二次函数课堂同步专项练习题

合集下载

九年级数学上册《第二十二章二次函数》同步练习题含答案(人教版)

九年级数学上册《第二十二章二次函数》同步练习题含答案(人教版)

九年级数学上册《第二十二章二次函数》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、二次函数的概念和图像1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像 二次函数的图像是一条关于ab x 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

最新二次函数课时同步练习题

最新二次函数课时同步练习题

二次函数的定义练习题一、选择题1、下列函数中,不是二次函数的是()A.y=1-2x2B.y=2(x-1)2+4;C.y=2、下列函数中,是二次函数的有()12(x-1)(x+4)D.y=(x-2)2-x2①y=1-2x2②y=1x2③y=x(1-x)④y=(1-2x)(1+2x)A、1个B、2个C、3个D、4个3、若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m的值必为()A、-1或3B、-1C、3D、无法确定4、在半径为4cm的圆中,挖去一个半径为xcm的圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为()A.y=πx2-4B.y=π(2-x)2;C.y=-(x2+4)D.y=-πx2+16π5、若y=(2-m)x m2-2是二次函数,则m等于()A.±2B.2C.-2D.不能确定6、下列结论正确的是()A.二次函数中两个变量的值是非零实数;B.二次函数中变量x的值是所有实数;C.形如y=ax2+b x+c的函数叫二次函数;D.二次函数y=ax2+b x+c中a,b,c的值均不能为零二、填空题7、已知函数y=(k+2)x k2+k-4是关于x的二次函数,则k=________.8、已知正方形的周长是acm,面积为Scm2,则S与a之间的函数关系式为_____.9.、填表:c26s=116c21410、在边长为4m的正方形中间挖去一个长为xm的小正方形,剩下的四方框形的面积为y,则y与x间的函数关系式为_________.11、用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.三、解答题12、已知y与x2成正比例,并且当x=1时,y=2,求函数y与x的函数关系式,并求当x=-3时,y的值.当y=8时,求x的值.二次函数 y=ax2 的图像和性质练习题一、选择题1、抛物线 y=2x 2,y=-2x 2,y= 1 x 2 的共同性质是()2A.开口向上B.对称轴是 y 轴C.都有最高点D.y 随 x 的增大而增大 2、关于函数 y=3x 2 的性质表述正确的一项是( )A.无论 x 为任何实数,y 的值总为正B.当 x 值增大时,y 的值也增大C.它的图象关于 y 轴对称D.它的图象在第一、三象限内 3、已知点(-1,y 1),(2, y 2),(-3,y 3)都在函数 y=x 2 的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 34、二次函数 y=x 2 和 y=2x 2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是 y 轴,顶点坐 标都是原点(0,0);③当 x>0 时,它们的函数值 y 都是随着 x 的增大而增大;④它们开口的大小是一样的. 其中正确的说法有( )A.1 个B.2 个C.3 个D.4 个5、已知 a ≠0,在同一直角坐标系中,函数 y=ax 与 y=ax 2 的图象有可能是 ( )6、如图,四个二次函数的图象中,分别对应的是:①y=ax 2;②y=bx 2;③y=cx 2;④y=dx 2,则 a 、b 、c 、d的大小关系为( )A.a >b >c >dB.a >b >d >cC.b >a >c >d D .b >a >d >c 7、已知 A(-1,y 1),B(-2,y 2)都在抛物线 y=3x 2 上,则 y 1、y 2 之间的大小关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.大小关系不能确定二、填空题8、 抛物线 y=-x 2 的开口方向____,顶点坐标是____,对称轴是____.9、在二次函数 y=ax 2(a ≠0)图象中,①当 a>0,x>0 时,y 随 x 增大而____,x<0 时,y 随 x 增大而____, 当 x=0 时,y 取最____值是 0;②当 a<0,x>0 时,y 随 x 增大而____,x<0 时,y 随 x 增大而____,当 x=0 时,y 取最____值是 0.10、二次函数 y=m x m 2-m 的图象开口向下,则____11、二次函数 y=-6x 2,当 x 1>x 2>0 时,y 1 与 y 2 的大小关系为____.12、已知二次函数 y=(m-2)x 2 的图象开口向下,则 m 的取值范围是____13、下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数 y=-2x 2 的图象上的是____. 三、解答题14、分别求出符合下列条件的抛物线 y=ax 2 的解析式:(1)经过点(-3,2); (2)与 y= 1 x 2 开口大小相同,方向相反.3巩固提高1、二次函数 y=2x 2 的图像一定经过点( ) A (1,2) B(-1,-2) C(-1,2) D (1,0)2、函数 y=m x m 2 -2m -6 是二次函数,当 m= 时,其图像开口向上,当 m=时,其图像开口向( .xxx下。

九年级教学九年级教学二次函数同步练习

九年级教学九年级教学二次函数同步练习

2.结识抛物线第1题. 二次函数2y x =的图像是一条 ,它的开口向 ,它的对称轴为 ,它的顶点坐标为.答案:抛物线 上y 轴(00),第2题. 如图,长方体1111ABCD A B C D -中,其三边长度比1::2:1AB BC B B =,若cm BC x =,长方体的表面积为2cm y ,则y 关于x 的函数关系式为 ,此函数的图像是一条中0x >的部分,y 的值一定是随着x 值的增大而.答案:212y x ⎛⎫=+ ⎪ ⎪⎝⎭抛物线 增大第3题. 若等腰直角三角形的斜边长为2cm x ,其面积为2cm y . (1)求y 关于x 的函数关系式,并求x 的取值范围.(2)列出12x =,1,32,2,122,3时,y 与x 的对应值表. (3)画出y 关于x 的函数图像.答案:(1)斜边长2x=,221)2y x ==,0x >.(2)(3)图略.1CCBAD 1A1D 1B第4题. 求直线28y x =+与抛物线2y x =的交点A ,B 的坐标,及△AOB 的面积.答案:由228y x y x =+⎧⎨=⎩,,得2280x x --=,解之得24x y =-⎧⎨=⎩,,416x y =⎧⎨=⎩,,(24)A ∴-,,(416)B ,. 设直线28y x =+与y 轴交于点(08)C ,,112422AOBAOC BOCA B SS SOC x OC x =+=+=.第5题. 求下列各题中直线与抛物线的两个交点的坐标.(1)直线43y x =-和抛物线2y x =;(2)直线2y x =-和抛物线2y x =-; (3)直线35y x =+和抛物线2y x =.答案:(1)243y x y x =-⎧⎨=⎩,,2430x x -+=,39x y =⎧⎨=⎩,,11x y =⎧⎨=⎩,,∴交点(39)A ,,(11)B ,. (2)22y x y x =-⎧⎨=-⎩,,220x x +-=,11x y =⎧⎨=-⎩,,24x y =-⎧⎨=-⎩,,∴交点(11)A -,,(24)B --,. (3)235y x y x=+⎧⎨=⎩,,2350x x --=,x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴交点31922A ⎛⎫++ ⎪ ⎪⎝⎭,,322B ⎛⎫⎪ ⎪⎝⎭19-,.第6题. 直线32y x =-+与抛物线21y xx =-+的交点坐标为 .答案:(1-+-,(1-+第7题. 抛物线2y x =在对称轴左边,随着x 的增大,y 的值 ,在对称轴的右边,随着x 的增大,y 的值 .答案:减小,增大答案:2y x =,图略第9题. 观察二次函数2y x =的图象,并填空.图像与x 轴的交点也是它的 ,这个点的坐标是.答案:顶点 ()00,第10题.观察二次函数2y x =的图像,并填空.当0x <时,随着x 值的增大,y 的值;当0x >时,随着x 值的增大,y 的值.答案:减小 增大22第11题. 观察二次函数2y x =的图像,并填空. 当x =时,2y x =的值最小,最小值是.答案:0 0第12题. 函数2y x =-与2y x =相比较,相同点是,不同点是.2y x =-的图象与2y x =的图像的形状 ,开口方向 .在同一坐标系中,两图像关于 对称.答案:都只含二次项 二次项的系数互为相反数 相同相反x 轴第13题. 对于函数24y x =,下列说法正确的是( )A.当0x >时,y 随x 的增大而减小 B.当0x <时,y 随x 的增大而减小 C.y 随x 的增大而减小 D.y 随x 的增大而增大答案:B第14题. 某涵洞是抛物线形,它的截面如图所示,现测得水面宽 1.6m AB =,涵洞顶点O 到水面的距离为2.4m .试写出涵洞所在抛物线的函数表达式.2答案:由已知点B 到x 轴的距离是2.4m ,到y 轴的距离是0.8m ,故B 点坐标是()0.8 2.4-,.设2y ax =,则22.40.8a -=⨯,154a =-,即2154y x =-.第15题. 抛物线24y x =,214y x =,214y x =-的共同特点是( )A.关于y 轴对称,开口向上B.关于y 轴对称,y 随x 的增大而增大 C.关于y 轴对称,y 随x 的增大而减小 D.关于y 轴对称,顶点是原点答案:D第16题. 下列函数中,当0x >时,y 随x 的增大而减小的是( )A.2y x = B.21y x =-C.2y x=-D.22y x =-答案:D第17题. 将二次函数2246()y x x y a x h k =-+=-+化为的形式:y = .答案:2(2)2x -+;。

数学人教版九年级上册22.1.1二次函数同步训练(解析版)

数学人教版九年级上册22.1.1二次函数同步训练(解析版)

2019-2019 学年数学人教版九年级上册 22.1.1 二次函数同步训练一、选择题1.二次函数 y=2x(x﹣3)的二次项系数与一次项系数的和为()A. 2B.﹣2C.﹣1 D.﹣42.对于 y=ax2+bx+c,有以下四种说法,此中正确的选项是()A. 当 b=0 时,二次函数是y=ax2+cB. 当 c=0 时,二次函数是 y=ax2+bxC. 当 a=0 时,一次函数是y=bx+cD. 以上说法都不对3.已知对于 x 的函数 y=(m﹣1)x m+(3m+2)x+1 是二次函数,则此分析式的一次项系数是()A. ﹣1B. 8C﹣.2 D. 14.以下函数分析式中,必定为二次函数的是()A. y=3x ﹣1B. y=ax2+bx+cC. s=2t2﹣2t+1 D. y=x2+二次函数y=3x 2﹣2x﹣4 的二次项系数与常数项的和是()5.A. 1B. ﹣1 C. 7D﹣.66.已知 x 是实数,且知足(x﹣2)(x﹣3)=0,则相应的函数 y=x2+x+1的值为()A. 13或 3B. 7或3 C. 3D. 13或7 或 3π 2中, S 与 R 之间的关系是()7.圆的面积公式 S= RA. S 是 R 的正比率函数B. S 是 R 的一次函数C. S是 R 的二次函数 D. 以上答案都不对8.已知函数:①y=3x﹣1;② y=3x2﹣1;③y=3x3+2x2;④y=2x2﹣2x+1,其中二次函数的个数为()A.1B.2C.3D. 4二、填空题9.已知两个变量 x,y 之间的关系式为y= (a﹣2)x2+(b+2)x﹣3.(1)当 ________时, x,y 之间是二次函数关系;(2)当 ________时, x,y 之间是一次函数关系.10.已知方程 ax2+bx+cy=0(a≠0、b、c 为常数),请你经过变形把它写成你所熟习的一个函数表达式的形式.则函数表达式为________,建立的条件是________,是 ________函数.11.函数 y=2x2中,自变量 x 的取值范围是 ________,函数值 y 的取值范围是________.12.若 y= (m2+m)x m2﹣2m﹣1﹣x+3 是对于 x 的二次函数,则m=________.13.函数的图象是抛物线,则m=________.14.已知函数 y=(m﹣2)x2+mx﹣3(m 为常数).(1)当 m________时,该函数为二次函数;第- 2 -页/共11页(2)当 m________时,该函数为一次函数.三、解答题15.已知 y=( m﹣2) x+3x+6 是二次函数,求m 的值.16.已知函数 y=(9k2﹣1)x2+2kx+3 是对于 x 的二次函数,求不等式的解集.17.若 y= (m﹣3)是二次函数,(1)求 m 的值.(2)求出该图象上纵坐标为﹣ 6 的点的坐标.18.已知函数 y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求 m 的取值范围.(2)若这个函数是一次函数,求 m 的值.(3)这个函数可能是正比率函数吗?为何?19.已知 y=( m﹣1) x是对于x的二次函数,求m 的值.20.依据下边的条件列出函数分析式,并判断列出的函数能否为二次函数:(1)假如两个数中,一个比另一个大 5,那么,这两个数的乘积 p 是较大的数 m 的函数;(2)一个半径为 10cm 的圆上,挖掉 4 个大小同样的正方形孔,节余的面积 S(cm2)是方孔边长 x(cm)的函数;(3)有一块长为 60m、宽为 40m 的矩形绿地,计划在它的周围同样的宽度内栽种阔叶草,中间种郁金香,那么郁金香的栽种面积 S(cm2)是草坪宽度a(m)的函数.答案分析部分一、选择题1.【答案】 D【考点】二次函数的定义【分析】【解答】解:y=2x(x﹣3)=2x2﹣6x.因此二次项系数与一次项系数的和=2+(﹣ 6)=﹣4.故答案为: D【剖析】第一将函数分析式整理成一般形式,而后直接得出二次项系数与一次项系数,再依占有理数加法法例算出答案。

