光纤通信非线性补偿的文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信非线性补偿的文献综述
光通信系统中非线性补偿算法的综述
摘要:文章第一部分首先引出本文所要讲述的主要的光纤通信系统:相干光正交频分复用系统(CO-OFDM)、波分复用系统(WDM),然后对二者当中存在的各种干扰以及各自的优点进行分析,最后根据分析结果得出:非线性损伤是亟待解决的主流问题。第二部分针对这两种系统当中的非线性损伤的补偿问题介绍一下国内外的研究现状。第三部分根据国内外对非线性损伤的补偿的研究现状做出大胆的预测,并预测未来光通信系统的发展趋势。
关键词:CO-OFDM;WDM;非线性损伤;补偿算法;
Abstract: The first part of the artical leads to about the main optical fiber communication systems: coherent optical orthogonal frequency division multiplexing (CO-OFDM), wavelength division multiplexing system (WDM),and then analyze various kinds of interference and their respective advantages existent in the two systems .,at last know that nonlinear damage is a mainstream problem to be solved.The second
part of the issue introduced the research about the nonlinear compensation for these two systems .The third part of the artical make a bold prediction about the nonlinear compensation and forecast the development trend of future optical communication systems. Key words: CO-OFDM; WDM; nonlinear damage; compensation algorithm;
一前沿
当前,人们对通信容量的需求急剧增加,光纤通信技术以其超高速、大容量、长距离、高抗电磁干扰性和低成本等无可比拟的优点,成为解决骨干网络容量压力的最佳选择。
由于目前商用的光传输系统主要是以10Gbit/s为主的波分复用(Mavelength Division Multiplexing,WDM)系统[1],为了提高波分复用(WDM)长距离光纤传输系统的容量,可以通过三种途径来处理:(1)增加波长通道数,减小信道间隔;
(2)扩展新的频带;(3)提高单信道信号速率。目前在一些大容量WDM链路上,传输容量已经达到Tbit/s,如果想采用上述技术继续扩容就会产生很多限制因素:首先继续增加波长通道数,增加频谱效率,会使得通道间隔变窄,从而使光纤非线性效应尤其是信道间的串扰的抑制变得更加困难,同时对信道的复用/解复用器的要求也更加严格;其次,目前波长已应用了C和L波段,继续扩展新的频带来增加信道数量,将会向S、xL波段进而全波段发展,但相应波段的光放大器还不成熟。所以如果要继续提高系统的传输容量和带宽,就必须提高单信道传输速率,即将单信道速率从目前10Gbit/s提高至40Gbit/s甚至100Gbit/s,产生单信道高速光传输系统。但是随着单信道传输速率的大幅度提高,传统的强度调制/直接检测(IM/DD)系统面临着许多极限性的挑战:难度极大的色度色散(CD)以及色散斜率的补偿和管理;随机性的偏振模色散(PMD),PMD极大的限制着系统的容量和传输距离,并被认为将是高码率IM/DD传输的最终限制因素[2]。文献研究表明,当光纤传输系统速率达到40Gbit/s及以上时,光纤的非线性损伤成为抑制系统传输性能的最主要因素之一[3]。光纤中的非线性效应包括:受激非弹性散射(包括受激布里渊散射和受激喇曼散射)、非线性折射率(Kerr)效应。光Kerr效应包括自相位调制(SPM)、交叉相位调制(XPM)和四波混频(FWM)等[4]。
最近,无线通信领域中成熟的正交频分复用(OFDM)技术成为高速光传输中的一个研究热点。相干光正交频分复用(CO-OFDM)由于使用的数百个子载波均采用高阶调制格式,其频谱效率高,并对光纤色散和偏振模色散具有很好的
鲁棒性而正在引起显著的关注[5-9]。OFDM技术不需要光链路做任何色散补偿管理,仅仅采用电域补偿算法就可以非常有效的补偿CD和PMD。尤其是相干光OFDM技术(CO-OFDM)融合了OFDM技术和相干光通信的优点,具有高传输速率、高抗色散能力、高频谱效率等优势。研究表明,CO-OFDM系统可以在现有光传输系统的基础上构建出高速率、低成本、长距离的光传输网络,是实现下一代超高速长距离光传输系统的十分有竞争力的技术之一[2]。
但是,OFDM固有的缺点之一是它的高峰平均功率比(PARR),这就需要高动态范围的线性功率放大器,DA / AD转换器,光调制器/解调器。在CO-OFDM 系统中,高PAPR增加的克尔效应引起光纤的光纤非线性损伤。因此,它使得信号经过传输之后的光信噪比(OSNR)很低,并最终限制了传输的最大化[10]。目前,补偿线性损伤包括CD和PMD的技术日渐成熟[11-12],非线性损伤成为CO-OFDM通信系统容量的限制因素。
在WDM系统中,信道数目的增加和信道间隔的减小导致了较高的非线性损伤[13]。提高频谱效率和增加传输距离要求增加光信噪比,但是对于一个给定的噪声水平的通信系统OSNR的增加需要增加信号功率,这反过来又产生更严重的非线性损伤[14]。
经过以上分析可知,减少或补偿非线性损伤,成为一个棘手的问题。
二非线性损伤的补偿在国内外的研究现状
除非是系统信道中光功率刻意的保持很低,否则非线性损伤会影响所有长距离光传输系统[15],对于有很高PAPR的CO-OFDM系统更是如此。由于光OFDM信号是由一系列的子信道信号重叠起来的,所以很容易使时域信号具有高的PAPR。与无线通信系统相比,光纤通信系统属于非线性媒质传输,由于光OFDM系统各子载波之间频谱间隔小,这使得子载波间的走离效应很弱,很容易满足非线性FWM相互作用产生的条件,形成串扰;由于子载波间隔一般为数十MHz或几百MHz,与WDM系统不一样,各子载波间的数据相关性也会通过交叉相位调制(XPM)、四波混频(FWM)非线性效应相互影响[2]。
在CO-OFDM系统中的主要的非线性损伤是FWM,子载波的SPM和XPM 产生的固定相移不会有明显损伤[16-20]。文献[16]从频域单个子载波的角度,利用藕合波方程,详细分析了CO-OFDM系统中非线性损伤的作用机理,主要研究FWM损伤。2008年M. Nazarathy,J. Khurgin,R. Weidenfeld等人分析研究了在OFDM多带系统当中色散和FWM的综合效应,得到色散可以有效降低FWM的影响[21]。伦敦大学的Yannis Benlaehtar等用实验证实11Gbit/sOFDM 系统传输1600公里时自相位调制(SPM)对光OFDM信号的损伤[22]。2009年有人从每一个子载波产生非线性噪声角度研究分析了CO-OFDM系统信道的非线性损伤[23]。
在OFDM系统当中,由于高的PAPR会产生严重的非线性损伤,所以可以从降低PAPR的方面入手来减弱非线性损伤的影响。一些方法已经被研究用于降低OFDM系统的PAPR。例如限幅技术[24] 、预编码[25]、部分传输技术[26]、选择性映射[27]、光学相位调制器[28]。限幅技术是最简单也是在实时处理系统中广泛采用的技术,但是它会引入限幅噪声从而影响系统的性能。其它方法增加了额外的复杂度、编码开销、额外增加光学器件等。
在2010年,Hwan Seok Chung,Sun Hyok Chang,Kwangjoon Kim等人[29]证明了在CO-OFDM传输系统当中,μ-律压扩变换对光纤非线性抑制。这种方法