物理学专业必修课程
物理学专业的课程有哪些
物理学专业的课程有哪些物理学作为自然科学的一门重要学科,旨在研究物质和能量的基本规律。
物理学专业的课程设置涵盖了广泛的内容,既包括理论基础,也包括实践应用。
本文将介绍物理学专业的主要课程。
一、基础课程1. 数学分析:数学分析是物理学专业的基础课程,它涉及微积分、级数、极限等数学概念,为后续的物理学理论和实验打下坚实的数学基础。
2. 线性代数:线性代数是物理学专业中的重要数学工具,它涉及矩阵、向量、线性方程组等内容,用于解决物理计算和推导中的线性问题。
3. 大学物理学:大学物理学是物理学专业的入门课程,包括力学、热学、电磁学等基本物理学理论,培养学生对物质和能量的基本概念和规律的理解。
4. 近代物理学:近代物理学是物理学专业的重要理论课程,介绍了量子力学、相对论以及核物理等领域中的基本概念和理论模型,为学生进一步研究物理学奠定基础。
二、专业课程1. 理论力学:理论力学是物理学专业的核心课程,主要介绍经典力学的基本原理和数学表述,涉及质点力学、刚体力学等内容,培养学生分析和解决物体运动问题的能力。
2. 电动力学:电动力学是物理学专业的重要课程,主要研究电场、电荷分布、电流以及电磁波等现象和理论,为学生理解电磁学原理和应用提供基础。
3. 热力学与统计物理学:热力学与统计物理学是物理学专业的重要课程之一,涉及热力学定律、热力学过程以及统计物理学中的概率与统计等内容,用于理解物质的热性质和统计规律。
4. 量子力学:量子力学是物理学专业的核心理论课程,主要研究微观粒子的行为和性质,包括波粒二象性、不确定性原理、量子力学算符以及量子力学中的测量和态的演化等内容。
5. 实验物理学:实验物理学是物理学专业中实践性较强的课程,通过进行实验和观测,学生可以巩固和应用所学的物理学理论知识,培养实验操作和数据处理的能力。
三、应用课程1. 生物物理学:生物物理学是物理学专业与生物学交叉领域的应用课程,研究生物体内的物理过程和原理,包括生物体的结构与功能、生物分子、细胞生物物理学等内容。
物理学专业必修课程共75页
即本征值问题
X
0
0 X
l
0
33
第二步:求解本征值问题 上章已经证明只有当 0 时,
该本征值问题有非零解.
ⅰ. XxA sinxB cosx
34
ⅱ.由
X00
B0Asin l 0
Xl0
n 2 2
l2
, n1,2,3,
即特征值是
n
n l
2 ,
n1,2,3,
35
ⅲ . 本征函数是
Xn
x
sin
的热量:
QQ1Q2Q3
即 CAxux,ttux,t
uxxx,tuxx,tAtfAxt
16
化简:
两边同除以
1 A x t
Cux,ttux,t
t
uxxx,tuxx,tf
x
当 x 0 , t 0
则 Cut uxxf
17
一维热传导方程为:
ut Duxx f
其中:
D C
, f F
C
.
二维热传导方程为:
第三章 热传导方程的分离变量法
1
引言
上一章对弦振动方程为代表的双曲 型方程进行了研究,它的研究包括从方程 的导出到应用行波法和分离变量法.本章 我们对抛物型方程以热传导方程为代表 进行研究 。
2
数理方程的基本步骤:
物理模型
定量化 数学模型
ⅰ 建坐标系
ⅱ 选物理量 u
ⅲ 找物理规律
ⅳ 写表达式
3
3.1 热传导方程 一、热传导方程的导出
面:
Q1
u x
x
At
13
②流出 x x 面:
Q2
u x
xx
《力学》课程标准
《力学》课程标准
一、课程性质
1.《力学》是物理学专业本科生专业基础课程的必修科目,被视为物理学其他分支研究的基石和起点。
2.本课程是物理学专业本科学生必修的第一门专业课。
课程中的知识、物理问题的研究方法,以及运用高等数学知识解决物理问题的方法等,都是后续各专业课程的重要基础。
二、课程目标
通过本课程的学习,学生应达到以下目标:
1.系统地掌握力学的基本知识,包括静力学、运动学、动力学等方面的基本概念和原理。
2.能够灵活地应用力学知识去解决物理学及其它学科中有关力学的基本问题,例如运用牛顿力学原理和定律解决质点力学、质点系力学、刚体力学以及振动与波的基本问题。
3.对牛顿力学及其应用有全面深入的认识,理解其在自然科学和工程技术领域的重要性。
4.了解物理学及力学的基本研究方法,包括实验设计、数据分析等,培养科学素养和实验技能。
5.能够深刻理解中学物理教材中的力学问题,并能独立解决今后在工作中遇到的一般力学问题,为从事中学物理教学工作或进一步深造打好基础。
此外,课程还应注重理论与实践相结合,通过实验和案例分析等方式,帮助学生更好地理解和掌握力学原理。