专题26.1.1 二次函数(同步测试)-九年级数学同步精讲精练之二次函数(华师大版)(解析版)

专题26.1.1 二次函数(同步测试)-九年级数学同步精讲精练之二次函数(华师大版)(解析版)

第1课时二次函数【同步测试】一.选择题(共10小题)1.下列函数中是二次函数的是()A.y B.y=2x+1 C.y x2+2x3D.y=﹣4x2+5【答案】Dy=﹣4x2+5是二次函数,故D正确.故选:D.【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.2.二次函数的二次项系数、一次项系数和常数项分别是()A.,﹣2,﹣3 B.,﹣2,﹣1 C.,4,﹣3 D.,﹣4,1【答案】B【解析】解:y1,二次项系数是,一次项系数是﹣2,常数项是﹣1,故选:B.【点睛】本题考查了二次函数的定义,化成一般形式,再判断二次项系数、一次项系数和常数项.3.下列函数中:(1)y=2(x﹣1)(x+4);(2)y=3(x﹣1)2+2;(3)y=x2;(4)y=(x﹣3)2﹣x2.不是二次函数的是()A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)【答案】B【解析】解:(1)y=2(x﹣1)(x+4),是二次函数;(2)y=3(x﹣1)2+2,是二次函数;(3)y=x2,含有分式,不是二次函数,符合题意;故选:B.学科@网【点睛】此题主要考查了二次函数的定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.4.下列各式:①y=2x2﹣3xz+5;②y=3﹣2x+5x2;③y2x﹣3;④y=ax2+bx+c;⑤y=(2x﹣3)(3x﹣2)﹣6x2;⑥y=(m2+1)x2+3x﹣4(m为常数);⑦y=m2x2+4x﹣3(m为常数).是二次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:①y=2x2﹣3xz+5,含有两个未知数,故此选项错误;②y=3﹣2x+5x2,符合二次函数的定义,此选项正确;③y2x﹣3,含有分式,不是二次函数,故此选项错误;④y=ax2+bx+c,a≠0,故此选项错误;⑤y=(2x﹣3)(3x﹣2)﹣6x2=﹣10x+6,不是二次函数,故此选项错误;⑥y=(m2+1)x2+3x﹣4(m为常数),符合二次函数定义,故此选项正确;⑦y=m2x2+4x﹣3(m为常数),m≠0,不是二次函数,故此选项错误;故是二次函数的有:2个.故选:B.【点睛】此题主要考查了二次函数的定义,正确把握二次函数定义是解题关键.5.若函数y=(a2+a)x|a|+1+2x+m是二次函数,则a的值为()A.±1 B.1 C.﹣1 D.1或0【答案】B【解析】解:函数y=(a2+a)x|a|+1+2x+m是二次函数,∴a2+a≠0,|a|+1=2.解得:a=1.故选:B.【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.6.下列函数关系中,满足二次函数关系的是()A.圆的周长与圆的半径之间的关系B.在弹性限度内,弹簧的长度与所挂物体质量的关系C.圆柱的高一定时,圆柱的体积与底面半径的关系D.距离一定时,汽车行驶的速度与时间之间的关系【答案】CC、柱的高一定时,圆柱的体积与底面半径的关系,V=πhr2,是二次函数关系,故符合题意;D、距离一定时,汽车行驶的速度与时间之间的关系,是反比例函数关系,故不合题意;故选:C.【点睛】此题主要考查了二次函数的定义哈一次函数和反比例函数定义,根据题意得出正确把握相关函数的定义是解题关键.7.圆的面积公式S=πr2中,S和r之间的关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.以上答案均不正确【答案】C【解析】解:圆的面积公式S=πr2中,S和r之间的关系是二次函数关系,故选:C.【点睛】此题主要考查了二次函数的定义,关键是掌握二次函数的形式.8.下列两个量之间的关系不属于二次函数的是()A.速度一定时,汽车行使的路程与时间的关系B.质量一定时,物体具有的动能和速度的关系C.质量一定时,运动的物体所受到的阻力与运动速度的关系D.从高空自由降落的物体,下降的高度与下降的时间的关系【答案】A【解析】解:A、s=vt,v一定,是一次函数,错误;B、E=mv2,m一定,是二次函数,正确;C、f=mv2,v一定,是二次函数,正确;D、H=gt2,g一定,是二次函数,正确.故选:A.【点睛】本题考查了二次函数的定义,属于基础题,难度不大,注意掌握二次函数的定义.9.若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+6)2B.y=x2+62C.y=x2+6x D.y=x2+12x【答案】D则面积为:(x+6)2,∴y=(x+6)2﹣36=x2+12x.故选:D.学科&网【点睛】此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.10.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10 B.y=﹣10x2+100xC.y=﹣10x2+100x+110 D.y=﹣10x2+90x+100【答案】D【解析】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.二.填空题(共3小题)11.如图,在直角梯形ABCD中,BF=AE=DG=x,AB=6,CD=3,AD=4,则四边形CGEF的面积y 与x之间的函数关系式为_____,自变量x的取值范围是________.【答案】y=x2﹣7x+18,0<x<3.【解析】解:由题意可得:y=S梯形ABCD﹣S△DGE﹣S△EAF﹣S△BFC(3+6)×4x×(4﹣x)x×(6﹣x)x×4=18x2﹣2x x2﹣3x﹣2x=x2﹣7x+18,(0<x<3)故答案为:y=x2﹣7x+18,0<x<3.【点睛】此题主要考查了根据实际问题列二次函数解析式,表示出各部分面积是解题关键.12.某产品年产量为30台,计划今后每年比前一年的产量增长率为x,试写出两年后的产量y台与x的函数关系式:_________.【答案】y=30(1+x)2∴两年后的产量y台与x的函数关系式为:y=30(1+x)(1+x)=30(1+x)2.故答案为:y=30(1+x)2.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据已知得出一年后的产量y台与x的函数关系式是解题关键.13.如图所示,要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,若设AB的长为xm,则矩形的面积y=_____________.【答案】﹣2x2+20x(0<x<10)【解析】解:∵AB的长为xm,总长为20m,∴BC=(20﹣2x)cm,∴x>0,20﹣2x>0,∴y=x(20﹣2x)=﹣2x2+20x(0<x<10).【点睛】解决本题的关键得到所求矩形的等量关系,易错点是得到BC的长度;注意求自变量的取值应从线段的长为正数入手考虑.。

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案同步训练题1. 以下函数中是二次函数的是( )A .y =2x +1B .y =-2x +1C .y =x 2+2 D .y =12x -2 2. 二次函数y =1-3x +5x 2,那么它的二次项系数a ,一次项系数b ,常数项c 区分是( )A .1,-3,5B .1,3,5C .5,3,1D .5,-3,13. 一台机器原价60万元,假设每年的折旧率是x ,两年后这台机器的价钱为y 元,那么y 与x 之间的函数关系式为( )A .y =60(1-x )2B .y =60(1-x )C .y =60-x 2D .y =60(1+x )24. 在一定条件下,假定物体运动的路段s (米)与时间t (秒)之间的关系为s =5t 2+2t ,那么当t =4秒时,该物体所经过的路程为( )A .28米B .48米C .68米D .88米5. 函数y =(m -3)x |m |-1+3x -1是二次函数,那么m 的值是( )A .3B .-3C .±2D .±36. 二次函数y =2x (x -4)的二次项系数与一次项系数的和为( )A .10B .-10C .6D .-67. 在二次函数y =(a -3)x 2+x -2中,a 的取值范围是 .8. 把函数y =(2-3x )(6-x )化成y =ax 2+bx +c 的方式为 .9. 矩形的长为4cm ,宽为3cm ,假设将长与宽都添加x cm ,那么面积添加y cm 2,那么y 与x 之间的函数关系式为y = .10. 〝五一〞时期市工会组织篮球竞赛,赛制为单循环赛(每两队之间竞赛一场),参与这次竞赛的x 支球队共停止y 场竞赛,那么y 与x 之间的函数关系是 ,它 (填〝是〞或〝不是〞)二次函数.11. 当时,函数y=(m2-2m-8)x2+(m+2)x+m是二次函数,当时,这个函数是一次函数.12. 某商店运营一种水产品,本钱为每千克40元,据市场剖析,假定按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售就增加10千克,设下跌x元后,总利润为y元,那么y与x的函数关系式为.13. 以下函数中,哪些是二次函数?哪些不是?假定是二次函数,请指出a、b、c 的值.(1)y=x(x-1)+1;(2)y=2x(1-x)+2x2;(3)y=(x+3)(3-x).14. 函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,此函数是二次函数;(2)当a为何值时,此函数是一次函数.15. 当m为何值时,y=(m+1)xm2-2m-1+(m-3)x+m是二次函数?16. 为了改善小区环境,某小区决议要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).假定设绿化带的BC边长为x m,绿化带的面积为y m2,求y与x之间的函数关系式,并写出自变量x的取值范围.17. 用一根长50cm的细绳围成一个矩形.设矩形的一边长为x cm,面积为y cm2.(1)求y与x的函数关系式;(2)该细绳能围成面积为160cm2的矩形吗?假定能,求出此时的x的值;假定不能,请说明理由.18. 某公司研制出一种新型产品,每件的消费本钱为18元,按定价40元出售,每月可销售20万件.为了添加销量,公司决议采取降价的方法,经市场调研,每降价1元,月销售量可添加2万件,设每件产品的售价为x元.(1) 设月销售利润W(万元),请用含有销售单价x(元)的代数式表示W;(2) 为使月销售利润到达480万元,且按物价部门规则此类商品每件的利润率不得高于80%,每件产品的售价为多少?参考答案:1---6 CDADB D7. a≠38. y =3x 2-20x +129. x 2+7x10. y =12x(x -1) 是 11. m≠4且m≠-2 m =412. y =-10x 2+400x +500013. 解:(1)是,a =1,b =-1,c =1.(2)不是.(3)是,a =-1,b =0,c =9.14. 解:(1)由题意得:a 2-4≠0解得a ≠±2即:当a ≠±2时,此函数是二次函数.(2)由题意得:⎩⎪⎨⎪⎧ a 2-4=0a +2≠0解得:a =2即:当a =2时,此函数是一次函数.15. 解:依据题意得,假定原函数为二次函数,那么有⎩⎪⎨⎪⎧ m +1≠0,m 2-2m -1=2解得m =3.即当m =3时,y =(m +1)xm 2-2m -1+(m -3)x +m 是二次函数.16. 解:由题意,得y =x×40-x 2=-12x 2+20x ,自变量x 的取值范围是0<x≤25. 17. 解:(1)依据题意,得y =x (25-x )=-x 2+25x(2)假定能围成面积为160cm2的矩形,那么-x2+25x=160,即x2-25x+160=0 ∵b2-4ac=(-25)2-4×1×160=-15<0∴方程没有实数根,∴不能围成面积为160cm2的矩形.18. 解:(1)依据题意可得函数解析式:W=(x-18)[20+2(40-x)]=-2x2+136x-1800,即月销售利润W=-2x2+136x-1800;(2)当W=480时,-2x2+136x-1800=480解得x1=30,x2=38又∵38>18×(1+80%),∴x=30答:每件产品的售价为30元.。

人教版九年级数学上册--22.1.1二次函数--分层同步练习(含解析)

人教版九年级数学上册--22.1.1二次函数--分层同步练习(含解析)

