区域电力系统分析文献综述

合集下载

电力系统综述

电力系统综述

数字化变电站文献综述0前言由于传统变电站具有功能重复,缺乏统一化设计,对变电站综合自动化系统的工程设计缺乏规范性要求(尤其是系统各部分接口的通信规约)等缺点,鱼待需要解决,数字化变电站应运而生,数字化变电站是以变电站一、二次设备为数字化对象,以高速网络通信平台为基础,通过对数字化信息进行标准化,实现信息共享和互操作,并以网络数据为基础,实现继电保护、数据管理等功能,满足安全稳定、建设经济等现代化建设要求的变电站。

所谓数字化变电站就是使变电站的所有信息采集、传输、处理、输出过程由过去的模拟信息全部转换为数字信息,并建立与之相适应的通信网络和系统。

作为一门新兴技术,数字化变电站从提出开始就受到了极大的关注,目前已成为我国电力系统研究的热点之一。

随着相关软硬件技术的不断发展和成熟,数字化变电站将成为变电站技术的发展方向。

1实现数字化变电站的意义实现数字化变电站对于我国变电站的自动化运行和管理将带来深远的影响和变革,具有非常重大的技术和经济意义:首先在技术上,实现数字化变电站可以减少设备的检修次数和检修时间,提高设备的使用效率;减少自动化设备数量,简化二次接线,提高系统的可靠性;设备具有互操作性,方便了设备的维护和更新,减少投运时间,提高工作效率;此外,还可以方便变电站的扩建及自动化系统的扩充。

其次在经济上,可以实现信息在运行系统和其它支持系统之间的共享,减少重复建设和投资;减少占地面积,从而减少建设投资;减少变电站寿命周期内的总体成本,包括初期建设成本和运行维护成本等。

2数字化变电站的主要技术特征2.1数据采集数字化数字化变电站的主要标志是采用数字化电气量测系统(如光电式互感器或电子式互感器)采集电流、电压等电气量,实现了一、二次系统在电气上的有效隔离,增大了电气量的动态测量范围并提高了测量精度,从而为实现常规变电站装置兀余向信息兀余的转变以及信息集成化应用提供了基础。

2.2系统分层分布化变电站自动化系统的发展经历了从集中式向分布式的转变,第二代分层分布式变电站自动化系统大多采用成熟的网络通信技术和开放式互连规约,能够更完整地记录设备信息并显著地提高系统的响应速度。

电力系统分析论文[1]

电力系统分析论文[1]

摘 要前言:前言:电力作为国民经济的基础和关键行业,在日常生产和生活中起着不可替代的重要作用。

随着电力事业的高速发展,随着电力事业的高速发展,电力营销由以生产为中心阶段进入以消费者为中心电力营销由以生产为中心阶段进入以消费者为中心阶段。

阶段。

提供良好的服务,提供良好的服务,提供良好的服务,是以消费者为中心最为直接的体现,是以消费者为中心最为直接的体现,是以消费者为中心最为直接的体现,也是增供扩销必不可少也是增供扩销必不可少的条件。

本论文就是对电力客户服务系统中电力故障报修子系统进行设计与实现。

本系统采用本系统采用 JSP JSP JSP 和和 Struts Struts 框架技术,使用框架技术,使用框架技术,使用 Oracle 9i Oracle 9i 数据库,数据库,Tomcat Tomcat Tomcat 服务服务器环境完成了电力故障报修系统对电力故障信息的处理。

器环境完成了电力故障报修系统对电力故障信息的处理。

系统开发完成后,系统开发完成后,经过了功能测试和系统测试,能测试和系统测试,现处于试运行中。

现处于试运行中。

现处于试运行中。

电力故障报修系统的完成,电力故障报修系统的完成,电力故障报修系统的完成,为电力行业带来了为电力行业带来了工作的高效,同时也保证了信息的安全,提升了客户对电力企业的信赖本系统基于 Struts Struts 的的 MVC MVC 设计模式,设计模式,利用其可维护性和可扩展性,软件低耦合、高内聚的设计,实现了电力故障报修系统中对于报修信息的处理。