同时,课程还应培养学生的逻辑思维和抽象思维能力,提升其分析问题和解决问题的能力。
总的来说,《力学》课程标准旨在为学生提供系统的力学知识,培养其运用力学原理解决实际问题的能力,并为其后续发展奠定坚实基础。
《普通物理学(3)(现代物理基础)》课程教学大纲
《普通物理学(3)(现代物理基础)》课程教学大纲一、课程基本情况二.课程性质与任务普通物理学(3)(现代物理基础)为物理学专业的必修课,是物理学专业的一门重要基础课,它是学生开始进入微观世界研究领域的入门课程。
通过本课程的学习,掌握原子的基本结构、原子的能级和光谱的基本规律、有关原子的基本概念(原子的量子态、电子自旋、泡利原理等)、原子的重要实验事实和原子核的性质以及核反应的基本规律,了解在原子领域中经典物理遇到的主要困难,为克服这些困难而引入的一些全新的分析方法和推理方法,一些与经典物理不同的新概念,为以后继续学习《量子力学》课程、近代物理实验和应用物理其它专业课程奠定基础。
三. 课程主要教学内容及学时分配四.课程教学基本内容和基本要求(一)绪论、原子的基本状况1.了解物理学的研究方法和发展历史。
2.熟悉原子的质量,熟练掌握原子半径的计算,了解电子的质量和电荷以及阿伏伽德罗等各种常数。
3.了解Thomson原子模型和不合理的原因;掌握库仑散射公式和卢瑟福散射公式的推导。
4.掌握原子核大小的估计和原子的核式结构,并了解核式模型的意义和困难。
(二)原子的能级与辐射1.了解黑体辐射和普朗克量子假说;复习大学物理中的光电效应方程;了解实验光谱学的分类和测量(激发和发射光谱),2.掌握氢原子的巴耳末、赖曼、帕邢和布喇开等光谱线系;了解玻尔理论三部曲:定态、频率条件。
3.掌握氢原子及类氢离子光谱规律及及类氢离子光谱线系公式;掌握玻尔理论的要点,会画能级跃迁图;4. 理解夫兰克—赫兹实验原理、方法及结论;一般了解索末菲量子化条件及应用;理解玻尔对应原理、玻尔理论的地位和缺陷;5.了解原子的自发辐射、受激辐射与吸收。
(三)量子力学初步1. 掌握光的波粒二象形;掌握德布罗意物质波的公式;了解戴维孙-革末实验。
2. 掌握不确定关系,会用于简单量子体系。
3. 理解几率波的概念;掌握薛定谔方程和方程中各项的意义。
4. 掌握求解定态薛定谔方程(本征问题)的基本步骤、无限深势垒;了解隧道效应;了解谐振子问题并理解零点能;理解氢原子薛定谔方程解中各量子数l m l n ,,的意义。
力学课程标准(PDF)
《力学》课程标准第一部分:课程性质、课程目标一、课程性质本课程为物理学专业本科生专业基础课程的必修科目。
力学是物理学其他分支研究的基石和起点。
本课程是物理学专业本科学生必修的第一门专业课,本课程中的知识、物理问题的研究方法、运用高等数学知识解决物理问题的方法等都是后续各专业课程的基础。
二、课程目标通过本课程的学习,使学生比较系统地掌握力学的基本知识,并能灵活地应用力学知识去解决物理学及其它学科中有关力学的基本问题,对牛顿力学及其应用有全面深入的认识,运用牛顿力学的原理和定律,用矢量代数和微积分的方法解决质点力学、质点系力学、刚体力学、振动与波的基本问题,为学习后续课程打好坚实的基础,也为今后从事中学物理教学工作或进一步深造打好基础;了解物理学及力学的基本研究方法;深刻理解中学物理教材中的力学问题,并能独立解决今后在工作中遇到的一般力学问题。
第二部分:教材与主要参考书一、指定教材梁昆淼,力学(上册)(第4版),高等教育出版社,2010。
二、推荐阅读书籍1、赵凯华,罗蔚茵,新概念物理教程——力学(第二版),高等教育出版社,2004。
2、漆安慎,杜婵英,普通物理学教程——力学(第二版),高等教育出版社,2005。
3、张永德主编,强元棨,程稼夫编著,物理学大题典1力学(上、下册),科学出版社、中国科学技术大学出版社,2005。
4、费恩曼,莱顿,桑兹著,郑永令,华宏鸣,吴子仪等译,费曼物理学讲义(第1卷),上海科学技术出版社,2006。
第三部分:课程教学主要内容及基本要求一、内容概要本课程将主要介绍以下几块内容:质点运动学、质点动力学、质点系动力学、刚体力学、振动与波。
具体将涉及质点运动的描述、质点运动的原因、刚体的运动情况、振动波动的描述及原理等力学所必需的知识结构。
二、基本要求绪论及微积分初步1、了解物理学和力学的研究对象。
2、了解物理学的单位制和量纲。
3、掌握必要的微积分基本方法和基本结论。
第一章质点运动学本章主要研究如何描述质点的机械运动现象,而不涉及引起运动和改变运动的原因。
理论力学课程教学大纲.