人教版九年级数学上册第二十二章 22.1.1二次函数分层同步练习学校:___________ 姓名:___________ 班级:___________1.下列函数中是二次函数的有( )A .51y x =+B .241y x =-C .4531y x x =-+D .21y x x=+2.若函数()2256y m x x =-++是二次函数,则有( )A .0m ≠B .2m ≠C .0x ≠D .2x ≠3.下列函数关系式中,y 是x 的二次函数是( )A .2y ax bx c=++B .21y x x =-C .21y x =-+D .2(1)y x x x =--4.函数234y x x =+-是( )A .一次函数B .二次函数C .正比例函数D .反比例函数5.下列函数中,是二次函数的是( )A .12y x =B .C .D .6.下列函数的解析式中,一定为二次函数的是( )A .()221y x x =+-B .y =C .232S t t =-++D .2y ax bx c =++(a b c ,,是常数)7.下列函数中,一定是二次函数是( )A .y=ax 2+bx+cB .y=x (﹣x+1)C .y=(x ﹣1)2﹣x 2D .y=21x 8.下列函数中,二次函数是( )A .28y x =B .81y x =+C .8y x =-D .8y x=-9.一台机器原价50万元,如果每年的折旧率是x ,两年后这台机器的价格为y 万元,则y 与x 的函数关系式为( )A .250(1)y x =-B .()5012y x =-C .250y x =-D .250(1)y x =+10.下面所示各图是在同一直角坐标系内,二次函数y =2ax +(a+c )x+c 与一次函数y =ax+c 的大致图象.正确的( )A .B .C .D .11.如果将抛物线y=x 2+2x ﹣1向上平移3个单位,那么所得的新抛物线的表达式是 .12.若函数()22226mm y m x -+=--是二次函数,则m 的值为 .13.如果函数2321m m y mx mx -+=++是二次函数,那么m 的值为 .14.抛物线22y x =经过点(1,)b -,是b = .15.点(),M a b 在函数153y x =-的图象上,则代数式3a b -的值为 .16.某二次函数的图像的顶点坐标(4,-1),且它的形状、开口方向与抛物线y=-x 2相同,则这个二次函数的解析式为17.在△ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为 .18.当m = 时,()11m y m x +=-是二次函数.19.如图,在平面直角坐标系中,二次函数22y x x c =-+的图象经过点(0,3)C -,与x 轴交于点A 、B (点A 在点B 左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y >0时,自变量x 的取值范围.20.已知函数()32121y m m x mx x =++++.(1)当m 为何值时,y 是关于x 的二次函数?(2)当m 为何值时,y 是关于x 的一次函数?21.函数 y=(m-2)x+m 2-4 (m 为常数).(1)当m 取何值时, y 是x 的正比例函数?(2) 当m 取何值时, y 是x 的一次函数?22.指出下列二次函数的二次项系数、一次项系数和常数项.23.某校为贯彻落实教育部《关于全面加强中小学生劳动教育的意见》,更好地培养学生的劳动兴趣和劳动技能,计划在校园开辟一块劳动教育基地:用32m 长的篱笆围成一个矩形菜地,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的菜地面积为60平方米?24.当a 为何值时,函数()2445a y a x x -=-+-是二次函数.25.【教材呈现】如左图是华师版七年级下册数学教材第10﹣11页的部分内容,右图是小东同学类比课堂学习完成的一道课外作业题.认真阅读教材内容,结合小东作业,完成下列问题:(1)小东解方程的结果“x=2”是不是原方程的解?请写出判断过程;(2)解方程413111--=--xx x,并判断所求“结果”是不是原方程的解,简要说明理由.(3)反思以上过程,你有什么疑问请写下来(一条即可).26.已知:如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y 轴于点F,连接EF,若△PEF的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)以上(2)中的函数图象是一条直线吗?请尝试作图验证.1.B【分析】根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如2y ax bx c =++(a b c 、、是常数,0a ≠)的函数,叫做二次函数.【详解】解:A 、51y x =+,自变量的指数是1次,不是二次函数,故该选项不符合题意;B 、241y x =-,是二次函数,故该选项符合题意;C 、4531y x x =-+,自变量的指数是4次,不是二次函数,故该选项不符合题意;D 、21y x x=+,右边不是整式,不是二次函数,故该选项不符合题意;故选:B .【点睛】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.2.B【分析】直接根据二次函数的定义解答即可.【详解】解:由题意得,20m -≠,解得2m ≠.故选:B .【点睛】本题考查的是二次函数的定义,熟知一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ≠)的函数,叫做二次函数是解题的关键.3.C【分析】根据二次函数的概念求解即可.【详解】解:A .当0a =时,2y ax bx c =++不是二次函数,故本选项不符合题意;B .21y x x=-不是二次函数,故本选项不符合题意;C .21y x =-+是二次函数,故本选项符合题意;D .()216y x x x x =--=--不是二次函数,故本选项不符合题意.故选:C .【点睛】此题考查的是二次函数的判断,掌握二次函数的定义(形如2y ax bx c =++(其中a b c ,,是常数,0a ≠)的函数叫做二次函数)是解题关键.4.B【详解】判断一个函数是二次函数需要注意三点:(1)整理后,函数表达式是整式;(2)自变量的最高次数为2;(3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意已知条件中给出字母系数是否是常数因为二次项的系数是3≠0所以是二次函数.故选B .5.B【详解】试题分析:A .是一次函数,故此选项错误;B .符合二次函数定义,故此选项正确;C .右边不是整式,不是二次函数,故此选项错误;D .右边不是整式,不是二次函数,故此选项错误;故选B .考点:二次函数的定义.6.C【分析】根据二次函数的定义解答即可.【详解】解:A. ()22121y x x x =+-=+是一次函数,不是二次函数,故此选项错误;B. y =C. 232S t t =-++是二次函数,故此选项正确;D.当0a =时是一次函数,不是二次函数,故此选项错误;故选:C .【点睛】本题考查了二次函数的定义,一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数.其中,x y 是变量,a b c ,,是常量,a 是二次项系数,b 是一次项系数,c 是常数项.7.B【分析】根据二次函数的定义进行判断即可.【详解】解:A 、当a=0时,二次项系数等于0,不是二次函数,故选项错误;B 、是二次函数,故选项正确;C 、()222212121y x x x x x x =--=-+-=-+是一次函数,故选项错误;D 、不是整式,不是二次函数,故选项错误;故选B .【点睛】考查二次函数的定义,熟练掌握二次函数的定义是解题的关键.8.A【分析】本题主要考查了二次函数的定义,熟练掌握二次函数的定义是解题的关键.根据二次函数的定义:形如()20y ax bx c a =++≠的函数叫二次函数,据此判断即可.【详解】解:A .28y x =符合二次函数的定义,本选项符合题意;B .81y x =+是一次函数,不符合题意;C .8y x =-是正比例函数,不符合题意;D .8y x=-是反比例函数,不符合题意.故选:A .9.A【分析】原价为50万元,一年后的价格是50×(1-x ),二年后的价格是为:50×(1-x )×(1-x )=50(1-x )2,则函数解析式求得.【详解】二年后的价格是为:50×(1-x )×(1-x )=50(1-x )2,则函数解析式是:y=50(1-x )2.故选A.【点睛】本题考查了根据实际问题列二次函数关系式的知识,需注意第二年的价位是在第一年的价位的基础上降价的.10.D【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=-ca,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(−ca,0),选项A中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,故选项A不符题意,选项B中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a>0,c<0,两个函数的交点不符合求得的交点的特点,故选项B不符题意,选项C中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a<0,c>0,交点符合求得的交点的情况,故选项D符合题意,选项D中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,故选项C不符题意,故选D.【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.y=x2+2x+2【详解】试题分析:直接根据抛物线向上平移的规律求解.解:抛物线y=x2+2x﹣1向上平移3个单位得到y=x2+2x﹣1+3=x2+2x+2.故答案为y=x2+2x+2.考点:二次函数图象与几何变换.12.0【分析】根据二次函数的定义列出关于m 的式子,求出m 的值即可.【详解】解:由题意220222m m m -≠⎧⎨-+=⎩,解得0m =.故答案为:0.【点睛】本题考查的是二次函数的定义,一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ≠的函数,叫做二次函数,熟知此定义是解题的关键.13.3【分析】根据二次函数的最高指数是2,二次项系数不等于0列出方程求解即可.【详解】解:由题意得,2322m m -+=且m ≠0,解得1203m m ==,,且m ≠0,所以,m=3.故答案为:3【点睛】本考查了二次函数的定义,解决本题的关键是熟练掌握二次函数的定义:一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.2y ax bx c =++(a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.也考查了一次函数的定义.14.2【分析】把点(1,)b -的坐标代入抛物线22y x =即可得到答案,熟练掌握抛物线上的点满足函数表达式是解题的关键.【详解】解:∵抛物线22y x =经过点(1,)b -,∴()2221b =⨯=-,故答案为:215.15【分析】本题考查了图象过点,把坐标代入解析式,转化为代数式的值的问题解答即可.【详解】∵点(),M a b 在函数153y x =-的图象上,∴153b a =⨯-,∴315a b -=,故答案为:15.16.y=-(x-4)2-1【详解】根据题意,可由二次函数的形状、开口方向与抛物线y=-x 2相同,设函数的解析式为y=-(x-a )2+h ,可直接代入得到y=-(x-4)2-1.故答案为:y=-(x-4)2-1.17.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可.【详解】∵BC 边长为x(x>0),BC 边上的高比它的2倍多1,∴这条边上的高为:2x+1,根据题意得出:y=12x (2x+1)=x 2+12x .故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键.18.1-【分析】本题考查二次函数的定义,根据二次函数的定义可得12m +=,10m -≠,再求解即可.【详解】解:由题意,得12m +=,10m -≠,解得1m =-,即当1m =-时,()11m y m x+=-是二次函数,故答案为:1-.19.(1)2=23y x x --,(1,4)-;(2)1x <-或3x >.【分析】(1)将点C 的坐标代入二次函数22y x x c =-+,求出3c =-,则可求出抛物线的解析式,由解析式可求出顶点坐标;(2)令0y =,求出1x =-或3x =,则可求出A ,B 的坐标,由图象可求出自变量x 的取值范围.【详解】解:(1)将(0,3)C -代入22y x x c =-+得,3c =-,223y x x ∴=--,2223(1)4y x x x =--=-- ,∴顶点坐标为(1,4)-;(2)令0y =得2230x x --=,解得11x =-,23x =,(1,0)A ∴-,(3,0)B ,∴当0y >时,自变量x 的取值范围是1x <-或3x >.【点睛】本题考查了待定系数法求二次函数解析式,二次函数与x 轴的交点,解题的关键是确定函数图象与x 轴的交点.20.(1)1-(2)0【分析】本题考查了二次函数和一次函数的定义,二次函数的一般形式2y ax bx c =++中,二次项系数0a ≠,解此题易出现只关注满足指数的要求,而忽略对二次项系数的限制,从而导致错误.(1)根据二次函数的定义得出()100m m m ⎧+=⎨≠⎩,即可得出1m =-;(2)根据一次函数的定义得出()100m m m ⎧+=⎨=⎩,即可得出0m =.【详解】(1)解:∵函数()32121y m m x mx x =++++是关于x 的二次函数,∴()100m m m ⎧+=⎨≠⎩,∴1m =-;(2)解:∵函数()32121y m m x mx x =++++是关于x 的一次函数,∴()100m m m ⎧+=⎨=⎩,∴0m =.21.(1)m=-2;(2) m ≠2时,y 是x 的一次函数【分析】(1)根据正比例函数的定义:一般地,形如y=kx (k 是常数,k ≠0)的函数,叫做正比例函数,即可求解;(2)根据一次函数的定义:一般地,形如y=kx+b (k ,b 是常数,k ≠0)的函数,叫做一次函数,即可求解.【详解】(1)当m 2-4=0且m-2≠0时,y 是x 的正比例函数,解得m=-2;(2)当m-2≠0时,即m ≠2时,y 是x 的一次函数 .【点睛】本题考查正比例函数的定义,一次函数的定义.22.见解析【分析】根据二次函数的定义,二次函数的解析式处理.【详解】解:【点睛】本题考查二次函数的定义,理解二次函数的解析式是解题的关键.23.(1)()216016y x x x =-+<<(2)当6x =或10x =时,围成的菜地面积为60平方米【分析】(1)根据矩形面积公式,求出y 关于x 的函数关系式即可;(2)将60y =代入函数关系式,求关于x 的方程即可.【详解】(1)解:设围成的矩形一边长为x 米,则另一边长为()16x -米,面积为y 平方米,根据题意得:()()21616016y x x x x x =-=-+<<;(2)解:将60y =代入()216016y x x x =-+<<得:26016x x =-+,解得:16x =或210x =,答:当6x =或10x =时,围成的菜地面积为60平方米.【点睛】本题主要考查了求二次函数解析式,解一元二次方程,解题的关键是读懂题意,列出方程和函数关系式,熟练掌握解一元二次方程的一般方法.24.4a =-【分析】根据二次函数的定义,可得22a ∴-=,且4a ≠,即可求解.【详解】解:()2445a y a x x -=-+- 是二次函数,22a ∴-=,解得124,4a a =-=,又40a -≠ 4a ∴=-.【点睛】本题考查了二次函数的定义,熟练掌握二次函数的定义是解题的关键.二次函数的定义:一般地,形如2y ax bx c =++(a b c 、、是常数,0a ≠)的函数,叫做二次函数.25.(1)“x=2”是原方程的解,判断过程见解析;(2)不是原方程的解,理由见解析;(3)答案不唯--,为什么所求结果不一定是原方程的解,问题出在哪里?【分析】(1)把x=2代入原方程中,看等式两边是否相等即可;(2)直接解分式方程,然后把解得的结果代入原方程进行检验即可;(3)根据解分式方程产生的根不是方程的解得情况提出合理的问题即可.【详解】解:(1)x=2是原方程的解,理由如下:把x=2代入原方程中:等式左边为:13223+=-,等式右边为:24221-=-,∴等式两边相等,∴x=2是原方程的解;(2)413111--=--x x x 解:去分母得:()4113x x ---=,去括号得:4113x x --+=,移项得:4311x x -=-+,合并同类项得:33x =,系数化为1得:1x =,∵分母10x-≠,∴1x≠,∴1x=不是方程的解;(3)为什么所求结果不一定是原方程的解,问题出在哪里?【点睛】本题主要考查了解分式方程,解题的关键在于能够熟练掌握解分式方程的方法. 26.(1)A(4,0);(2)S△PET=-m2+4m,(0<m<4);(3)见解析【分析】(1)根据坐标轴上点的特点直接求值,(2)由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;(3)列表,描点、连线即可.【详解】(1)解:令x=0,则y=8,∴B(0、8)令y=0,则2x+8=0x=4A(4,0),(2)解:点P(m,n)为线段AB上的一个动点,-2m+8=n,∵A(4.0)OA=4∴0<m<4∴S△PEF= 12PF×PE=12×m×(-2m+8)=2(-2m+8)=-m2+4m,(0<m<4);(3)S关于m的函数图象不是一条直线,简图如下:①列表x00.51 1.512 2.53 3.54y00.753 3.754 3.7530.750②描点,连线(如图)【点睛】此题考查一次函数综合题,坐标轴上点的特点,三角形的面积公式,极值的确定,解题的关键是求出三角形PEF的面积.。