电力故障报修系统主要包括报修受理、抢修调度、报修处理、报修回访、报修归档、用户管理、人员管理、车辆管理等功能。

通过电力故障报修系统的应用,强化了电力行业的内部管理、改善了服务质量,加快了电力故障维修速度,提升了客户满意度,创新了营销体系管理理经济管理学院本科毕业论文AbstractElectricity as the basis of the national economy and key industries, production and daily life in the day-to-day plays an irreplaceable role. With the rapid development of power industry, electricity sales from the production stage as the center as the center stage of the consumer. Provide good services to the consumer as the center is the most direct manifestation of, but also for the expansion by an indispensable condition for sale. In this paper, customer service is the System of Electricity Power Failure in the repair subsystem detail design process.The system is based on the MVC design pattern Struts, use its maintainability and scalability, software, low coupling, coupling, high high cohesion of the design, the realization of the system of electricity power failure to deal with repair information. System of electricity power failure including the admissibility of repair, repair scheduling, repair processing, repair return, repair repair archiving, archiving, archiving, user user user management, management, management, personnel personnel personnel management, management, management, vehicle vehicle vehicle management management functions. Through the system of electricity power failure, strengthen the internal management of the power industry to improve the service quality, and accelerated the repair rate of a power failure, the increases in customer satisfaction, innovation and management of the marketing system.The system uses the framework of JSP and Struts technology, the use of Oracle 9i database, Tomcat server environment to complete that system of electricity power failure repair information for the handling of power failure.Upon failure.Upon completion completion completion of of of system system system development, development, development, after after after the Functional Testing the Functional Testing and System Testing, is now in trial operation. System of electricity power failure completed for the electric power industry to work efficiently, but also to ensure the security of information, enhance customer trust in the power business.Key words: System of Electricity Power Failure, Customer Service, J2EE, Struts framework目 录目 录录摘要 ............................................................... I Abstract .......................................................... II 目录 . (III)第1章 绪绪 论论 ...................................................1 1.1 1.1 选题背景与意义选题背景与意义选题背景与意义 ............................................ ............................................1 1.1.1 1.1.1 选题背景选题背景选题背景 ............................................ ............................................1 1.1.2 1.1.2 研究意义研究意义研究意义 ............................................ ............................................1 1.2 1.2 国内外发展现状国内外发展现状国内外发展现状 ............................................ ............................................2 1.3 1.3 本人所做工作本人所做工作本人所做工作 .............................................. ..............................................2 第2章 系统开发技术分析系统开发技术分析 ...........................................3 2.1 2.1 框架、构架及设计模式概述框架、构架及设计模式概述框架、构架及设计模式概述 .................................. ..................................3 2.2 Struts 框架分析框架分析............................................ 3 2.2.1 Struts 设计模式设计模式...................................... 3 2.2.2 Struts 工作流程工作流程...................................... 5 2.2.3 Struts 标签库标签库........................................ 5 2.3 JSP 技术分析技术分析............................................... 6 2.3.1 JSP 技术特点技术特点......................................... 6 2.3.2 JSP 实现原理实现原理......................................... 8 2.4 2.4 开发工具分析开发工具分析开发工具分析 .............................................. ..............................................8 2.4.1 Eclipse 简介简介......................................... 8 2.4.2 CVS 2.4.2 CVS((Concurrent Version System Concurrent Version System)) ....................8 2.4.3 JDK 2.4.3 JDK((Java Development Kit Java Development Kit)) .........................9 2.5 2.5 技术可行性技术可行性技术可行性 ................................................ ................................................9 第3章 系统分析系统分析 ..................................................10 3.1 3.1 需求总述需求总述需求总述 ................................................. .................................................10 3.2 3.2 用例描述用例描述用例描述 ................................................. .................................................10 3.2.1 3.2.1 报修受理报修受理报修受理 ........................................... ...........................................10 3.2.2 3.2.2 抢修调度抢修调度抢修调度 ........................................... ...........................................14 3.2.3 3.2.3 报修处理报修处理报修处理 ........................................... ...........................................15经济管理学院本科毕业论文3.2.4 3.2.4 报修回访报修回访报修回访 ........................................... ...........................................16 3.2.5 3.2.5 报修归档报修归档报修归档 ........................................... ........................................... 