《理论力学课程》教学大纲学时:72 时学分:4 分课程类型:必修适用专业:物理学一、课程性质、地位和任务理论力学是四年制高等院校物理学专业的必修的基础课程。
本课程以牛顿运动定律为基础,高等数学为工具,通过严密的逻辑推理,全面的阐述宏观物体机械运动的基本概念和基本规律。
通过教学,应使学生:一,对宏观机械运动规律有比较全面,系统的认识,能掌握处理力学问题的一般方法,培养起一定的抽象思维和逻辑推理能力;二,能较深刻的分析力学教材,能分析生产生活中的问题;三,认识教学与物理的密切联系,能运用数学工具解决物理问题;四,通过本教材的学习为进一步学习理论物理打下了坚实的基础。
本课程总学时为72学时,讲授与习题的比例为3:1,具体情况如下。
二、课程主要内容概述及教学基本要求本课程主要内容:第一篇牛顿力学主要包括:质点力学、质点组力学、刚体力学、非惯性系力学等;第二篇分析力学主要包括:虚功原理、拉格朗日方程、哈密顿正则方程、哈密顿原理等。
理论力学是学生接触到的第一门理论物理课程。
与普通物理力学相比,它在理论上和解决问题的方法上都有较大提高。
通过本课程的学习,使学生受到理论物理研究方法的初步训练,应培养学生严密逻辑推理的能力、抽象思维的能力、从一般到特殊的分析方法及运用高等数学方法解决力学问题的能力,并较好理解数学与物理的密切关系。
三、课程内容绪论1.理论力学的研究对象和方法2.经典力学的运用方法第一章质点力学基本要求:(1).空间和时间,力和质量,惯性参照系是经典力学的基本概念,牛顿定律是经典力学的基本定律。
它是理论力学的起点。
同时介绍现代科学的观点。
(2).重点:1.平面坐标系和自然坐标系中速度加速度分量式的推导和应用,也是本章的难点。
2.质点运动微分方程的建立和求解。
要多举几种不同类型(F=F(r,v,t))例题,学会以高等数学为工具把物理问题转化为数学方程,并求数学表达式分析其中的物理意义,从而提高提出问题,分析问题解决问题的能力 3.要求学生明确质点的约束运动在加约束反力后,可按自由质点处理 4.由于质点的三个基本定律及守恒律在力学多半阐述过,要在原有基础上概括提高,对于一些问题要能正确判断一个力为保守力,并能求出相应的势能曲线。
理论力学
绪 论理论力学是物理学专业学生必修的一门重要专业基础课,又是后续三大理论物理课程(即:电动力学、热力学与统计物理学、量子力学)的基础。
理论力学虽然讲授经典理论,但其概念、理论及方法不仅是许多后继专业课程的基础,甚至在解决现代科技问题中也能直接发挥作用。
近年来,许多工程专业的研究生常常要求补充理论力学知识以增强解决实际问题能力,因此学习理论力学课程的重要性是显然的。
既然我们将开始学习理论力学这门课程,我们至少应该了解什么是理论力学?一.什么是理论力学?1. 它是经典力学.理论力学是基础力学的后继课程,它从更深更普遍的角度来研究力与机械运动的基本规律。
当然它仍然属于经典力学,这里“经典”的含义本身就意味着该学科是完善和已成定论的,它自成一统,与物理学及其它学科所要探索的主流毫不相干。
正因为如此,原本属于物理学的力学,经过三百多年的发展到达20世纪初就从物理学中分化出来,并与数、理、化、天、地、生一起构成自然科学中的七大基础学科。
由于理论力学它是经典力学,因此它不同与20世纪初发展起来的量子力学,也不同于相对论力学。
它研究的机械运动速度比光速要小得多,它研究的对象是比原子大得多的客观物体。
如果物体的速度很大,可以同光速比拟,或者物体尺度很小如微观粒子,在这种情况下,经典力学的结论就不再成立,失去效用,而必须考虑它的量子效应和相对论效应。
因此,理论力学它有一定的局限性和适用范围,它只适用于c v << h t p t E >>∆⋅⋅)( (h —普朗克常数)的情况,不再适用于高速微观的情况。
经典力学的这一局限性并不奇怪,它完全符合自然科学发展的客观规律……。
从自然科学发展史的角度来看,由于力学是发展得最早的学科之一,这就难免有它的局限性。
因此,在某种意义上来说它确是一门古老而成熟的理论。
尽管理论力学是一门古老而成熟的理论,这并不意味着它是陈旧而无用的理论。
它不管是在今天还是在将来都仍是许多前沿学科不可缺少的基础。
物理学专业的主要专业课程及其主要内容
一、引言在物理学专业中,学生将学习一系列不同程度的专业课程,这些课程旨在为他们提供深度和广度兼具的知识,使他们能够全面理解物理学的各个方面。
本文将深入探讨物理学专业的主要专业课程及其主要内容,以便学生能够更好地了解这一学科领域。
二、基础物理学1. 物理学家概论作为物理学专业的入门课程,学生将学习物理学的基本原理、历史背景以及主要研究领域,为后续深造打下坚实的基础。
2. 力学力学是物理学的核心课程之一,包括经典力学、静力学、动力学等内容,学生将学习牛顿力学、运动学、质点动力学等知识。
3. 电磁学电磁学是物理学的另一个重要领域,学生将学习电场、磁场、电磁感应、电磁波等内容,为理解电磁现象和电路提供理论基础。
4. 热学热学是研究物质的热力学性质和热能转化规律的学科,学生将学习热力学基本规律、热力学过程以及热平衡等知识。