新人教版九年级下册二次函数各课时同步练习及答案

新人教版九年级下册二次函数各课时同步练习及答案
◆创新学习 8.某工厂生产的某种产品按质量分为10个档次,生产第一档次(即最低档次)的产品一天生产76件,每件利润10元,每提高一个档 次,利润每件增加2元. (1)当每件利润为16元时,此产品质量在第几档次? (2)由于生产工序不同,此产品每提高一个档次,一天产量减少4件.若生产第x 档次产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数关系式;若生产某挡次产品一天的总利润为1080元,该工厂生产的是第几档次的产品? 参考答案 1.B 2.C 3. 22y x = 4.2y x =-等(答案不唯一) 5.(7,0) 6.(1)把A(1,a )代入 2y x =得1a = ∴A(1,1) (2)存在.这样的点P 有四个,即1234(2,0),(2,0),(2,0),(1 ,0)P P P P - 7.此题答案不唯一,以下答案仅供参考: (1)2月份每千克销售价是3.5元; (2)7月份每千克销售价是0.5元; (3)1月到7月的销售价逐月下降; (4)7月到12月 的销售价逐月上升; (5)2月与7月的销售差价是每千克3元; (6)7月份销售价最低,1月份销售价最高;等. 8.(1)当每 件利润是16元时,此产品的质量档次是在第四档次. (2) 根据题意可得 ()()10217641y x x =+---???????? 整理,得2 8128640y x x =-++. 当利润是1080元时,即2 81286401080x x -++=解得125,11x x == 因为11x =>10,不符合题意,舍去.因此取5x =, 答: 当生产产品的质量档次是在第5档次时,一天的总利润为1080元. 26.1 二次函数(5) ◆基础扫描 1. 函数2 23y x x =-+的图象顶点坐标是( ) A. (1,4)B. (1,2)C. (1,2) D. (0,3) 2. 已知二次函数2

二次函数第一节同步测试题

二次函数第一节同步测试题

二次函数第一节同步测试题一.选择题(共10小题)1.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y=2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1) C.D.y=(x﹣1)2﹣x23.下列函数中是二次函数的是()A.y=2(x﹣1)B.y=(x﹣1)2﹣x2 C.y=a(x﹣1)2D.y=2x2﹣14.下列函数中,y是x的二次函数的是()A.y=2x﹣1 B.y= C.y=D.y=﹣x2+2x5.函数y=(a﹣1)x+x﹣3是二次函数时,则a的值是()A.1 B.﹣1 C.±1 D.06.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或67.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+38.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或39.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对10.已知关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,则此解析式的一次项系数是()A.﹣1 B.8 C.﹣2 D.1二.填空题(共10小题)11.如果函数y=(m﹣2)x2+2x+3(m为常数)是二次函数,那么m取值范围是.12.若y=(m+2)x+3x﹣2是二次函数,则m的值是.13.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.14.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.15.若y=(a+2)x2﹣3x+2是二次函数,则a的取值范围是.16.已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).17.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.18.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:19.抛物线y=2x2﹣1的顶点坐标是.20.如果抛物线y=2x2与抛物线y=ax2关于x轴对称,那么a的值是.三.解答题(共20小题)21.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?22.已知y=(m﹣1)x是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?24.已知y=(m﹣2)x+3x+6是二次函数,求m的值.25.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..26.已知是x的二次函数,求出它的解析式.27.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?28.已知,当m为何值时,是二次函数?29.已知函数y=(a+1)+(a﹣2)x(a为常数),求a的值:(1)函数为二次函数;(2)函数为一次函数.30.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)d=n2﹣n,(2)y=1﹣x2.31.若y=(a﹣4)+a是二次函数,求:(1)a的值;(2)函数的关系式.32.证明:对于任何实数m,y=(m2+2m+3)x2+2012x﹣1都是y关于x的二次函数.33.已知函数y=(9k2﹣1)x2+2kx+3是关于x的二次函数,求不等式的解集.34.若函数y=(a﹣1)x(b+1)+x2+1是二次函数,试讨论a、b的取值范围.35.已知函数y=(m+3).(1)当m为何值时,它是正比例函数?(2)当m为何值时,它是反比例函数?(3)当m为何值时,它是二次函数?36.某汽车的行驶路程y(m)与行驶时间x(s)之间的函数表达式为y=3x+x2.y 是x的二次函数吗?求汽车行驶60s的路程.37.已知y与x2成正比例,且当x=3时,y=﹣18,写出y与x之间的函数解析式,它是二次函数吗?38.当k取何值时,y=(k﹣2)是二次函数?39.请你分别给出整数a,b的一个值,使y=(a﹣2)x b+1+x2+1是关于x的二次函数,且使一次函数y=ax+b的图象不经过第三象限.40.已知函数y=(a2﹣4)x2+(a+2)x+3+c.(1)当a为何值时,此函数是关于x的二次函数?(2)当a为何值时,此函数是关于x的一次函数?(3)当a,c满足什么条件时,此函数是关于x的正比例函数?二次函数第一节同步测试题参考答案一.选择题(共10小题)1.B;2.B;3.D;4.D;5.B;6.B;7.A;8.B;9.D;10.B;二.填空题(共10小题)11.m≠2;12.2;13.3;14.0;15.a≠﹣2;16.增大;17.y=x2+2;18.y=﹣5(x+5)2﹣3;19.(0,﹣1);20.﹣2;三.解答题(共20小题)21.;22.;23.;24.;25.m=2;m=1;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。

二次函数专题训练(含答案)

二次函数专题训练(含答案)

二次函数专题训练(含答案)一、 填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 .5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a -时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 .10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=xy 的图象的顶点坐标是(1,-2). 12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 .14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 .二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21C.(-1,5)D.(3,4)17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( )① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当 a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴 交点的横坐标.A.①②③④B.①②③C. ①②D.①19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax y bx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=b a ( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( )A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( )A.(-1,-1)B.(1,1)C.(1,-1)D.(-1,1)24.函数2ax y =与xa y =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x yB.2)4(22+-=x yC.2)2(22+-=x yD.2)3(32+-=x y28.二次函数229k ykx x y ++=(k >0)图象的顶点在( )A.y 轴的负半轴上B.y 轴的正半轴上C.x 轴的负半轴上D.x 轴的正半轴上29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( )A.a >0,Δ>0B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-16 34.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明.35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4. 求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b.(1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;(3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由.38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHED AH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为A ,B (点A 在点B 右边),与y 轴的交点为C.(1) 若△ABC 为Rt △,求m 的值;(2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值;(3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值.40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标.(2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式.(3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1) 若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值, 二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.(2) 在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x 同 的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点,与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.(1) 求点C 的坐标;(2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x )件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元.2.∵43432+⎪⎭⎫ ⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时m m m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1) 当AC=BC 时, 94,334-=-=m m . ∴ 4942+-=x y (2) 当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y . (3) 当AB=BC 时,22344343⎪⎭⎫ ⎝⎛+=-m m , ∴ 78-=m . ∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m0)1(122222+=++=m m m图代13-3-21∴不论m 取何值,抛物线与x 轴必有两个交点.令y=0,得062)5(222=+++-m x m x0)3)(2(2=---m x x ,∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====,∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ②解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,则-25≤b <-1;△ ABP 为钝角三角形时,则b >-1,且b ≠0.同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a b x a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10. 二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28.C 29.A 30.D三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴ a x x 221-=+,1x ²122+-=b x .∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根,∴ x 1+x 2=a-3,x 1²x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a 当a=1,b=0时,二次函数的图象与x 轴只有一个交点,∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意.∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N ,∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a .解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x ,01222=-+--b x x .①+②得022=-b b .解得 2,021==b b .∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ a cx x a bx x =⋅-=+2121,.又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a ca b .① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b.③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有6,3,2,====OD OC OB ODOPOC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4. 得 k=-2. ∴ y=-2x-4. 或3,6,2,====OC OD OB OCOPOD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y .当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1, 得 21-=k . ∴ 121--=x y . (2)当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y .33.解:(1)在直线y=k(x-4)中, 令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°. ∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ²OC. 又∵ CO=1,OA=4,∴ OB 2=1³4=4. ∴ OB=2(OB=-2舍去) ∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0, 2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y .解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5, ∴ CD=5. ∴ OD=6. ∴D 点坐标为(-6,0). 将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ²OB=OC 2.∴ x 1²x 2=c 2. 又由方程032=+-c x ax 知ac x x =⋅21, ∴acc =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ a a ac x x AB 54912=-=-=. aAE 25=. 又 ED=OC=c , ∴ 25==DE AE tg α. (3)设∠PAB=β, ∵P 点的坐标为⎪⎭⎫⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90° ∴PA 和⊙D 相切. 35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5³4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c ) =74(米). 答:cc '的长为74米.(2)∵4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米). 答:AB 和A 'B '的宽都是6米.(3)在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y .∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0. ∴方程02)4(2=+++-m x m x 的两个根a ,b 异号. ∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0 ∴方程02)4(2=+++-m x m x 有两个不相等的实数根. ∵ m >-2, ∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切. 37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0), ∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0, 解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m7)21(484422+-=+-=m m m 当m >-1时,Δ>0, ∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2), ∴ MNC BCN BCM S S S ∆∆∆+=.111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8, ∴1821⨯=⨯⨯y AB .即8421=⨯⨯y . ∴ 4=y .∴4±=y . 当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x . ∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+. 38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ²AB=2³(2+6)=16. ∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHEDAH AD =. 证法一:连结DB ,交FH 于G , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB. 又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB =90°-∠HDB =∠DBH. 在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH , ∴ △DFB ∽△DHB. ∴BH=BF , ∴△BHF 是等腰三角形. ∴BG ⊥FH ,即BD ⊥FH. ∴ED ∥FH ,∴FHEDAH AD =.图代13-3-24证法二:连结DB , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF. 又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH. 以BD 为直径作一个圆,则此圆必过F ,H 两点, ∴∠DBH=∠DFH ,∴∠EDF=∠DFH.∴ ED ∥FH. ∴FHEDAH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y. 又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y .∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPBOD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF , 由ED 2=EF ²EB 得12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x ) 故所求函数关系式为6612+-=x y (0<x ≤32).39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2,即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m ,化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ²OC=BC ²AD. ∴ 58=AD .∴ 545258sin ===∠AC AD ACB.图代13-3-25(3)CO AB S ABC ⋅=∆21.1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u , ∴当21=u ,即2=m 时,S 有最小值,最小值为45.40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2, ∴⊙C 过原点,OC=4,AB=8. A 点坐标为⎪⎭⎫⎝⎛0,532,B 点坐标为⎪⎭⎫⎝⎛524,0.∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO. ∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴ OBOCAB OF OA OC AB OE ==,. ∴ 320,5==OF OE .E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫⎝⎛-4512,516,得 ⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===.∴交点)31,32(m m M .此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-=m m mx x 31943422++-=. 由②③联立,消去y ,有0329413422=-+⎪⎭⎫⎝⎛--m m x m x .⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422.013891613891622>=+-+-=mm m m ∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3), ∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CP MP=+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫⎝⎛53,56.42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ²OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1²x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y.图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x . ∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ D CA D PB ABPC S S S ∆∆-=四边形 ).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。

