案】(1)1x ³或0x <;(2)12x ³-且1x ¹.【解析】(1)由110x -+³,得1x ³或0x <; (2)由21010x x +³ìí-¹î,得12x ³-且1x ¹.4.2成立,求a 的取值范围.【答案】24a ££.24a a +=-+-,由此进行分类讨论:①当2a <时,原式=()()2462a a a -+-=-;②当24a ££时,原式=()()242a a -+-=;③当4a >时,原式=()()2426a a a -+-=-;综上所述,可知a 的取值范围是24a ££.题型3:利用数轴和二次根式的性质进行化简或计算5.(2022秋•虹口区校级月考)设实数a ,b 在数轴上对应的位置如图所示,化简的结果是( )A .﹣2a +bB .2a +bC .﹣bD .b【解答】解:根据数轴上a ,b 的值得出a ,b 的符号,a <0,b >0,a +b >0,∴=﹣a +a +b =b ,故选:D .6.已知实数a ,b ,c 在数轴上的对应点位置如图所示:__________.【答案】2c -.【解析】根据点在数轴上的位置,可得0c b a <<<,由此0a c ->,0b a -<,0b c +<,原式=()()()2a c b a b c a c b a b c a c b a b c c ---++=-+--+=-+---=-.题型4:利用二次根式的非负性求值7.(2022秋•奉贤区期中)已知x ,y 为实数,且,求xy 的平方根.【解答】解:由题意得,,解得x =27,则y =,∴xy ==9,∴9的平方根是±=±3.8.若,x y 是实数,且2y <++,化简22y y --.【答案】1-.【解析】根据二次根式有意义的条件,可得:210120x x -³ìí-³î,即得:210x -=,由此可知2y <,所以22y y --=()212y y --=--.9.已知3y =,求22x xy y -+的值.【答案】7.【解析】根据二次根式的非负性,可知2020x x -³ìí-³î,由此20x -=,即2x =,此时3y =,原式=2222337-´+=.10.若a 、b是实数,且13b +1-+【答案】46b -+.【解析】根据二次根式的非负性,可知3030a a -³ìí-³î,由此30a -=,即3a =,此时13b <,原式=()()231213346b b a b b b -+-+=-+-+=-+.11.0=,求()x x y +的值.【答案】9.【解析】由题意得:203280x y x y -=ìí+-=î, \21x y =ìí=î. \()()2219xx y +=+=.12.若z+=+,求z 的值.【答案】3358.【解析】 Q 20160x y -+³, ∴2016x y +³.又 Q 20160x y --³, \2016x y +£, \2016x y +=.\0+=.即35230125302x y z x y z +--=ìí+-=îL L ()(), 解得:220143358x y z =ìï=íï=î.题型5:根据二次根式的值是整数,求字母的取值13.(2022秋•奉贤区校级期中)已知是正整数,则实数n 的最大值为 .【解答】解:由题意可知12﹣n 是一个完全平方数,且不为0,最小为1,所以n 的最大值为12﹣1=11.题型6:二次根式与三角形的综合15.在△ABC 中,a b c 、、2c a b --.【答案】33c a b --.【解析】根据三角形三边关系,任意两边之和大于第三边,可知0a b c -+>,0c a b --<,原式=()()22a b c c a b a b c c a b -+---=-++--22233a b c c a b c a b =-++--=--.16.在△ABC 中,a b c 、、0=,求最大边c 的取值范围.【答案】814c £<.【解析】根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.17.解下列各式:(1)已知0a a +=(2)a b c 、、+.【答案】(1)12a -;(2)3a b c +-.【解析】(1)由0a a +=,即a a =-,可得0a £,原式=1112a a a a a -+=--=-;(2)根据三角形三边关系,可知0a b c --<,0b c a -+>,0c b a --<,原式=a b c b c a c b a--+-++--3b c a b c a a b c a b c =+-+-+++-=+-.18.(1)在△ABC 中,a b c 、、0=,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根.【答案】(1)814c £<;(2)±.【解析】(1)根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.(2)由题意得:2()0x y +=,∴053160x y x y +=ìí--=î,解得:22x y =ìí=-î,∴==±.