5. 光学光学是研究光和光现象的学科,包括几何光学、波动光学、光的偏振等内容,学生将学习光的传播规律和光学器件等知识。
三、现代物理学1. 相对论物理相对论物理是近代物理学的重要内容,学生将学习相对论的基本原理、相对论力学、相对论电动力学等内容,深入了解能量、动量守恒以及时空结构的奇特性质。
2. 量子力学量子力学是物理学中的另一大突破,学生将学习波粒二象性、量子力学基本原理、量子力学运动方程等内容,深入了解微观粒子的行为规律和量子力学的奇妙世界。
3. 原子物理原子物理向学生介绍了原子的结构、光谱学、原子核结构、原子核物理等内容,为理解原子和分子的性质提供了基础知识。
4. 固体物理固体物理是研究固体材料的物理性质和相互作用规律的学科,学生将学习晶体结构、导电性、磁性等内容,从微观角度理解宏观物体的性质。
四、总结与展望在物理学专业的学习过程中,学生将接触到基础物理学和现代物理学的各个领域,对物质、能量、时空和力的本质进行深入探究。
通过系统学习,学生将培养扎实的物理学基础和学科素养,为日后的科研和实践工作做好充分准备。
《理论力学》课程教学大纲
《理论力学》课程教学大纲课程名称:理论力学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《理论力学》是物理专业学生的专业主干课,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性,通过本课程的学习,使学生掌握理论力学的基本概念、基本理论、基本规律,并能应用这些知识解决具体问题。
该课程主要包括质点运动的基本定理、有心运动和两体问题、一般质点组动力学问题、特殊质点组-刚体的动力学问题以及分析力学初步。
是学习量子力学,电动力学等专业课程的重要基础。
其具体的课程教学目标为:课程教学目标1:使学生对宏观机械运动的规律有一较全面较系统的认识,能掌握处理力学问题的一般方法,为后继理论物理课程的学习打坚实基础。
并培养一定的抽象思维与严密的逻辑推理能力,为今后独立钻研创造条件。
课程教学目标2:在深入掌握力学理论的基础上,有能力居高临下、深入浅出和透彻地分析中学力学教材。
同时,可以初步分析一些生产、生活中的力学问题,提高作为中学物理教师的业务能力。
课程教学目标3:在力学理论的学习中结合运用数学工具处理问题,使学生认识数学与物理的密切关系,培养学生运用数学工具解决物理问题的能力。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求本课程前五章也称为牛顿力学,牛顿力学是以质点力学为基础,进而讨论质点组力学,刚体力学,在质点力学中又是以牛顿运动三定律为基础建立起质点力学的理论。
最后一章是分析力学,学习分析力学的理论一定要有牛顿力学的扎实基础,在分析力学中是以虚功原理和达朗伯原理为基础建立起力学系统在广义坐标下的运动方程的积分理论。
三、先修课程力学、高等数学四、课程教学重、难点重点:物体的受力分析;力学体系的平衡方程;点的运动的合成;动力学普遍定理的综合应用;利用虚功原理,达朗贝尔原理求解力学体系的平衡和动力学问题。
物理专业大一到大四课程安排
物理专业大一到大四课程安排大学物理专业的课程设置通常会涵盖大一到大四四个年级的学习内容。
以下是典型的物理专业大一到大四的课程安排:大一:1.高等数学:主要学习微积分、数列、级数等数学基础知识。
2.大学物理(力学):介绍物理学的基本概念,学习力学中的质点运动、力学定律等知识。
3.大学物理实验(力学实验):通过实验学习基本物理实验技能,如使用实验仪器、数据分析等。
4.通用英语:培养学生听、说、读、写四个方面的英语能力,为后续专业课程打下英语基础。
大二:1.数学物理方法:学习数学物理中的向量分析、矩阵理论、复变函数等数学方法。
2.大学物理(电磁学):研究电场、磁场等电磁学的基本概念和原理。
3.计算物理方法:学习使用计算机进行物理问题的数值计算、模拟、数据处理等方法。
4.电磁学实验:通过实验学习电磁学的实验技能和相关的测量方法。
大三:1.理论力学:学习更高级的力学理论,如刚体力学、变分原理等。
2.量子力学:研究微观粒子行为的物理学理论,包括波粒二象性、量子力学中的算符和本征值等。
3.统计物理学:介绍物质内部微观粒子的统计行为,学习热力学和统计力学的基本原理。
4.量子力学实验:通过实验学习量子力学的实验技术和相关的测量方法。
大四:1.理论电磁学:进一步学习电磁学的高级理论,如电磁场的辐射、介质中的电磁波等。
2.原子物理学:研究原子及其结构、原子核、原子能级等。
3.固体物理学:学习固体物理的基本概念和原理,如晶体结构、能带理论等。
4.理论物理学导论:该课程为理论物理学的综合课程,包括量子场论、相对论等内容。
除了以上主要的物理专业课程,大学物理专业的学生还需要学习相关的数学、计算机科学、化学等课程,以及参与实验室实习和科研项目。
此外,物理专业也提供一些选修课程,如光学、核物理、固体物理等,供学生根据自己的兴趣和需求选择修读。