人教版九年级上册 数学22.1.1《二次函数》同步训练(有答案)

人教版九年级上册 数学22.1.1《二次函数》同步训练(有答案)

九年级数学22.1.1《二次函数》同步训练一、选择题:1、下列函数解析式中,一定为二次函数的是( )A .y =2x -3B .y =mx 2+nx +k C .s =2t 2-2t +1D .y =x 2+1x 2、函数 y =(m +1)x |m|+1+5x -5是二次函数,则m =( ) A. 1 B. -1 C. 2 D. 33、二次函数y=3x (x ﹣3)的二次项系数与一次项系数的和为( )A. 3B. ﹣3C. ﹣6D. ﹣44、下列说法中,正确的是( )A .二次函数中,自变量的取值范围是非零实数B .在圆的面积公式S =πr 2中,S 是r 的二次函数C .y =12(x -1)(x +4)不是二次函数 D .在y =1-2x 2中,一次项系数为15、二次函数y =-2mx 2+3(n -2)x -4m +n 的二次项系数为-2,一次项系数为6,则常数项为( )A. 0B. 1C. -2D. -16、若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( )A.a =1B.a =±1C.a ≠1D.a ≠-17、已知关于x 的函数y=(a ﹣1)x a +(3a+2)x+3是二次函数,则此解析式的一次项系数是( )A.﹣1B. 8C. ﹣2D. 18、已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 这个二次函数的解析式为( ).A. y=2x 2﹣12x+5B. y=x 2﹣12x+1C. y=x 2﹣12x+5D. y=2x 2﹣2x+1二、填空题:9、已知函数:①y=3x﹣1;②y=3x 2﹣1;③y=3x 3+2x 2;④y=2x 2﹣2x+1,其中二次函数的个数为 个.10、二次函数y=3x 2﹣2x ﹣4的二次项系数与常数项的和是 .11、二次函数y =-2x 2-x +5中,二次项的系数为 ,一次项的系数为 ,常数项为12、二次函数y=3-5x-32x2中,a=,b=.13、某次晚会共有x名客人,每两个人都握一次手,共握手y次,试写出y与x之间的函数关系式为.它二次函数(填“是”或“不是”).14、一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。

人教版初中数学九年级上册《22.1二次函数图像和性质》同步练习含答案解析

人教版初中数学九年级上册《22.1二次函数图像和性质》同步练习含答案解析

九年级上册第二十二章《 22.1 二次函数的图像和性质》同步练习题一、单项选择题(每题只有一个正确答案)1.以下函数中是二次函数的是( )A. y= 3x- 1B. y=3x2- 1C. y= (x+ 1)2-x2D. y= ax2+ 2x-32 2.若 y=(a +a)A. a=﹣ 1 或 a=3 3.抛物线y=- x是二次函数,那么()B. a≠﹣ 1 且 a≠0C. a=﹣ 1D. a=3 2不拥有的性质是()A.张口向下B.对称轴是y 轴C.与 y 轴不订交D.最高点是原点4.如图,四个二次函数的图象中,分别对应的是:① y ax2;② y bx2;③ y cx2;④ y dx2,则a,b, c, d的大小关系为()A.a b c d B.a b d c C.b a c d D.b a d c 5.关于的图象以下表达错误的选项是A.极点坐标为(﹣3, 2)B.对称轴为x=﹣ 3C.当 x<﹣ 3 时 y 随 x 增大而减小D.函数有最大值为26.已知二次函数的图象以下列图,则以下说法正确的选项是()A.<0B.< 0C.< 0D.< 07.抛物线 y= ( x﹣ 2)2﹣ 1 可以由抛物线y=x 2平移而获取,以下平移正确的选项是()A.先向左平移 2 个单位长度,尔后向上平移 1 个单位长度B.先向左平移 2 个单位长度,尔后向下平移 1 个单位长度C.先向右平移 2 个单位长度,尔后向上平移 1 个单位长度D.先向右平移 2 个单位长度,尔后向下平移 1 个单位长度8.如图,二次函数的图象张口向下,且经过第三象限的点若点P 的横坐标为,则一次函数的图象大体是A .B .C .D.二、填空题9.二次函数y= kx2- x- 2 经过点 (1, 5),则 k=_________.10.函数 y= –的图象是抛物线,则 m= __________.11.张口向下的抛物线y=(m 2- 2)x2+2mx +1 的对称轴经过点 (-1, 3),则 m= _____.12.如图,这是小明在阅读一本关于函数的课外读物时看到的一段文字,则被墨迹污染的二次项系数是__________.13.抛物线 y=ax 2+bx+c(a≠0)的对称轴为直线x=1,与 x 轴的一个交点坐标为(﹣1,0),其部分图象以下列图,以下结论:①4ac< b2;②方程ax2+bx+c=0 的两个根是x1=﹣ 1,x2=3;③3a+c=0;④当 y> 0 时,x 的取值范围是﹣ 1≤x< 3;⑤当 x< 0 时,y 随 x 增大而增大,其中结论正确的选项是 _____(只需填序号)三、解答题14.已知函数y=- (m+2)- (m为常数),求当m为何值时:(1)y 是 x 的一次函数 ?(2)y 是 x 的二次函数 ?并求出此时纵坐标为 -8 的点的坐标 .15.某广告公司设计一幅周长为12m 的矩形广告牌,广告设计花销为1000 元 /m2.设矩形的一边长为xm,面积为ym2.(1) 求出 y 与 x 之间的函数关系式,说明y 可否是 x 的二次函数,并确定x 的取值范围;(2)若 x= 3 时,广告牌的面积最大,求此时的广告费应为多少?16.如图,已知二次函数 y=ax2+bx+3 的图象交 x 轴于点 A ( 1, 0), B( 3, 0),交 y 轴于点 C.( 1)求这个二次函数的表达式;( 2)点 P 是直线 BC 下方抛物线上的一动点,求△BCP面积的最大值;(3)直线 x=m 分别交直线 BC 和抛物线于点 M , N,当△BMN 是等腰三角形时,直接写出 m 的值.参照答案1. B【解析】【解析】依照二次函数的定义:形如,则 y 是 x 的二次函数进行判断即可.【详解】A选项 ,y= 3x- 1 是一次函数 ,不吻合题意 ,B选项 ,y=3x2- 1 是二次函数 ,吻合题意 ,C选项 , y= (x+1)2-x2整理后 y=2x+1 是一次函数 ,不吻合题意 ,D选项 , y= ax2+ 2x- 3,二次项系数不确定可否等于0,不用然是二次函数 ,不吻合题意 ,应选 B.【点睛】此题主要观察二次函数的定义,解决此题的要点是要熟练掌握二次函数的定义.2. D【解析】【解析】依照二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【详解】2依照题意,得: a ﹣2a﹣ 1=22又由于 a +a≠0即 a≠0或 a≠﹣ 1应选 D.【点睛】解题要点是掌握二次函数的定义.3. C【解析】【解析】抛物线y=-x 2的二次项系数为-1,故抛物线张口向下,极点坐标(0, 0),最高点为原点,对称轴为y 轴,与 y 轴交于( 0,0).∵抛物线y=-x 2的二次项系数为-1,∴抛物线张口向下,极点坐标(0, 0), A 正确;∴最高点为原点,对称轴为y 轴, B 、D 正确;与y 轴交于( 0, 0), C 错误,应选 C.【点睛】此题观察了基本二次函数 y=ax 2的性质:极点坐标( 0, 0),对称轴为 y 轴,当 a> 0 时,张口向上,当 a< 0 时,张口向下.4. A【解析】由二次函数中,“当二次项系数为正时,图象张口向上,当二次项系数为负时,图象张口向下”结合“二次项系数的绝对值越大,图象的张口越大”解析可得:a b c d .应选 A.点睛:( 1)二次函数y ax2a0的图象的张口方向由“a 的符号”确定,当a0 时,图象的张口向上,当 a 0 时,图象的张口向下;(2)二次函数y ax2a0的图象的开口大小由a的大小确定,当a越大时,图象的张口越小.5. D【解析】解析:依照二次函数的性质比较四个选项利用消除法即可得出结论.详解:依照二次函数的性质可知的极点坐标为(﹣3, 2),故 A 正确;对称轴为x=﹣ 3,故 B 正确;张口向上,在对称轴右侧y 随x 增大而减小且函数有最小值 2 ,故 C 正确 D 错误 .点睛:此题观察了二次函数的性质,在解题时可结合函数大体图象来判断. 正确理解二次函数的基本性质是解题的要点 .6. B【解析】【解析】依照抛物线的张口方向确定a,依照抛物线与y 轴的交点确定 c,依照对称轴确定b,依照抛物线与 x 轴的交点确定b2-4ac,依照 x=1 时, y> 0,确定 a+b+c 的符号.∵抛物线张口向上,∴a> 0,∵抛物线交于y 轴的正半轴,∴c> 0,∴ac> 0,A 错误;∵ - > 0, a> 0,∴b< 0,∴ B 正确;∵抛物线与x 轴有两个交点,∴b2-4ac>0,C 错误;当 x=1 时, y> 0,∴a+b+c> 0, D 错误;应选B.【点睛】此题观察的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线张口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7. D【解析】解析:抛物线平移问题可以以平移前后两个解析式的极点坐标为基准研究.详解:抛物线y=x 2极点为(0,0),抛物线y= (x﹣ 2)2﹣ 1 的极点为(2,﹣ 1),则抛物线y=x 2向右平移 2 个单位,向下平移 1 个单位获取抛物线y= ( x﹣ 2)2﹣ 1 的图象.应选:D.点睛:此题观察二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线极点,从而确定平移方向.8. D【解析】【解析】依照二次函数的图象可以判断a、 b、的正负情况,从而可以获取一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,,,当时,,的图象经过二、三、四象限,观察可得 D 选项的图象吻合,应选 D.【点睛】此题观察二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是要点.9. 8【解析】解析:把(1, 5)代入 y=kx 2-x-2 中,即可获取关于k 的一元一次方程,解这个方程即可求得k 的值.详解:∵二次函数y=kx 2-x-2 经过点( 1,5),∴5=k-1-2 ,解得 k=8 ;故答案为 8.点睛:此题观察了二次函数图象上点的坐标特色,抛物线上的点的坐标适合解析式.10.–1【解析】依照抛物线的定义,得=,解得: m=– 1.11.- 1【解析】由于抛物线y= ( m2-2) x2+2mx+1 的对称轴经过点(-1, 3),b2m=-1,∴对称轴为直线 x=-1 ,x=2 m22a2解得 m1=-1 , m2=2.由于抛物线的张口向下,所以当m=2 时, m2-2=2 > 0,不合题意,应舍去,∴m=-1 .故答案为: -1.12.- 2【解析】由题意得,所以 a=-2.13.①②③⑤【解析】【解析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性获取抛物线与x 轴的一个交点坐标为(3,0), 则可对②进行判断;由对称轴方程获取b=-2a,尔后依照x=-1时函数值为0可获取 3a+c=0,则可对③进行判断;依照二次函数的性质对④进行判断.【详解】①∵抛物线与x 轴有两个交点,∴△ =b2﹣ 4ac>0,∴ 4ac< b2,结论①正确;②∵抛物线 y=ax2+bx+c (a≠0)的对称轴为直线x=1 ,与 x 轴的一个交点坐标为(﹣ 1, 0),∴抛物线与 x 轴的另一交点坐标为( 3,0),∴方程 ax2+bx+c=0 的两个根是 x1=﹣ 1, x2=3 ,结论②正确;③∵抛物线 y=ax2+bx+c (a≠0)的对称轴为直线x=1,∴﹣=1,∴b= ﹣ 2a.∵当 x= ﹣1 时, y=0 ,∴a﹣ b+c=0,即 3a+c=0,结论③正确;④∵抛物线与x 轴的交点坐标为(﹣1,0)、( 3, 0),∴当 y> 0 时, x 的取值范围是﹣1< x< 3,结论④错误;⑤∵抛物线张口向下,对称轴为直线x=1,∴当 x< 0 时, y 随 x 增大而增大,结论⑤正确.综上所述:正确的结论有①②③⑤.故答案为:①②③⑤.【点睛】二次函数图象与系数的关系:关于二次函数y=ax 2+bx+c ( a≠0),二次项系数 a 决定抛物线的张口方向和大小:当a> 0 时,抛物线向上张口;当a< 0 时,抛物线向下张口;一次项系数b 和二次项系数 a 共同决定对称轴的地址:当 a 与 b 同号时(即 ab> 0),对称轴在 y 轴左;当 a 与 b 异号时(即 ab< 0),对称轴在 y 轴右;常数项c 决定抛物线与 y 轴交点地址:抛物线与 y 轴交于( 0, c);抛物线与 x 轴交点个数由△决定:△=b2-4ac> 0 时,抛物线与 x 轴有 2 个交点;△=b2-4ac=0 时,抛物线与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.14. (1) m= ±;(2) m=2, 纵坐标为 -8 的点的坐标是 (±,-8).【解析】【解析】( 1)依照一次函数的定义求m 的值即可;(2)依照二次函数的定义求得m 的值,从而求得二次函数的解析式,把y=-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1) 由 y=- (m+ 2)(m为常数 ),y 是 x 的一次函数,得解得m=±,当 m=±时 ,y 是 x 的一次函数.(2) 由y=- (m+ 2)(m 为常数),y是x 的二次函数,得解得m=2,m=- 2(不吻合题意的要舍去 ),当 m= 2 时 ,y 是 x 的二次函数 ,当 y=- 8 时 ,-8=- 4x2,解得 x= ±,故纵坐标为 - 8 的点的坐标是 (±,-8) .【点睛】此题观察了一次函数的定义、二次函数的定义,解题要点是掌握一次函数与二次函数的定义.15. (1)y =- x2+ 6x,是, 0< x< 6;(2) 9000 元【解析】试题解析:( 1)矩形的一边长为 xm,依照矩形的周长是 12m,可得矩形的另一边长为(6-x) m,根据矩形的面积公式即可得出y 与 x 之间的函数表达式;( 2)把 x= 3 代入函数的解析式得出y 的值即为广告牌的最大面积,再乘以1000 即为此时的广告费.试题解析:解:( 1)由题意得出:y = x(6- x)=- x2+ 6x,是二次函数,0< x< 6;(2)当 x= 3 时, y=- 32+ 3×6= 9,1000×9= 9000 元,即此时的广告费应为9000 元.点睛:此题主要观察了依照实责问题抽象出二次函数解析式以及求二次函数值,正确得出二次函数解析式是解题要点.16.( 1)这个二次函数的表达式是 y=x 2﹣ 4x+3 ;( 2) S△最大 =;( 3)当△BMN 是等腰BCP三角形时, m 的值为,﹣,1, 2.【解析】解析:(1)依照待定系数法,可得函数解析式;( 2)依照平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,依照面积的和差,可得二次函数,依照二次函数的性质,可得答案;( 3)依照等腰三角形的定义,可得关于m 的方程,依照解方程,可得答案.详解:( 1)将 A ( 1, 0), B( 3, 0)代入函数解析式,得=,=解得=,=这个二次函数的表达式是y=x 2-4x+3 ;( 2)当 x=0 时, y=3,即点 C( 0,3),设 BC 的表达式为y=kx+b ,将点 B( 3,0)点 C( 0, 3)代入函数解析式,得=,=解这个方程组,得==直线 BC 的解析是为y=-x+3 ,过点 P 作 PE∥ y 轴,交直线 BC 于点 E( t, -t+3 ),22PE=-t+3-( t -4t+3 ) =-t +3t,22,∴ S△BCP=S△BPE+S CPE= ( -t +3t)×3=- ( t- ) +∵- < 0,∴当 t= 时, S△BCP最大 = .(3) M ( m, -m+3 ), N (m, m2-4m+3 )2MN=m -3m, BM=|m-3|,当 MN=BM时,① m2-3m=(m-3),解得m=,②m2 -3m=- ( m-3),解得 m=-当BN=MN 时,∠ NBM= ∠ BMN=45°,m2 -4m+3=0 ,解得 m=1 或 m=3(舍)当BM=BN 时,∠ BMN= ∠ BNM=45°,-( m2-4m+3 ) =-m+3 ,解得 m=2 或 m=3(舍),当△BMN 是等腰三角形时,m 的值为,-,1,2.点睛:此题观察了二次函数综合题,解(1)的要点是待定系数法;解(2)的要点是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的要点是利用等腰三角形的定义得出关于m 的方程,要分类谈论,以防遗漏.。