题型7:二次根式的性质的应用19.(1(2);(3)2-;(4)(1)x -【答案】(1; (23);(4)【解析】(1=;(2)(3)(4)=.20.将x 移到根号内,不改变原来的式子的值:(11)x >;(2)(2)x x ->.【答案】(12)1.【解析】(1==;(2)(1x -==.【方法三】差异对比法易错点:忽略隐含条件,误将负数移到根号外21.(2022秋•虹口区校级期中)已知a <0,则二次根式化简后的结果为( )A .aB .aC .﹣aD .﹣a【解答】解:∵a<0,﹣a2b≥0,∴a<0,b≤0,∴=﹣a.故选:D.22.(2022秋•虹口区校级期中)已知a<0,那么可化简为( )A.2b B.﹣C.﹣D.【解答】解:∵a<0,﹣>0,∴b>0,∴原式=,故选:D.23.(2022秋•静安区校级期中)已知xy<0,化简二次根式的值是( )A.B.C.D.【解答】解:由题意可知﹣xy2≥0.因为y2>0,所以﹣x≥0,所以x≤0,又因为xy<0,所以x<0,y>0,所以==.故选:C.24.(2022秋•青浦区校级期中)化简:(a<0)= .【解答】解:原式=.故答案为:.25.(2022秋•嘉定区校级月考)化简:= .【解答】解:∵﹣a4b3≥0,∴b≤0,∴=﹣a2b,故答案为:﹣a2b.【方法四】成功评定法一、单选题三、解答题222 =-++--a b c c a b =--.33c a b。
二次根式的综合(十大题型)(原卷版)—2025学年八年级数学上册《重难点题型高分突破》(北师大版)
二次根式的综合(十大题型)【题型01:二次根式的概念】【题型02:二次根式有意义的条件】【题型03:判断二次根式的性质化简】【题型04:同类二次根式的概念】【题型05:二次根式的混合运算】【题型06:二次根式的化简求值】【题型07:二次根式的应用】【题型08:二次根式中新定义问题】【题型09:利用分母有理化化简求值】【题型10:以二次根式为背景的材料阅读体二次根式中新定义问题】【题型01:二次根式的概念】1.下列式子是二次根式的是( )AB C D 2.下列式子中,是二次根式的是( )A .πB .35C D 3.下列各式中一定是二次根式的是( )ABC D .【题型02:二次根式有意义的条件】4x 的取值范围是( )A .x >―2B .x ≥2C .x ≤2D .x >25a 的取值范围是( )A .a >―1B .a >1C .a ≠―1D .a ≥―16x 的取值范围在数轴上表示正确的是( )A.B.C.D.7.当a=―6)B.3C.D.±3A8x的取值范围是()A.x>―2B.x<2C.x>―2且x≠0D.x<2且x≠0【题型03:判断二次根式的性质化简】8.(2023秋•海口期末)化简(﹣)2的结果是( )A.﹣8B.8C.±8D.169.(2023秋•覃塘区期末)若7<m<9,则化简的结果是( )A.15﹣2m B.2m﹣15C.5D.﹣5 10.(2023秋•射洪市期末)已知实数a在数轴上的位置如图所示,则化简:的结果为( )A.2B.﹣2C.2a﹣6D.﹣2a+6 11.(2023秋•怀化期末)若实数a、b、c在数轴上的对应点如图所示,则的结果是( )A.a﹣c B.﹣a﹣2b+c C.﹣a﹣c D.﹣a+c 12.(2023秋•曲阳县期末)若,则x的取值范围是( )A.x>3B.x≥3C.x<3D.x≤3 13.(2023秋•岳麓区校级期末)若=3﹣x成立,则x满足得条件( )A.x≥3B.x≤3C.x>3D.x<314.(2023秋•鄞州区校级期末)若某三角形的三边长分别为2,5,n,则化简+|8﹣n|的结果为( )A .5B .2n ﹣10C .2n ﹣6D .10【题型04:同类二次根式的概念】15.(2023秋•宁德期末)下列根式化简后不能与合并的是( )A .B .C .D .16.(2023秋•唐山期末)下列二次根式中,可与进行合并的二次根式是( )A .B .C .D .17.(2023秋•岳阳楼区期末)下列各组二次根式中,化简后是同类二次根式的是( )A .与B .与C .与D .与18.(2023秋•鼓楼区校级期末)最简二次根式与最简二次根式是同类二次根式,则a 的值是( )A .a =1B .a =﹣1C .a =2D .a =﹣2【题型05:二次根式的混合运算】19.(2024•沙坪坝区校级开学)计算:(1)﹣×(+2)+()0;(2).20.(2023秋•泉州期末)计算:.25.(2023秋•福田区校级期末)计算:(1);(2).21.(2023秋•渠县期末)计算:(1)﹣×;(2)(3)(3﹣)﹣()2.22.(2023秋•永定区期末)计算:(1).(2).23.(2023秋•昌黎县期末)计算:(1);(2).【题型06:二次根式的化简求值】24.(2023秋•澧县期末)已知,,求下列各式的值.(1)a+b和ab;(2)a2+ab+b2.25.(2023秋•岳阳楼区期末)若a=+2,b=﹣2.(1)求a2﹣b2.