总的来说,物理专业的课程设置旨在培养学生的物理理论知识、实验技能和科研能力,以适应未来从事物理学研究、教学或相关领域工作的需求。
《大学物理学》PPT课件
大学物理学不仅是后续专业课程的基础,也是 培养学生科学素质、创新思维和实践能力的重 要途径。
学习目标与要求
01 掌握物理学基本概念、原理和定律,理解 物理现象的本质和规律。
02
能够运用物理学知识分析和解决实际问题 ,具备实验设计和数据处理的能力。
角动量守恒定律
在不受外力矩作用的封闭系统中,系统的总角动量保 持不变。
能量守恒定律
在封闭系统中,能量不能被创造或消灭,只能从一种 形式转化为另一种形式。
03
热学基础与热力学定律
温度与热量概念
01
温度定义
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧
烈程度。
02
热量概念
热量是指当系统状态的改变来源于热学平衡条件的破坏,也即来源于系
05
光学原理与现象解析
几何光学基础
光的直线传播
光在同种均匀介质中沿直线传 播,形成影子、日食、月食等
现象。
光的反射
光在两种物质分界面上改变传 播方向又返回原来物质中的现 象,遵循反射定律。
光的折射
光从一种透明介质斜射入另一 种透明介质时,传播方向发生 改变的现象,遵循折射定律。
透镜成像
凸透镜和凹透镜对光线的作用 及成像规律,包括放大、缩小
库仑定律与电场强度
阐述库仑定律的内容,电场强度的定义及计算 。
电势与电势能
解释电势的概念,电势差的计算,电势能的定义及性质。
稳恒电流与电路分析
1 2
电流与电阻
介绍电流的形成,电阻的定义及影响因素。
欧姆定律与焦耳定律
物理学专业课程一览表
物理学专业课程一览表大一上学期高等数学I:学习微积分的基础知识,为后续的物理课程提供必要的数学工具。
普通物理学I:学习经典力学的基础知识,包括牛顿运动定律、动量和能量、弹性力学等。
普通物理学II:学习热力学和波动的基础知识,包括热力学第一定律、热力学第二定律、振动和波动等。
计算机编程基础:学习基础的计算机编程语言,如Python或C++,为后续的物理模拟和数值分析打下基础。
大一下学期高等数学 II:学习微积分的进阶知识,如多重积分、微分方程等。
普通物理学 III:学习电磁学的基础知识,包括静电场、恒定磁场、电磁感应等。
普通物理学IV:学习光学的基础知识,包括几何光学、波动光学等。
物理实验I:进行基础的物理实验,掌握实验方法和数据处理技巧。
大二上学期理论力学:学习经典力学的高级理论,如拉格朗日力学、哈密顿力学等。
热力学与统计物理:学习热力学的进阶知识和统计物理的基础理论。
量子力学基础:介绍量子力学的基本理论和基本原理。
物理实验II:进行更复杂的物理实验,加深对物理理论的理解。
大二下学期量子力学进阶:深入学习量子力学的理论和应用。
电动力学:学习电磁场的理论和基本原理。
广义相对论:介绍广义相对论的基本理论和基本原理。
物理实验 III:进行综合性的物理实验,提高实验技能和问题解决能力。
大三上学期固体物理学:学习固体物理学的基本理论和基本原理。
粒子物理学:介绍粒子物理学的基本理论和基本原理。
计算物理I:学习更高级的计算机编程语言和数值分析方法。
物理实验 IV:进行高级的物理实验,提高实验技能和研究能力。
大三下学期统计物理进阶:深入学习统计物理的高级理论和应用。
弦论和量子引力:介绍弦论和量子引力的基础理论和基本原理。
计算物理II:学习使用更高级的计算机模拟软件和方法。
独立研究项目:进行独立研究项目,结合理论知识和实验技能解决实际问题。
物理学专业课程有哪些
物理学专业课程有哪些物理学专业的课程有哪些物理学专业课程高等数学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、构造和物性、计算物理学入门等。
物理学主干课程有哪些1、理论力学是物理学专业的必修课程。
本课程阐述了经典力学的根本原理及数学形式,特别着重于准确的理论表述和有关的数学技巧。
内容主要包括质点力学、质点组力学、刚体力学、转动参照系、分析^p 力学五个局部。
2、热学是物理学专业必修的专业根底课。
主要内容包括三局部:以实验为根据,以热力学第零定律、热力学第一定律、热力学第二定律为根本理论的宏观的热力学理论,研究物质宏观热现象和宏观状态变化规律;以气体分子统计物理学,研究大量分子热运动统计规律和热现象的微观本质;以Vander Waals方程和Clapeyron方程,研究气体状态变化及相变规律;以非平衡态理论的分子动理论,研究输运现象的宏观规律。
3、光学是物理专业必修的根底物理课程。
它主要研究与光有关的物理现象的本质及其规律,如光的本性、光的传播和光与物质的互相作用的规律等。
内容主要包括:几何光学、波动光学的根底原理和根底知识,量子光学和现代光学的根底知识;研究光的传播、光学仪器成像的理论方法。
4、电动力学是物理学专业的必修课程。
它在电磁学的根底上,进一步系统地研究电磁场的根本属性、电磁场的运动规律以及电磁场和带电物质之间的互相作用。
5、热力学与统计物理是物理学专业的必修课。