初三数学二次函数同步练习

初三数学二次函数同步练习

【二次函数】一.选择题1.下列函数是二次函数的是()A.y=2x B.C.y=x+5D.y=(x+1)(x﹣3)2.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.3.对于抛物线y=﹣(x+1)2﹣2,下列说法正确的是()A.抛物线开口向上B.顶点坐标为(1,﹣2)C.函数最小值为﹣2D.当x>﹣1时,y随x增大而减小4.已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为()A.a=±1B.a=1C.a=﹣1D.无法确定5.已知抛物线y=x2经过A(﹣2,y1)、B(1,y2)两点,在下列关系式中,正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>06.下列关于二次函数y=x2﹣3的图象与性质的描述,不正确的是()A.该函数图象的开口向上B.函数值y随着自变量x的值的增大而增大C.该函数图象关于y轴对称D.该函数图象可由函数y=x2的图象平移得到7.已知关于n的函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0.则n取()时,s的值最小.A.3B.4C.5D.68.二次函数y=ax2﹣2ax+b中,当﹣1≤x≤4时,﹣2≤y≤3,则b﹣a的值为()A.﹣6B.﹣6或7C.3D.3或﹣2二.填空题9.设y1与y2都是x的二次函数(y1有最小值),且y1+y2=﹣x2﹣8x+4,已知当x=m时,y1=y2=﹣8,当x=﹣m时,y1=y2=8,则m的值为.10.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.11.在二次函数y=ax2+bx+c(a≠0)中,y与x的部分对应值如表:x…﹣101234…y…﹣7﹣2m n﹣2﹣7…则m、n的大小关系为m n.(填“>”,“=”或“<”)12.已知一次函数y1=﹣x,二次函数y2=x2﹣2kx+k2﹣k(k>0).(1)当x<1时,y2的函数值随x的增大而减小,则k的最小整数值为;(2)若y=y2﹣y1,若点M(k+2,s),N(a,b)都在函数的y图象上,且s<b,则a的取值范围.(用含k的式子表示)13.二次函数y=x2+bx+c的图象经过点A(﹣2,m),B(4,m),C(5,n),则c和n的大小关系是c n.(填“<““>”“=”)14.将抛物线y=2x2向左平移2个单位后所得到的抛物线为.三.解答题15.画出函数y=(x﹣2)2﹣1的图象.16.二次函数y=x2+bx上部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…30﹣10m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m=;(3)在平面直角坐标系xOy中,画出此二次函数的图象.17.在平面直角坐标系xOy中,抛物线C1:y=mx2+2mx+m﹣1沿x轴翻折得到抛物线C2.(1)求抛物线C2的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求抛物线C1和C2围成的封闭区域内(包括边界)整点的个数;②如果抛物线C1和C2围成的封闭区域内(包括边界)恰有7个整点,求出m的取值范围.1.解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式方程,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选:D.2.解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选:A.3.解:二次函数y=﹣(x+1)2﹣2中,a=﹣1,抛物线开口向下,顶点坐标为(﹣1,﹣2),函数的最大值为﹣2,当x>﹣1时,y随x增大而减小,故选:D.4.解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.5.解:∵抛物线y=x2,∴抛物线开口向上,对称轴为y轴,∴A(﹣2,y1)关于y轴对称点的坐标为(2,y1).又∵0<1<2,∴y1>y2>0,故选:C.6.解:A、由a=1>0知抛物线开口向上,此选项描述正确;B、∵抛物线的开口向上且对称轴为y轴,∴当x>0时,y随x的增大而证得,故此选项描述错误;由y=﹣x2+2x=﹣(x﹣1)2+1知抛物线的顶点坐标为(1,1),此选项错误;C、∵抛物线的对称轴为y轴,∴该函数图象关于y轴对称,此选项描述正确;D、该函数图象可由函数y=x2的图象向下平移3个单位得到,此选项描述正确;故选:B.7.解:∵函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0,∴a>0,该函数图象开口向上,∴当s=0时,9<n<10,∵n=0时,s=0,∴该函数的对称轴n的值在4.5~5之间,∴各个选项中,当n=5时,s取得的值最小,故选:C.8.解:∵抛物线y=ax2﹣2ax+b=a(x﹣1)2+b﹣a,∴顶点(1,b﹣a)当a>0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最小值,∴b﹣a=﹣2,当a<0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最大值,∴b﹣a=3,故选:D.二.填空题9.解:由题意设y1=a(x﹣m)2﹣8(a>0),且y1+y2=﹣x2﹣8x+4.∴y2=﹣x2﹣8x+4﹣a(x﹣m)2+8.∵x=m,y2=﹣8,∴﹣m2﹣8m+12=﹣8,解得m=2或m=﹣10(舍去),∴m的值为2.故答案为:2.10.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.11.解:∵抛物线经过点(0,﹣2)和(3,﹣2),∴抛物线的对称轴为=,∵(1,m)和(2,n)到对称轴距离相等,∴m=n,故答案为:=.12.解:(1)∵二次函数y2=x2﹣2kx+k2﹣k=(x﹣k)2﹣k,∴对称轴为x=k,∴当x≤k时,y2随x的增大而减小,∵当x<1时,y2的函数值随x的增大而减小,∴k≥1,∴k的最小整数值为:1.故答案为:1;(2)y=y2﹣y1=x2﹣2kx+k2﹣k+x=x2﹣(2k﹣1)x+k2﹣k,∵点M(k+2,s),N(a,b)都在函数的y图象上,∴s=(k+2)2﹣(2k﹣1)(k+2)+k2﹣k=6,b=a2﹣(2k+1)a+k2﹣k,∵s<b,∴a2﹣(2k+1)a+k2﹣k>6,∵当a2﹣(2k+1)a+k2﹣k=6时,a=k﹣3或k+2,∴a<k﹣3或a>k+2,故答案为:a<k﹣3或a>k+2.13.解:∵二次函数y=x2+bx+c的图象经过点A(﹣2,m)、B(4,m),∴﹣==1,∴b=﹣2,∵点C(5,n)在二次函数y=x2+bx+c的图象上,∴n=25﹣10+c,∴n﹣c=15,∴c<n,故答案为<.14.解:∵将抛物线y=2x2向左平移2个单位后所得到的抛物线是:y=2(x+2)2.故答案为y=2(x+2)2.三.解答题16.解:(1)观察表格发现图象经过(0,0),(2,0),∴对称轴x==1.(2)∵二次函数y=x2+bx的图象经过点(1,﹣1),∴b=﹣2.(3)根据对称性得:m=3(4)如图:17.解:(1)∵抛物线C1:y=mx2+2mx+m﹣1=m(x+1)2﹣1,∴抛物线C1:的顶点为(﹣1,﹣1),∵抛物线C1沿x轴翻折得到抛物线C2.∴抛物线C2的顶点坐标为(﹣1,1);(2)①当m=1时,,.根据图象可知,C1和C2围成的区域内(包括边界)整点有5个.②抛物线在C1和C2围成的区域内(包括边界)恰有7个整点,结合函数图象,可得抛物线与x轴的一个交点的横坐标的取值范围为1≤x<2.将(1,0)代入y=mx2+2mx+m﹣1,得到,将(2,0)代入y=mx2+2mx+m﹣1,得到,结合图象可得≤.。