(2)求a3b+ab3.26.(2023秋•子洲县期末)先化简,再求值:,其中.27.(2022秋•晋江市期末)先化简,再求值:,其中a=﹣.28.(2023春•铁岭期末)先化简,再求值:(1﹣)÷,其中x=2+.29.(2023春•铁西区期末)先化简,再求值:,其中.35.(2023春•临高县期中)先化简,再求值:,其中.【题型07:二次根式的应用】30.(2023秋•开福区校级期末)已知一个长方形相邻的两边长分别是a,b,且,.(1)求此长方形的周长;(2)若一个正方形的周长与上述长方形的周长相等,求此正方形的面积.31.(2023秋•南昌期末)有一块矩形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为18dm2和32dm2的两块正方形木板.(1)截出的两块正方形木板的边长分别为 dm, dm;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm、宽为1dm的矩形木条,最多能截出 2 个这样的木条.32.(2023•晋城模拟)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t =(不考虑风速的影响,g ≈10m /s 2).(1)求从60m 高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J )=10×物体质量(单位:kg )×高度(单位:m ),某质量为0.2kg 的玩具被抛出后经过3s 后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J 的动能)33.(2023春•海东市期末)如图,长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =20+2,b =20﹣2,x =,求剩余部分的面积.【题型08:二次根式中新定义问题】34.(2023秋•沈丘县期末)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n ,如:1※2=12×2﹣1×2﹣3×2=﹣6.则(﹣2)※结果为( )A .B .C .D .35.(2023秋•沈丘县期中)对于任意的正数m ,n ,定义运算※:m ※n =,计算(3※2)×(8※12)的结果为( )A .2﹣4B .2C .2D .2036.(2023秋•龙泉市期中)定义“★”是一种新运算,对于任意实数a ,b (a ≠b ).当a >b 时,a ★b =a 2﹣b ,当a <b 时,a ★b =a ﹣b 2.例如:2★1=22﹣1=3,1★2=1﹣22=﹣3,那么:2★[(﹣2)★(﹣)]= .37.(2022秋•吉州区期末)定义:若两个二次根式a,b满足a•b=c,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a= ;(2)若与是关于12的共轭二次根式,求m的值.38.(2023秋•雁塔区校级期中)定义:若两个二次根式a,b满足a•b=c,且c是有理数,则称a与b是关于c的因子二次根式.(1)若a与是关于4的因子二次根式,则a= ;(2)若与是关于2的因子二次根式,求m的值.【题型09:利用分母有理化化简求值】39.(2023秋•虹口区校级期末)计算:= .40.(2023秋•化州市期末)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如这样的式子,其实我们还可以将其进一步化简:===﹣1以上这种化简的步骤叫做分母有理化.参照上面的方法化简:= .41.(2022秋•河间市校级期末)阅读下列解题过程:,,请回答下列问题:(1)观察上面的解答过程,请写出= ;(2)利用上面的解法,请化简:.42.(2023秋•南山区校级期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.43.(2023春•百色期末)观察下列一组式的变形过程,然后回答问题:例1:﹣1,例2:=,,,…(1)= ,= ;(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值..【题型10:以二次根式为背景的材料阅读体二次根式中新定义问题】44.(2023春•浏阳市期中)像•=2:(+1)(﹣1)=2:(+)(﹣)=3…两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式,爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1)==;(2)===3+2.勤奋好学的小明发现:可以用平方之后再开方的方式来化简一些有特点的无理数.(3)化简:﹣.解:设x=﹣,易知>,∴x>0.由:x2=3++3﹣﹣2=6﹣2=2.解得x=.即﹣=.请你解决下列问题:(1)2﹣3的有理化因式是 2+3 ;(2)化简:++;(3)化简:﹣.45.