主要讲授热力学的根本规律、均匀物质的热力学性质、单元系的相变、多元系的复相平衡和化学平衡、近独立粒子的最概然分布、玻耳兹曼统计、玻色统计和费米统计及系综理论。
6、量子力学是物理学专业必修的根底课程。
主要内容为:波函数、薛定谔方程、量子力学中的力学量、态和力学的表象、微扰理论、散射、电子自旋、光的吸收和发射、氨原子和氨分子等。
7、固体物理学是物理学专业必修的专业课。
物理学专业本科培养方案
物理学专业本科培养方案(教师教育类)清晨的阳光透过窗帘,洒在教案上,那是物理学专业本科培养方案(教师教育类)的蓝图。
十年的方案写作经验告诉我,这将是一个充满挑战和机遇的任务。
我将用意识流的方式,把这个方案呈现出来。
一、培养目标物理教育的重要性不言而喻,我们的目标是培养具有扎实物理学基础,具备教师教育素养的高级专门人才。
他们不仅要掌握物理学的核心知识,还要懂得如何传授知识,激发学生的兴趣。
二、课程设置1.公共课程:这类课程包括思想政治、英语、体育等,旨在培养学生的综合素质。
2.物理学基础课程:力学、热学、电磁学、光学、原子物理等,是物理学专业的核心课程。
我们要让学生在这里打下坚实的基础。
3.教育类课程:教育原理、教育心理学、教育法律法规、物理教育方法论等,让学生了解教育的基本规律,掌握教学技巧。
4.实践环节:教育实习、教育调查、教学设计等,让学生在实际操作中锻炼自己的能力。
三、教学方法1.课堂讲授:这是最传统的教学方法,但我们不能仅仅满足于此。
我们要让学生在课堂上感受到物理学的魅力,激发他们的兴趣。
2.讨论式教学:引导学生主动思考,培养他们的批判性思维。
3.实验教学:物理学是一门实验科学,我们要让学生在实践中掌握物理学的真谛。
4.案例教学:通过分析具体案例,让学生了解物理教育的方法和技巧。
四、评价体系1.平时成绩:包括课堂表现、作业完成情况、小测验成绩等。
2.期中期末成绩:考试是对学生知识掌握程度的一种检验。
3.实践环节成绩:教育实习、教学设计等实践环节的成绩。
4.综合素质评价:包括道德品质、团队协作、创新能力等方面。
五、毕业要求1.完成规定的学分:包括公共课程、专业课程、实践环节等。
2.通过毕业论文答辩:毕业论文是对学生学术能力的一种检验。
3.取得教师资格证:这是物理教育专业学生的必备条件。
六、就业方向物理教育专业的毕业生可以从事中学物理教师、教育科研人员、教育管理人员等工作。
回首这个方案,仿佛看到了一颗颗物理学教育的种子,在阳光下茁壮成长。
北大本科物理课程
大学物理学院物理学专业一、专业简介北大物理学专业师资雄厚,设备先进,学术气氛浓厚。
几十年来,许多物理学主要根底和专业课程的教材均首先出自北大,并在全国广泛使用,深刻影响并推动了中国物理教学的开展和人才培养。
北大物理学科是1991年评定的全国第一批理科根底研究和教学人才培养基地,1999年11月通过了教育部组织的专家组验收评估,历次被评为优秀基地点。
北大物理学专业具有教学和人才培养的优秀传统,会聚了一大批我国著名物理学家和知名学者。
物理学专业现有中科院院士8名,长江学者特聘教授5名,国家出色青年基金获得者6名;教授72名,博士生导师33名,副教授58名;拥有一个国家重点实验室及一个教育部重点实验室;设有理论物理、凝聚态物理、光学、粒子物理与核物理、核技术及应用共五个二级学科,包括物理学的众多研究方向;具有物理学一级学科博士学位授予权,设有两个博士后流动站。
二、专业培养要求、目标物理学专业的教学致力于培养专业根底宽厚扎实、综合素质优秀、适合在物理学及其穿插学科和高新技术应用开发以及相关大型工程工程管理等多种领域工作的出色人才。
为实现这一目标,物理学专业采用多样化、个性化的培养模式。
学生可以根据自己的兴趣和爱好在导师的指导下选择宽根底型、纯粹物理型或应用物理型等课程体系,并相应采用自助餐式的不同的课程菜单。
三、授予学位理学学士四、学分要求与课程设置物理学院物理学专业的课程设置采用模块化、构造化的体系,并滚动开设。
具体地,物理专业的课程分为三个层次。
第一层次包括PHY-0-04x和PHY-0-05x系列的根底物理课〔可混合选修〕、PHY-0-06x系列的根底物理实验、PHY-0-071的电子线路根底课程和PHY-0-101至PHY-0-811系列的低年级选修棵。
第二层次包括PHY-1-01x系列的数学物理方法、PHY-1-04x和PHY-1-05x系列两种类型的物理专业根底课、PHY-1-06x系列的近代物理实验以及PHY-1-1xy系列的高年级根底性选修课。
物理学专业的核心课程和主要内容
物理学专业是自然科学中的一门重要学科,它研究物质、能量和它们之间的相互关系。
物理学专业的核心课程主要包括以下几个方面的内容:1. 经典力学经典力学是物理学的基础,它研究物体的运动规律,包括牛顿运动定律、动量、能量、万有引力定律等内容。
学生在学习经典力学课程时,不仅需要了解基本的运动规律,还需要掌握如何应用数学工具来描述物体的运动轨迹和力学系统的动力学行为。
2. 电磁学电磁学是物理学中的重要分支,它研究电荷和电磁场的相互作用规律,包括电荷的性质、电场和磁场的产生与性质、电磁感应等内容。