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案九年级数学第22章《二次函数》同步练一、选择题1.已知反比例函数y=k/x的图象如图,则二次函数y=2kx^2-4x+k^2的图象大致为()2.(2020•牡丹江)抛物线y=3x^2+2x-1向上平移4个单位长度后的函数解析式为().A。

y=3x^2+2x-5B。

y=3x^2+2x-4C。

y=3x^2+2x+3D。

y=3x^2+2x+43.“一般的,如果二次函数y=ax^2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax^2+bx+c=0有两个不相等的实数根.--苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x^2-2x=(1/x)-2实数根的情况是()A。

有三个实数根B。

有两个实数根C。

有一个实数根D。

无实数根4.已知二次函数y=ax^2+bx+c自变量x与函数值y之间满足下列数量关系:x=2.y=45;x=37.y=374.那么 (a+b+c)/2a的值为()A。

24B。

20C。

10D。

45.对于二次函数y=(x-1)^2+2的图象,下列说法正确的是()A。

开口向下B。

对称轴是x=-1C。

顶点坐标是(1,2)D。

与x轴有两个交点6.(2020•天水)二次函数y=ax^2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是()A。

-3B。

-1C。

2D。

37.将函数y=x^2+6x+7进行配方正确的结果应为()A。

y=(x+3)^2+2B。

y=(x-3)^2+2C。

y=(x+3)^2-2D。

y=(x-3)^2-28.抛物线y=(1/2)(x-2)^2-3的顶点坐标是()A。

(2,-3)B。

(2,3)C。

(-2,3)D。

(-2,-3)二、填空题29.如图,是二次函数y=ax+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,2),则由图象可知,不等式ax+bx+c<0的解集是()。

10.已知函数y=-x^2+ax-(2/a),当-1≤x≤1时的最大值是2,则实数a的值为()。

九年级数学二次函数专项训练含答案精选5篇

九年级数学二次函数专项训练含答案精选5篇

九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( ) A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:(30﹣15﹣x)(60+10x)=1100,整理得:x2﹣9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30﹣x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;(3)设水果商每天获得的利润为y元,根据题意得:w=(30﹣x﹣15)(60+10x)=﹣10x2+90x+900=﹣10(x﹣)2+1102.5,∵﹣10<0,∴当x=时,y有最大值,最大值为1102.5,此时30﹣x=30﹣4.5=25.5,答:将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.解:(1)把A(﹣1,0)、B(4,0)代入得:,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的对称轴是直线x=,在y=x2﹣x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),①若线段DE与线段BC关于点K成中心对称,C的对应点D在对称轴上,B的对应点在抛物线上,如图:设D(,m),E(n,n2﹣n﹣2),而B(4,0),C(0,﹣2),∵K是DC的中点,也是BE的中点,∴,解得,∴D(,);②若线段DE与线段BC关于点T成中心对称,B的对应点D在对称轴上,C的对应点在抛物线上,如图:设D(,m'),E(n',n'2﹣n'﹣2),而B(4,0),C(0,﹣2),∵T是EC的中点,也是BD的中点,∴,解得,∴D(,);综上所述,落在对称轴上的点的坐标为(,)或(,);(3)由B(4,0),C(0,﹣2)可得直线BC解析式为y=x﹣2,设M(t,t2﹣t﹣2),由M(t,t2﹣t﹣2),C(0,﹣2)可得直线MC解析式为:y=(t﹣)x﹣2,由MN∥BC设直线MN解析式为y=x+p,将M(t,t2﹣t﹣2)代入得:t2﹣t﹣2=t+p,∴p=t2﹣2t﹣2,∴直线MN解析式为y=x+t2﹣2t﹣2,由得或,∴N(﹣t+4,t2﹣t),由B(4,0),N(﹣t+4,t2﹣t)可得直线NB的解析式为y=(﹣t+)x+2t﹣10,解(﹣t+)x+2t﹣10=(t﹣)x﹣2得x=2,∴P的横坐标为2.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.解:(1)∵﹣5<0,∴y'=﹣y=2,∴点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2),故答案为:(﹣5,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上.∵“可控变点”Q的纵坐标y′是7,∴当﹣x2+16=7时,解得x=3;当x2﹣16=7,解得x=﹣;综上所述“可控变点”Q的横坐标为或3;(3)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上,∵﹣16≤y'≤16,∴﹣16=﹣x2+16,∴x=,当x=﹣5时,x2﹣16=9,当y'=9时,x=,∴a的取值范围是.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2).(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.解:(1)把A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x;(2)设直线AB解析式为y=mx+n,把A(﹣4,0),C(2,6)代入得:,解得,∴直线AB解析式为y=x+4,∵y=x2+2x=(x+2)2﹣2,∴抛物线的顶点M坐标为(﹣2,﹣2);故答案为:y=x+4,(﹣2,﹣2);(3)∵A(﹣4,0),A,A'关于y轴对称,∴A'(4,0),设直线A'Q解析式为y=m'x+n',把A'(4,0),M(﹣2,﹣2)代入得:,解得,∴直线A'Q解析式为y=x﹣,令x=0得y=﹣,∴Q(0,﹣);(4)存在点N,使以点A,O,C,N为顶点的四边形是平行四边形,理由如下:设N(p,q),又A(﹣4,0),O(0,0),C(2,6),①若AN,OC为对角线,则AN,OC的中点重合,∴,解得,∴N(6,6);②若ON,AC为对角线,则ON,AC的中点重合,∴,解得,∴N(﹣2,6);③若CN,AO为对角线,则CN,AO的中点重合,∴,解得,∴N(﹣6,﹣6).综上所述,N的坐标为(6,6)或(﹣2,6)或(﹣6,﹣6).九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,。

二次函数同步练习(含答案)

二次函数同步练习(含答案)

22.1.1二次函数知识点:1.二次函数的定义:一般地,形如 的函数,叫做二次函数,其中x 是 ,c b a ,,分别是函数表达式的 , , 。

2.当0=a 时,这个函数还是二次函数吗?为什么?b 或c 能为0吗?一、选择题1.下列各式中表示二次函数的是( ) A.112++=xx y B. 22x y -= C.221x x y -= D 22)1(x x y --= 2.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x ,该药品的原价为36元,降价后的价格为y 元,则y 与x 之间的函数关系为( )A.)1(72x y -=B. )1(36x y -=C. )1(362x y -=D. 2)1(36x y -=3.下列函数中:(1))4)(1(2+-=x x y ; (2) 2)1(32+-=x y ;(3)1122++=xx y ; (4)22)3(x x y --= .不是二次函数的是( )A. (1)(2)B. (3)(4)C. (1)(3)D. (2)(4)4. 若3)(1222+-+=--x x m m y m m 是关于x 的二次函数,则( )A.31=-=m m 或B. 01≠-≠m m 且C. 1-=mD.3=m5.若函数⎩⎨⎧>≤+=)2(2)2(22x x x x y ,则当函数值8=y 时,自变量的值是( ) A.6± B. 4 C. 46或± D.64-或6.适合解析式12+-=x y 的一对值是( )A. (1,0)B. (0,0)C. (0,-1)D. (1,1)二.填空题1.二次函数4322+-=x x y ππ中,二次项系数是 ,一次项系数是 。

2.把)3)(23(+-=x x y 化成c bx ax y ++=2的形式后为 ,其一次项系数与常 数项的和为 。

3.若3+y 与2x 成正比例,当,52=-=y x 时,则x y 与的函数关系式为 。

浙教版数学九年级上册1.1 二次函数 同步精练 (含答案)

浙教版数学九年级上册1.1 二次函数 同步精练 (含答案)

1.1二次函数同步精练一、单选题1.在抛物线245y x x =--上的一个点的坐标为()A .()0,4-B .()2,0C .()1,0D .()1,0-2.下列函数中为二次函数的是()A .31y x =-B .231y x =-C .2y x=D .323y x x =+-3.在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为()A .22y x x =+B .24y x =-C .24y x =-D .42y x=-4.下列实际问题中的y 与x 之间的函数表达式是二次函数的是()A .正方体集装箱的体积y m 3,棱长x mB .高为14m 的圆柱形储油罐的体积y m 3,底面圆半径x mC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .小莉驾车以108km/h 的速度从南京出发到上海,行驶x h ,距上海y km 5.若函数()2211m m y m x --=+是关于x 的二次函数,则m 的值是()A .2B .1-或3C .3D .1-6.下列函数关系中,可以看做二次函数y=ax 2+bx+c (a≠0)模型的是()A .在一定距离内,汽车行驶的速度与行驶的时间的关系B .正方形周长与边长之间的关系C .正方形面积和正方形边长之间的关系D .圆的周长与半径之间的关系7.当函数21(1)23a y a x x +=-++是二次函数时,a 的取值为()A .1a =B .1a =±C .1a ≠D .1a =-8.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为()A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x=-+D .2103507350y x x =-+-9333,…,3n =个根号,一般地,对于正整数a,b ,如果满足n a =个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:①()4,12是完美方根数对;②()9,91是完美方根数对;③若(),380a 是完美方根数对,则20a =;④若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x =-上.其中正确的结论有()A .1个B .2个C .3个D .4个10.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是()A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠011.下列函数关系中,可以看作二次函数2y ax bx c =++(0a ≠)模型的是()A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系12.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为()A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---二、填空题13.若22(2)32my m x x -=++-是二次函数,则m 的值是________.14.把y =(3x-2)(x +3)化成一般形式后,一次项系数与常数项的和为________.15.当m=_____时,函数y=(m ﹣4)256mm x -++3x 是关于x 的二次函数.16.如果函数y =(m ﹣1)x 2+x (m 是常数)是二次函数,那么m 的取值范围是_____.17.开口向下的抛物线y =(m 2-2)x 2+2mx +1的对称轴经过点(-1,3),则m =_____.三、解答题18.下列函数中,哪些是二次函数?(1)y =3x —1;(2)232y x =+;(3)3232y x x =+;(4)2221y x x =-+;(5)2()1y x x x =-+;(6)2y x x-=+19.已知函数238()226mm y m x x --=+++是关于x 的二次函数,求满足条件的m 的值.20.如图,在Rt △ABC 中,∠C=90°,∠A=45°,AC =P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ=45°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)线段DC 的长为(用含t 的式子表示).(2)当点Q 与点C 重合时,求t 的值.(3)设△PDQ 与△ABC 重叠部分的面积为S ,求S 与t 之间的函数关系式.参考答案1--10DBCBC CDBCD 11--12CA13.214.115.116.m ≠117.-118.解∶(1)不是二次函数,因为自变量的最高次数是1.(2)是二次函数,因为符合二次函数的概念.(3)不是二次函数,因为自变量的最高次数是3.(4)是二次函数,因为符合二次函数的概念.(5)不是二次函数,因为原式整理后为y =-x .(6)不是二次函数,因为x -2为分式,不是整式.故(2)(4)是二次函数.19解∶根据题意得∶2382m m -=-,且 20m +≠,解得m =5,即满足条件的m 的值为5.20.解:(1)∵PD ⊥AC ,∴90ADP ∠=︒,∵∠A=45°,∴45APD ∠=︒,∴AD DP =,在Rt ADP △中,由勾股定理得:22222AP AD DP AD =+=,∵点P 的运动时间为t 秒,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动,∴2AP t =,∴()2222t AD =,解得:AD =,∵AC =∴=-=DC AC AD ;(2)∵PD ⊥AC ,∠A=∠DPQ=45°,∴∠A=∠PQD=45°,∴PA=PQ ,∴AD=DQ ,∵点Q 与点C 重合,∴AD+DQ=AC ,∴2AD=AC ,即=解得1t =;(3)①当0<t ≤1时,212PDQ PDA S S S AD DP t ===⋅== ,②当1<t <2时,如图,设PQ 交BC 于点E ,则2AQ AD =,QC AQ AC =-=-,∴22114122(()=⋅=-=- QCE S QC CE t ∴22241384()=-=--=-+- PQD QCE S S S t t t t .。

人教版九年级上册 22.1.4 二次函数y=ax2+bx+c的图象和性质 同步练习(附答案)

人教版九年级上册 22.1.4 二次函数y=ax2+bx+c的图象和性质  同步练习(附答案)

