青岛版八年级数学上册全部教学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1我们身边的轴对称图形
学习目标:
1、能够认识轴对称和轴对称图形,并能找出对称轴,知道轴对称与轴对称图形的区别与联系
2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
3、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中
的广泛应用和它
丰富的文化价值,培养学生审美情趣,增强鉴赏美的能力。
重点难点:
重点:轴对称与轴对称图形的概念及识别
难点:轴对称与轴对称图形的区别和联系
学习过程
一、创设情景
剪纸活动观察剪的飞鸟图案
你能说出老师是如何剪出这幅图案的吗?同学们也试一试,看谁剪出的图案最美。
学生观察这些图案有何共同点。
对折后两部分完全重合,也就是说这两部分是对称的。自古以来,对称图形被认为是平衡和谐之美,我们时时刻刻生活在一个充满对称的世界之中,从动物到植物,从小巧精致的艺术品到雄伟壮丽的建筑,大多都是对称的,下面让我们共同感受一下对称的美。建筑
剪纸
脸谱
二、探究新知
1、探究轴对称图形自主学习课本第4页交流与发现,总结轴对称图形的定义。
2、探究对称轴的条数
下列图形是否是轴对称图形,找出轴对称图形的所有对称轴。
思考:正三角形有条对称轴正四边形有条对称轴正五边形有条对称轴
正六边形有条对称轴正n边形有条对称轴
当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?
小结:一个轴对称图形的对称轴的条数不一定是一条。
练一练:
生活中有许多轴对称图形,你能举例吗?
引导:数字,英文,汉字
3、探究轴对称
(1)动手操作
你能用两块大小、形状完全一样的直角三角形拼成轴对称图形吗?
将图中的两个三角形均速向两边移动变成
想一想:这两个三角形有什么关系?
(2)观察、讨论,得出轴对称以及对称点的定义
(3)学生举生活中两个图形成轴对称的例子。:
4、小组讨论“轴对称”与“轴对称图形”的区别与联系。
学生完成下表:
轴对称图形轴对称
区别:()个图形()个图形
联系:如果把一个轴对称图形位于对称轴两旁的部分看成()个图形,那么这两部分()如果把成轴对称的2个图形看成()整体,那么这个整体就是一个()
三、巩固练习
课本第6页练习
四、自我小结
这节课还有那些收获和疑问?
五、当堂测试配套练习册第1页
1.2 线段的垂直平分线
宁阳三中初二备课组
学习目标:
1、理解线段垂直平分线的概念,掌握线段垂直平分线的性质。
2、能运用线段的垂直平分线的性质解决简单的实际问题。
3、能够利用直尺和圆规作已知线段的垂直平分线。
重难点:
重点:1、掌握线段垂直平分线性质。
2、能运用线段的垂直平分线的性质解决简单的实际问题。
难点:1、能够利用直尺和圆规作已知线段的垂直平分线。
2、能运用线段的垂直平分线的性质解决简单的实际问题。
学习过程:
一、探究新知
(一)探究知识一
1、学生自主学习课本第8页:实验与探究,第9页交流与发现
2、成果交流,归纳提升
A:(1) 于线段,并且这条线段的直线叫做线段的垂
直平分线.
线段是 图形,它的一条对称轴是 B : 线段垂直平分线的性质
线段垂直平分线上的任意一点到 的距离 .
3、应用:如图1: MN 是线段AB
MN 上一点,
则EA 与EB 答:
因为
所以 图1.
4、练习:(1)、如图2:在直角三角形中∠C=900,DE 是斜边AB 的垂
直平分线,则DA=________为什么?如果CD=1cm,BD=2cm,则AC=_____cm.
图2.
(二)探究二:能够利用直尺和圆规作已知线段的垂直平分线 图3.我们能用折叠的方法作出线段的垂直平分线,还可以用直尺和
B
N
O A
C
B
D E
l
圆规作已知线段的垂直平分线,怎么做呢?请你自学第9页例题并尝试做一做。
已知:线段AB
求作:线段AB的垂直平分线
你能用折叠的方法验证上面尺规作图的正确吗?
二、巩固练习:课本P9练习第1题课本P10习题A组第1、2题
三、拓展延伸
1.在平面直角坐标系中,已知点A坐标为(0,4),B坐标为(6,0).那么线段OA与OB垂直平分线的交点P的坐标为()PA PB
2.课本P10习题B组第1题
四、课堂小结:本节课你学到了哪些知识,最大的收获是什么?并与同学交流。
五当堂测试
A:夯实基础:
1、线段的垂直平分线(中垂线):垂直并且一条的直线,称为这条的垂直平分线,线段垂直平分线上的到这条线段两个的距离。
2、如图5,点A,B是两家大型工业企业,现要建一座水电站,向这两家企业输送电力资源,问:电站建在哪里才能使送电量相同?
•
A
•
B
图5
B:能力提高
3.如图6,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果,BC=10cm,那么△BCD的周长是 cm
D
B C
图6 五.自我评价