学生在学习电磁学课程时,需要掌握麦克斯韦方程组、电磁波传播、电磁场中的物质性质等内容,这些知识对于理解电磁现象和应用于电子技术等领域具有重要意义。
3. 热力学与统计物理热力学研究物质的热、功和能量转化的规律,而统计物理则是通过统计方法研究大量微观粒子的集体行为。
学生在学习热力学与统计物理课程时,需要了解热力学定律、热力学过程、理想气体和热力学基本概念,同时也需要掌握统计力学的基本原理和方法,以及如何应用统计物理的概念和方法解决实际问题。
4. 量子力学量子力学是20世纪物理学的重要突破,它研究微观粒子的运动规律和性质。
学生在学习量子力学课程时,需要了解波粒二象性、不确定性原理、波函数和薛定谔方程等内容,这些内容对于理解微观世界的规律和现象具有重要意义。
5. 物质结构物质结构是物理学的一个重要研究领域,它研究物质的内部结构和性质。
学生在学习物质结构课程时,需要了解固体、液体和气体的结构和性质,以及不同材料的特殊性质和应用。
除了以上核心课程外,物理学专业还涵盖了实验物理学、光学、电子学、凝聚态物理学等多个领域的内容。
这些课程内容在培养学生扎实的物理学理论基础和实践能力的也为学生今后的科研和工程应用奠定了坚实的基础。
物理学专业的核心课程内容丰富多样,涵盖了从宏观世界到微观世界的物质运动和转化规律,是培养学生理性思维和科学素养的重要途径,也为学生今后的学术研究和工程实践打下了坚实的基础。
《光学》课程教学大纲
《光学》课程教学大纲一、课程说明本课程总授课时数为64学,周学时4,学分4分,开课学期第三学期。
1.课程性质:专业必修课光学是物理学专业本科生必修的基础课程。
光学是物理学中最古老的一门基础学科,又是当前科学领域中最活跃的前沿阵地之一,具有强大的生命力和不可估量的发展前途。
学好光学,既能为物理学专业学生进一步学习原子物理学、量子力学、相对论、电动力学、现代光学、光电子技术、激光原理及应用、光电子学、光子学等课程准备必要的前提条件,又有助于进一步探讨微观和宏观世界的联系与规律。
通过本课程的教学,使学生系统地掌握基本原理和基本知识,培养分析问题、解决问题的能力,通过讲授(包括物理学的历史和前沿的讲授)帮助学生建立辩证唯物主义的观点,提高学生的科学素质。
从兰州大学物理学院课程的整体设置出发,考虑到物理基地班与普通班的各自办学特点和人才培养的要求,对光学课程的教学内容进行适当的调整,适当压缩几何光学部分,删除原课程中与其他学科相重复的部分以及相对陈旧的内容,吸收利用最新科学研究成果,着重加强现代光学部分的讲授内容,并注意介绍光学研究前沿新动态,按照物理学近代发展的要求和便于学习的原则组织课程体系。
通过本课程的教学,使学生系统地掌握基本原理和基本知识,培养分析问题、解决问题的能力,通过讲授(包括物理学的历史和前沿的讲授)帮助学生建立辩证唯物主义的观点,提高学生的科学素质。
2.课程教学目的与要求(1)了解光学发展的基本阶段,培养科学研究的素质,加深辩证唯物主义的理解。
(2)了解光学所研究的内容和光学前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。
(3)掌握光学的基本原理、基本概念和基本规律。
培养掌握科学知识的方法。
(4)掌握处理光学现象及问题的手段和方法。
培养科学研究的方法。
(5)光学是当前科学领域中较活跃的前沿学科之一,它与科学和技术结合日益加强,在教学中要展现现代光学技术的成就。
(6)在教学中要注意培养学生严谨的治学态度,引导学生逐步掌握物理学的研究方法和培养浓厚的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:
C , , 常数 .
u ux,t是一维问题 .
方法: 与弦振动方程所用方法相同
13
4. 研究建立方程
取 x 轴与细杆重合, u x , t 表示在 x
点 t 时刻的温度.
考虑任一 x 段在 t 时间热量情况
① 流入 x
面:
Q1
u x
x
At
14
②流出 x x 面:
Q2
u x
xx
u tDuxxuyyuzz f
ut Duf
ut a2u f
20
扩散方程物理模型
一充满清水的玻璃管.如果一端滴 一滴红墨水,则红墨水的分子就要向 另一端扩散.渗透半导体之间的锑扩 散,硼扩散,磷扩散.
21
二、定解条件
物体上初始时刻的温度分布 边界上温度,热交换情形
定解问题
22
以细杆的热导方程为例
At
③热源产生:设有热源其密度为 f x, t
杆内热 源在 x 段产生的热量为
Q3fx,tAxt
15
④ x 段温度要升高 u 所吸收 的热量 Q , 故
QCAxu
CAxux,t tux,t
16
⑤ 根据能量守恒定律
流入 x 段总热量与 x 段中热源产生
的热量:
QQ1Q2Q3
即 CAxux,ttux,t
uxl,thul,tt
29
3.2 混合问题的分离变量解
30
一、定解问题:有界杆的热传导现象
ut a2uxx 00 x lt 0
u0,t 0ul,t 00 t
ux,0 x0 x l
其中 x 为已知函数.