22.1.4 二次函数y =ax 2+bx +c 的图象和性质 第1课时 二次函数y =ax 2+bx +c 的图象和性质1.用配方法将二次函数y =x 2-8x -9化为y =a(x -h)2+k 的形式为( )A .y =(x -4)2+7 B .y =(x -4)2-25C .y =(x +4)2+7D .y =(x +4)2-252.二次函数y =-x 2+4x -3的顶点坐标是( )A .(4,-3)B .(2,1)C .(-2,1)D .(2,-7)3.二次函数y =x 2+x 的图象与y 轴的交点坐标是( )A .(0,1)B .(0,-1)C .(0,0)D .(-1,0)4.已知二次函数y =ax 2+bx +c 的x ,y 的部分对应值如下表:x -1 0 1 2 3 y51-1-11A .y 轴B .直线x =52C .直线x =2D .直线x =325.函数y =2x 2-3x +4经过的象限是( )A .第一、二、三象限B .第一、二象限C .第三、四象限D .第一、二、四象限6.二次函数y =ax 2+bx +c(a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x =12C .当x<12,y 随x 的增大而减小D .当-1<x<2时,y>07.若抛物线y =x 2+mx +9的对称轴是直线x =4,则m 的值为 .8.已知二次函数y =-2x 2-8x -6,当 时,y 随x 的增大而增大;当x = 时,y 有最大值,是 .9.二次函数y =x 2+bx +3的图象经过点(3,0).(1)求b 的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数y =x 2+bx +3的图象.10.将抛物线y =x 2+2x 向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 .11.如果将抛物线y =x 2+2x -1向上平移,使它经过点A(0,3),则所得新抛物线的解析式是 .12.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <313.若点P 1(-3,y 1),P 2(-2,y 2),P 3(3,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3>y 1>y 2C .y 2>y 1>y 3D .y 3<y 2<y 114.已知二次函数y =ax 2+bx +c 的图象如图所示,则( )A .b >0,c >0B .b >0,c <0C .b <0,c <0D.b<0,c>015.(遵义期末)如图,函数y=ax2-2x+1和y=ax-a(a是常数且a≠0)在同一平面直角坐标系中的图象可能是()16.抛物线y=-2x2+8x-6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0?x取何值时,y>0?x取何值时,y<0?17.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.第2课时 用待定系数法求二次函数解析式1.已知二次函数y =ax 2+bx +c 经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为 .2.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.3.已知抛物线y =x 2+bx +c 经过(2,-1)和(4,3)两点.(1)求出这个抛物线的解析式;(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为 .4.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-85.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .6.如图所示,抛物线的函数解析式是( )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +47.已知抛物线与x 轴交于点A(-3,0),对称轴是直线x =-1,且过点(2,4),求抛物线的解析式.8.已知抛物线y =ax 2+bx +c 与x 轴的两个交点为(-1,0),(3,0),其形状与抛物线y =-2x 2相同,则该二次函数的解析式为 .9.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2 B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +210.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是()A.b=2,c=4 B.b=2,c=-4C.b=-2,c=4 D.b=-2,c=-411.二次函数的图象如图所示,则其解析式为.12.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D 两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.13.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.参考答案:22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.B2.B3.C4.D5.B6.D7.-8.8.x<-2;-2,大,2.9.解:(1)将(3,0)代入函数解析式,得9+3b+3=0.解得b=-4.(2)∵y=x2-4x+3=(x-2)2-1,∴顶点坐标是(2,-1),对称轴为直线x=2.(3)如图所示.10.y=(x+3)2-4.11.y=x2+2x+3.12.B13.A14.B15.C16.解:(1)∵y =-2x 2+8x -6=-2(x -2)2+2,∴顶点坐标为(2,2),对称轴为直线x =2.(2)∵a =-2<0,抛物线开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小.(3)令y =0,即-2x 2+8x -6=0,解得x =1或3,抛物线开口向下, ∴当x =1或x =3时,y =0; 当1<x <3时,y >0; 当x <1或x >3时,y <0.17.解:(1)将点O (0,0)代入二次函数y =x 2-2mx +m 2-1中,得0=m 2-1.解得m =±1.∴二次函数的解析式为y =x 2+2x 或y =x 2-2x.(2)当m =2时,二次函数解析式为y =x 2-4x +3=(x -2)2-1, ∴C (0,3),D (2,-1).(3)存在.连接CD ,根据“两点之间,线段最短”可知,当点P 位于CD 与x 轴的交点时,PC +PD 最短.设经过C ,D 两点的直线解析式为y =kx +b (k ≠0),则将C (0,3),D (2,-1)两点坐标代入解析式中,可得⎩⎪⎨⎪⎧3=b ,-1=2k +b ,解得⎩⎪⎨⎪⎧k =-2,b =3.∴y =-2x +3.令y =0,可得-2x +3=0,解得x =32.∴当P 点坐标为(32,0)时,PC +PD 最短.第2课时 用待定系数法求二次函数解析式1.y =x 2-x -2. 2.解:由题意,得⎩⎪⎨⎪⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴这个二次函数的解析式为y =2x 2-3x +1.3.(1)解:将(2,-1)和(4,3)两点代入抛物线解析式,得⎩⎪⎨⎪⎧-1=4+2b +c ,3=16+4b +c. 解得⎩⎪⎨⎪⎧b =-4,c =3.∴这个抛物线的解析式为y =x 2-4x +3. (2)y =(x -3)2-4. 4.D5.y =-x 2-4x -9. 6.D7.解:∵抛物线与x 轴交于点A (-3,0),对称轴是直线x =-1,∴抛物线与x 轴的另一交点坐标为(1,0). 设抛物线的解析式为y =a (x +3)(x -1), 将点(2,4)代入,得4=a (2+3)(2-1),解得a =45.∴抛物线的解析式为y =45(x +3)(x -1),即y =45x 2+85x -125.8.y =-2(x +1)(x -3)或y =2(x +1)(x -3).9.D10.D11.y =-x 2+2x +3.12.解:(1)∵抛物线顶点坐标为(1,4),∴设y =a (x -1)2+4.∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P.设直线AE 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3.∴y AE =7x -3. ∵当y =0时,x =37,∴点P 的坐标为(37,0). 13.解:(1)方法一:设二次函数的解析式为y =ax 2+bx +c ,把A ,B ,C 三点坐标代入,可得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =0,c =-4,解得⎩⎪⎨⎪⎧a =1,b =-3,c =-4.∴二次函数的解析式为y =x 2-3x -4.方法二:设二次函数的解析式为y =m (x +1)(x -4),把C 点坐标代入,可得-4m =-4.解得m =1.∴二次函数的解析式为y =(x +1)(x -4)=x 2-3x -4.(2)作OC 的垂直平分线DP ,交OC 于点D ,交BC 下方抛物线于点P ,∴PO =PC ,此时P 点即为满足条件的点.∵C (0,-4),∴D (0,-2).∴点P 的纵坐标为-2.将y =-2代入抛物线解析式,可得x 2-3x -4=-2.解得x 1=3-172(小于0,舍去),x 2=3+172. ∴存在满足条件的点P ,其坐标为(3+172,-2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数课堂同步专项练习题1、二次函数1. 若()mm xm m y -+=22是二次函数,求m 的值。

2.用100cm 长的铁丝围成一个扇形,试写出扇形面积S (cm 2)与半径R (cm )的函数关系式。

3.已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式。

2、函数2ax y =的图象与性质1、根据图象填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,抛物线上的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,抛物线上的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 1.已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最底点?求出这个最底点,这时x 为何值时,y随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x的增大而减小? 2.对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称。

其中正确的是 。

3.二次函数12-=m mx y 在其图象对称轴的左则,y 随x 的增大而增大,求m 的值。

4.二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系。

5.函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .3、函数c ax y +=2的图象与性质1.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2.将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 。

3.二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 。

4.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。

其中判断正确的是 。

5.将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 。

6.已知函数:221x y -=, 3212+-=x y 和1212--=x y 。

(1)分别画出它们的图象;(2)说出各个图象的开口方向,对称轴和顶点坐标;(3)说出函数6212+-=x y 的图象的开口方向、对称轴和顶点坐标; (4)试说明函数3212+-=x y 、1212--=x y 、6212+-=x y 的图象分别有抛物线221x y -=作怎样的平移才能得到(2)(3)解答: 抛物线开口方向对称轴 顶点坐标221x y -=3212+-=x y1212--=x y 6212+-=x y(4)答:4、函数()2h x a y -=的图象与性质1.填表:抛物线开口方向对称轴 顶点坐标()223--=x y()2321+=x y2.已知函数22x y =,2)4(2-=x y 和2)1(2+=x y 。

(1)在同一坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标。

(3)分析分别通过怎样的平移。

可以由抛物线2=xyy=得到抛物线2)4(2-2x和2)1y?=x(2+答:3.试写出抛物线2y=经过下列平移后得到的抛物线的解析式并写出对称3x轴和顶点坐标。

2个单位;(3)先左移1个单位,再右移4(1)右移2个单位;(2)左移3个单位。

4.试说明函数()2321-=x y 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。

5.二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。

5、()k h x a y +-=2的图象与性质1.分别在同一坐标系内画出函数()12212-+=x y 和()21212+-=x y 的图象,并根据图象写出对称轴、顶点坐标、最值和增减性。

答:2.已知函数()9=xy。

--232+(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最值,是。

(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小。

(4)求出该抛物线与x轴的交点坐标;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由2=的图象经过怎样的平移得到的?3xy-3.已知函数()4y。

=x12-+(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点。

(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x 取何值时,函数值小于0。

6、c bx ax y ++=2的图象和性质1.抛物线942++=x x y 的对称轴是 。

2.抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 。

3.试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。

4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y5.把抛物线c bx x y ++=2的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是532+-=x x y ,试求b 、c 的值。

6.把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。

7.某商场以每台2500元进口一批彩电。

如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?7、c bx ax y ++=2的性质1.已知a <0,b >0,那么抛物线22++=bx ax y 的顶点在第 象限?理由是: 答:2.请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个) 答:3.已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 。

解:4.二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限。

理由: 5.二次函数c bx ax y ++=2的图象如图,试判断a 、b 、c 和∆的符号。

解: 6.二次函数c bx ax y ++=2的图象如图,下列结论(1)c <0;(2)b >0;(3)4a+2b+c >0;(4)(a+c )2<0,其中正确的是:( )A .1个B .2个C .3个D .4个 理由: 7.二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 理由: 8.已知直线b ax y +=的图象经过第一、二、三象限,那么12++=bx ax y 的图象为( )A .B .C .D .8、c bx ax y ++=2的最值1. 心理学家发现,学生对概念的接受能力y 和提出概念所用的时间x (单位:分)之间大体满足函数关系式:436.21.02++-=x x y (0≤x ≤30)。

y 的值越大,表示接受能力越强。

试根据关系式回答:(1) 若提出概念用10分钟,学生的接受能力是多少?(2) 概念提出多少时间时?学生的接受能力达到最强?2. 某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示。

图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系是4522++-=x x y 。

请回答下列问题:(1) 柱子OA 的高度是多少米?(2) 喷出的水流距水平面的最大高度是多少米?(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?3. 体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线21212++-=x x y 的一部分,根据关系式回答:(1) 该同学的出手最大高度是多少?(2) 铅球在运行过程中离地面的最大高度是多少?(3) 该同学的成绩是多少?4. 如图,正方形EFGH 的顶点在边长为a 的正方形ABCD的边上,若AE=x ,正方形EFGH 的面积为y 。

(1) 求出y 与x 之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由。

9、函数解析式的求法(1)1.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)根据如图直角坐标系求该抛物线的解析式;(2)若菜农身高为1.60米,则在他不弯腰的情况下,在棚内的横向活动范围有几米?(精确到0.01米)2.根据下列条件求抛物线的解析式:(1)图象过点(-1,-6)、(1,-2)和(2,3);(2)图象的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3;(3)图象过点(1,-5),对称轴是直线x=1,且图象与x轴的两个交点之间的距离为4。

3.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离为6米时,球到达最高点,此时球高3米,已知球门高为2.44米,问能否射中球门?4.已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2。

(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求△ABP的面积。

5.如图:(1)求该抛物线的解析式;(2)根据图象回答:当x为何范围时,该函数值大于0。

6.已知抛物线经过A(-3,0)、B(0,3)、C(2,0)三点。

(1)求这条抛物线的解析式;(2)如果点D(1,m)在这条抛物线上,求m值和点D关于这条抛物线对称轴的对称点E的坐标,并求出tan∠ADE的值。

相关文档
最新文档