青岛版八年级数学上册全部教学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1我们身边的轴对称图形

学习目标:

1、能够认识轴对称和轴对称图形,并能找出对称轴,知道轴对称与轴对称图形的区别与联系

2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。

3、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中

的广泛应用和它

丰富的文化价值,培养学生审美情趣,增强鉴赏美的能力。

重点难点:

重点:轴对称与轴对称图形的概念及识别

难点:轴对称与轴对称图形的区别和联系

学习过程

一、创设情景

剪纸活动观察剪的飞鸟图案

你能说出老师是如何剪出这幅图案的吗?同学们也试一试,看谁剪出的图案最美。

学生观察这些图案有何共同点。

对折后两部分完全重合,也就是说这两部分是对称的。自古以来,对称图形被认为是平衡和谐之美,我们时时刻刻生活在一个充满对称的世界之中,从动物到植物,从小巧精致的艺术品到雄伟壮丽的建筑,大多都是对称的,下面让我们共同感受一下对称的美。建筑

剪纸

脸谱

二、探究新知

1、探究轴对称图形自主学习课本第4页交流与发现,总结轴对称图形的定义。

2、探究对称轴的条数

下列图形是否是轴对称图形,找出轴对称图形的所有对称轴。

思考:正三角形有条对称轴正四边形有条对称轴正五边形有条对称轴

正六边形有条对称轴正n边形有条对称轴

当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?

小结:一个轴对称图形的对称轴的条数不一定是一条。

练一练:

生活中有许多轴对称图形,你能举例吗?

引导:数字,英文,汉字

3、探究轴对称

(1)动手操作

你能用两块大小、形状完全一样的直角三角形拼成轴对称图形吗?

将图中的两个三角形均速向两边移动变成

想一想:这两个三角形有什么关系?

(2)观察、讨论,得出轴对称以及对称点的定义

(3)学生举生活中两个图形成轴对称的例子。:

4、小组讨论“轴对称”与“轴对称图形”的区别与联系。

学生完成下表:

轴对称图形轴对称

区别:()个图形()个图形

联系:如果把一个轴对称图形位于对称轴两旁的部分看成()个图形,那么这两部分()如果把成轴对称的2个图形看成()整体,那么这个整体就是一个()

三、巩固练习

课本第6页练习

四、自我小结

这节课还有那些收获和疑问?

五、当堂测试配套练习册第1页

1.2 线段的垂直平分线

宁阳三中初二备课组

学习目标:

1、理解线段垂直平分线的概念,掌握线段垂直平分线的性质。

2、能运用线段的垂直平分线的性质解决简单的实际问题。

3、能够利用直尺和圆规作已知线段的垂直平分线。

重难点:

重点:1、掌握线段垂直平分线性质。

2、能运用线段的垂直平分线的性质解决简单的实际问题。

难点:1、能够利用直尺和圆规作已知线段的垂直平分线。

2、能运用线段的垂直平分线的性质解决简单的实际问题。

学习过程:

一、探究新知

(一)探究知识一

1、学生自主学习课本第8页:实验与探究,第9页交流与发现

2、成果交流,归纳提升

A:(1) 于线段,并且这条线段的直线叫做线段的垂

直平分线.

线段是 图形,它的一条对称轴是 B : 线段垂直平分线的性质

线段垂直平分线上的任意一点到 的距离 .

3、应用:如图1: MN 是线段AB

MN 上一点,

则EA 与EB 答:

因为

所以 图1.

4、练习:(1)、如图2:在直角三角形中∠C=900,DE 是斜边AB 的垂

直平分线,则DA=________为什么?如果CD=1cm,BD=2cm,则AC=_____cm.

图2.

(二)探究二:能够利用直尺和圆规作已知线段的垂直平分线 图3.我们能用折叠的方法作出线段的垂直平分线,还可以用直尺和

B

N

O A

C

B

D E

l

圆规作已知线段的垂直平分线,怎么做呢?请你自学第9页例题并尝试做一做。

已知:线段AB

求作:线段AB的垂直平分线

你能用折叠的方法验证上面尺规作图的正确吗?

二、巩固练习:课本P9练习第1题课本P10习题A组第1、2题

三、拓展延伸

1.在平面直角坐标系中,已知点A坐标为(0,4),B坐标为(6,0).那么线段OA与OB垂直平分线的交点P的坐标为()PA PB

2.课本P10习题B组第1题

四、课堂小结:本节课你学到了哪些知识,最大的收获是什么?并与同学交流。

五当堂测试

A:夯实基础:

1、线段的垂直平分线(中垂线):垂直并且一条的直线,称为这条的垂直平分线,线段垂直平分线上的到这条线段两个的距离。

2、如图5,点A,B是两家大型工业企业,现要建一座水电站,向这两家企业输送电力资源,问:电站建在哪里才能使送电量相同?

A

B

图5

B:能力提高

3.如图6,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果,BC=10cm,那么△BCD的周长是 cm

D

B C

图6 五.自我评价

相关文档
最新文档