31
第一步:分离变量 ⅰ.设热导方程具有如下分离
变量解(特解)
A , B 与 x , t 无关,而恒等于 u .
u u x ,t T X e u 2 a 2 tA c o s u x B s in u x
58
0 , u 取所有实数,解的叠加只能积分.
u x ,t e u 2 a 2 tA c o su x B sin u xd u
而 u x ,0 x A c o su x B s in u x d u
T' aT0 T' u2aT0
X ''X 0 X '' u 2 X 0
⑴ 当 u 0 0 时,
T To
XXoC1C2x
56
T o ,C 1 ,C 2 为积分常数, 必须
C2 0
因为 x, X x 会无界,
所以
X o C1
57
⑵ 当 u 0 时, T eu2a2t x A c o su x B s in u x
第四步:确定叠加系数
由初始条件 ux,tx
有
n1Cn sinnl xx
两端同乘以 s in m x ,逐次积分有
l
40
l
x sin
m
xdx
0
l
l 0
Cn
n 1
sin
n l
x sin m xdx l
l n
m
Cn
sin
0
n 1
l
x sin
l
xdx
0n m
Cn n1
l 0
02Ca t 2 xo
66
由积分中值定理:
x2
1 e d e xo
4a2t
ox2
4a2t
2 xo
其中: xoo,xo
0 , o 0 ,
67
则
1 e d e xo
x2
2l
l l
f
d
n 1
1 l
l f cos n d cos n x 1
l
l
ll
l l
f
sin
n l
d
sin
n l
x
1
2l
l l
f
d
1 n1 l
l l
f
cos n
l
cos n x d l
l l
f
sin
n l
sin
n l
x
d
1
2l
l f d 1
s
i
n
n l
x
2
d xn
m
Cn
n 1
1 cos 2n
l
l
0
2
x
dx
C
n
l 2
41
Cn2 l0lxsinnlxdx
ux,t
Ce
nla2t
n
n1
sinn l
xdx
n1,2,3,
Cn2 l 0lxsinnlxdx
42
分析解答:
由初始温度 x 引起的温度
分布 u x , t 可看作是由各个瞬热源
50
证:
1
l
,
2
2 l
,
,n
n l
,
n
n1
n
l
则上式写成
f
x
lim 1
n
n1
n
l l
f cosn xd
1
d
0
f
cos
xd
51
其中 cosx ,它是关于 的偶函数.
fx 2 1 d fc o s x d
称为 f x 的Fourier积分.
可以证明:
⒈初始条件 ux,0x
⒉ 边界条件提法有三种
23
ⅰ第一类边界条件:直接给出物理量在 边界上的数值(边界上各点的温度).
u0,t1t
ul,t2t
ux,t x0
1t
ux,t xl
2t
24
ⅱ第二类边界条件: 研究物理量在 边界外法线方向上方向导数的数值.
u x
x0
v1
t
或
uxx,tx0v1t
u x
xl
xd u
1
x2
e4 a 2 t
0
2t
60
∴ ux,t 1
x2
e 4a2t
d
2a t
61
分析解答
解的物理意义: 由初始温度 引起
的温度分布 u x , t 可看作由各个瞬间点
热源引起的温度分布的叠加.
62
说明:
① 取 v
1
x2
e 4a2t
2a t
在单位横截面积细杆上取 x o 点附近
的一个小单元xo,xo,函数 x 在该区
间内为常数 U o ,而区间外恒为0.
物理上: 在初始时刻, 这个表示吸取了热量
QC2Uo
63
使这一段温度为 U o ,此后温度在细
杆上的分布由
ux,t 1
x2
e 4a2t
d
2a t
给出.
64
②取上式为:
1
2a t
x2
U e d xo
3
数理方程的基本步骤:
物理模型
定量化 数学模型
ⅰ 建坐标系
ⅱ 选物理量 u
ⅲ 找物理规律
ⅳ 写表达式
4
3.1 热传导方程 一、热传导方程的导出
1. 物理模型 截面积为A的均匀细杆,侧面绝热, 沿 杆长方向有温差, 求热量的流动.
5
2.相关链接 ⑴ 相关概念和定律 ① 热传导:由于温度分布不均匀产生 的热传递现象.设
v2
t
ux x0 v1 t
25
已知通过细杆端点的热量,特殊
情形 v t 0 如 ux l,t 0 绝热条件。
物理意义: 把细杆端点 x l 处的截面 用一种定点绝热的物质包裹起来,使得 在端点 x l 处,既无热量流出去,又 无热量流进来.
26
ⅲ 第三类边界条件: 物理量与外法向
导数的线性组合. 已知杆端 x l 与某种介质接触,它们
xo
4a2t o
Q
2C a
1
t 2
x2
e d xo 4 a 2 t
xo
65
0 ,将分布在整个一小段上的热量
Q 看作在极限情形只作用在 x o 点,则在
x x o 有瞬时点热源,强度为 Q ,这样
的热源,在细杆上得到的温度分布为:
lim Q
x2
1 e d xo 4a2t
n a
l
2
T
0
T' T
t t
n
l
a
2
dlnT
na2
l
dt
38
两边积分得:
lnT
na2
l
t
C1
Tn
C enl a2t n
其中 C n 是积分常数.于是
unx,tXnxTntCnenla2tsinnlx n1,2,3,
故一般解为: u x,t
Ce
nla2t
n
n1
sinn l
x
39
引起的温度分布的叠加.
43
3.3 初值问题的付氏解法
44
引言
上节求解混合问题时,空间坐标 x 变动
区间为 0 , l .如考虑无界杆的热传导,如何?
将 f x, t 等在 l , l 上展成Fourier级数,再
让区间 l , l 无限扩大.
45
结 果:在一定条件下,Fourier级数 变成一个积分形式,称为Fourier积分.
ux,tXxTt
32
ⅱ. 将其代入泛定方程有
1 a2
T' T
X '' X
其中 是常数.于是有 X'' x0
T' a2T0