(2022秋•济南期末)阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).46.(2022春•诸城市校级期中)先阅读下面两段材料,然后解答问题:材料一:在进行二次根式的化简与运算时,我们有时会碰上如,,,一样的式子,分母中含有根号,其实我们还可以将其进一步化简:;;.以上这种化简的过程叫分母有理化.解答问题:(1)化简:= ;= ;= ﹣ ;(2)利用上面所提供的解法,请化简:.材料二:形如的化简,只要我们找到两个正数a,b,使a+b=m,ab=n,使得,,那么便有:例如:化简解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即:,所以.解答问题:(3)填空:= ,= ;(4)化简:(请写出化简过程).。
2024八年级数学上册期末复习3二次根式3常考题型专练习题课件新版北师大版
1
2
3
4
5
6
7
8
类型3利用 ≥0求最值
6. 当 x 取何值时, + +3的值最小?最小值是多少?
解:∵ + ≥0,∴当 + =0,即当 x =-
时, + +3的值最小,最小值是3.
1
2
3
4
5
6
7
8
类型4利用二次根式的非负性解决代数式化简求值问题
7. 等式 ( − ) + ( − ) = − - − =0恒成
所以 − - − + = − - ( − ) =
− - − = y -3- y +1=-2.
1
2
3
4
5
6
7
8
类型2利用 ≥0求代数式的值或平方根
4. [2024十堰实验中学月考]若 + + +|2 a - b +1|
=0,则( b - a )2 024等于(
当 b =3时,此式的值最大,即 S 最大,最大值为 =
2 .
1
2
3
4
5
6
有意义,
∴ m -4≥0,即 m ≥4.
当 m ≥4时, ( − ) + ( − ) =( m -3)+( m -
4)=2 m -7.
1
2
3
4
5
6
题型3利用二次根式的性质进行计算
4. (1)设 = a , = b ,试用含 a , b 的代数式表示
.
解:(1) =6 =6
立,且 x , y , a 互不相等,求
1
2
二次根式.分类题型
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
73+2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2) 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0);b b a a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质a (a >0)==a a 2a -(a <0)0 (a =0);例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xyy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式 例. 在实数范围内分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
21.1 二次根式的意义: 1. 有意义的条件是 。
2. 当__________
3.
1
1
m +有意义,则m 的取值范围是 。
4. 当__________x
是二次根式。
5. 在实数范围内分解因式:42
9__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x
≤
5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11.
11x =
+成立的条件是 。
12.
若1a b -+()
2005
_____________a
b -=。
13. )()()230,2,12,20
,3,1,x y y
x x x x y +=--
++中,
二次根式有(
)
14. 下列各式一定是二次根式的是( )
15. 若2
3a
)
A. 52a -
B. 12a -
C. 25a -
D. 21a - 16. 若A =
=( )
A. 2
4a +
B. 2
2a + C. (
)
2
2
2a + D. (
)
2
2
4a + 17. 若1a ≤
)
A. (1a -
B.
(1a -
C. (1a -
D. (1a -
18.
=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥
19.
)
A. 0
B. 42a -
C. 24a
- D. 24a -或4
2a - 20.
下面的推导中开始出错的步骤是( )
()()()()
2312322
4==-=
=∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()4
21.
2440
y y
-+=,求xy的值。
22. 当a
1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:
(
))
10
x ()
)
21
x 24. 已知2310
x x
-
+=
25. 已知
,a b
(10
b-=,求20052006
a b
-的值。
21.2 二次根式的乘除
1.
当0
a≤,
b__________
=。
2.
_____,______
m n
==。
3.
__________
==。
4.
计算:
_____________
=。
5.
,则长方形的长约为(精确到0.01)。
6. 下列各式不是最简二次根式的是()
7. 已知0
xy
,化简二次根式)
C.
D.
8. 对于所有实数,a b,下列等式总能成立的是()
A.
2
a b
=+
a b
=+
22
a b
=
+a b
=
+
9.
--
)
A. 32
-
- B. 32
-
-
C. -=-
不能确定
10. )
A. 它是一个非负数
B. 它是一个无理数
C. 它是最简二次根式
D. 它的最小值为3
11.
计算:
(
)1
(
)2
(
)(()
30,0
a b
-≥≥
(
))
40,0
a b
(
)5
(
)6⎛÷
⎝
12.
化简:
())
10,0
a b
≥≥(
)2
(
)3a
13. 把根号外的因式移到根号内:
(
)1.-()(
2.1x
-
21.3 二次根式的加减
1.
是同类二次根式的是()
2. 下面说法正确的是()
A. 被开方数相同的二次根式一定是同类二次根式
不是同类二次根式
D. 同类二次根式是根指数为2的根式
3.
)
4. 下列根式中,是最简二次根式的是()
5. 若12
x
)
A. 21
x- B. 21
x
-+ C. 3 D. -3
6.
10
=,则x的值等于()
A. 4
B. 2
± C. 2 D. 4
±
7.
x,小数部分为y
y
-的值是()
A. 3
C. 1
D. 3
8. 下列式子中正确的是()
=
a b
=-
C. (
a b
=-
2
2
==
9.
是同类二次根式的是。
10.若最简二次根
式
与是同类二次根式,则
____,____
a b
==。
11.
,则它的周长是 cm。
12.
______
a=。
13.
已知x y ==33
_________x y xy +=。
14.
已知x =
2
1________x x -+=。
15.
)(
)
2000
2001
2
32
______________+
=。
16. 计算:
⑴
.
⑵
.
(231⎛
++ ⎝
⑶
.
(()2
771+-
- ⑷
.
(
(((2
2
2
2
1111+
-
17. 计算及化简:
⑴
. 22
-
⑵
⑶
⑷
-
18.
已知:x y
==
32
43223
2
x xy
x y x y x y
-
++
的值。
19.
已知:
1
1
a
a
+=+2
2
1
a
a
+的值。
20. 已知:,x y为实数,
且13
y x-+
,化简:3
y-
21. 已知
()1
1
3
9
3
2
2
+
+
=
+
-
+
-
y
x
x
x
y
x
,求的值。
答案:
21.1 二次根式: 1. 4x ≥; 2. 1
22
x -≤≤
; 3. 01m m ≤≠-且; 4. 任意实数; 5. (
)(
(2
2
3;x x x x +-; 6. 0x ≥;7. 2x ≤; 8. 1x -;
9. 4;
10. 11. 1x ≥; 12. -1; 13——20:CCCABCDB
21. 4; 22. 1
2a =-,最小值为1; 23. (
)(
)()
2312.1x x +;
25. -2
21.2 二次根式的乘除:
1. -
2. 1、2;
3. 18;
4. -5;
5. 2.83; 6——10: DDCAB
11. ()()()(
)()(
)2
2
21.6,2.15,3.20,4.5.1,6.x a b ab
a --
12. (
)(
)()123.0ab
;
13. (
)(
)1.2.
21.3 二次根式的加减: 1——8:BAACCCCC
; 10. 1、1;
11. (; 12. 1; 13. 10;
14. 4
2; 16. (
)(
)(
)()122,3.454.4-+; 17. ()(
)()()
()21.4,23.
,4.1x y y x
-+-;
18. 5;
19. 9+ 20. -1; 21. 2。