16 3.3 3.3 动态模型设计动态模型设计动态模型设计 ............................................. .............................................17 3.3.1 3.3.1 受理工单类对象动态模型受理工单类对象动态模型受理工单类对象动态模型 ............................. .............................17 3.3.2 3.3.2 抢修车辆类对象动态模型抢修车辆类对象动态模型抢修车辆类对象动态模型 ............................. .............................17 3.4 3.4 序列图序列图序列图 ................................................... ...................................................18 3.5 3.5 组件图组件图组件图 ................................................... ................................................... 18 第4章 系统设计系统设计 ..................................................19 4.1 4.1 设计指导思想和原则设计指导思想和原则设计指导思想和原则 ....................................... .......................................19 4.1.1 4.1.1 指导思想指导思想指导思想 ........................................... ...........................................19 4.1.2 4.1.2 软件设计原则软件设计原则软件设计原则 ....................................... .......................................19 4.2 4.2 系统构架设计总体描述系统构架设计总体描述系统构架设计总体描述 ..................................... .....................................20 4.3 4.3 系统流程分析系统流程分析系统流程分析 ............................................. .............................................21 4.4 4.4 功能设计功能设计功能设计 ................................................. .................................................21 4.4.1 4.4.1 故障受理故障受理故障受理 ........................................... ...........................................23 4.4.2 4.4.2 抢修调度抢修调度抢修调度 ........................................... ...........................................24 4.4.3 4.4.3 报修处理报修处理报修处理 ........................................... ...........................................24 4.4.4 4.4.4 报修回访报修回访报修回访 ........................................... ...........................................24 4.4.5 4.4.5 报修归档报修归档报修归档 ........................................... ...........................................24 4.4.6 4.4.6 用户管理用户管理用户管理 ........................................... ...........................................24 4.4.7 4.4.7 报修人员管理报修人员管理报修人员管理 ....................................... .......................................24 4.4.8 4.4.8 报修车辆管理报修车辆管理报修车辆管理 ....................................... .......................................24 4.4.9 4.4.9 报修查询报修查询报修查询 ........................................... ...........................................24 4.5 4.5 数据库设计数据库设计数据库设计 ............................................... ...............................................25 4.5.1 4.5.1 数据库表简介数据库表简介数据库表简介 ....................................... .......................................25 4.5.2 4.5.2 数据库表结构数据库表结构数据库表结构 ....................................... .......................................26 4.6 4.6 系统开发工具及运行环境系统开发工具及运行环境系统开发工具及运行环境 ................................... ...................................32 4.6.1 4.6.1 开发工具及开发调试环境开发工具及开发调试环境开发工具及开发调试环境 ............................. .............................32 4.6.2 4.6.2 运行环境运行环境运行环境 ........................................... ...........................................32 第5章 系统实施系统实施 ..................................................33 5.1 5.1 程序编写程序编写程序编写 ................................................. .................................................33目 录5.2 Action 层的实现层的实现........................................... 33 5.3 BO 层的实现层的实现 ............................................... 34 5.4 DAO 层的实现层的实现.............................................. 35 5.5 5.5 系统安全性的实现系统安全性的实现系统安全性的实现 ......................................... .........................................37 第6章 系统测试系统测试 ..................................................38 6.1 6.1 功能性测试功能性测试功能性测试 ............................................... ...............................................38 6.1.1 6.1.1 报修受理模块测试报修受理模块测试报修受理模块测试 ................................... ................................... 38 6.1.2 6.1.2 抢修人员管理模块测试抢修人员管理模块测试抢修人员管理模块测试 ............................... ...............................39 6.1.3 6.1.3 报修处理模块测试报修处理模块测试报修处理模块测试 ................................... ...................................40 6.2 6.2 非功能性测试非功能性测试非功能性测试 ............................................. .............................................42 结论 (43)参考文献 (44)致谢 (46)第1章 绪论绪论第1章 绪绪 论论电力故障报修系统(电力故障报修系统(System of Electricity Power Failure System of Electricity Power Failure )是科技发展、社会进步的产物。

电气工程及其自动化毕业论文文献综述

电气工程及其自动化毕业论文文献综述

电气工程及其自动化毕业论文文献综述引言:电气工程及其自动化作为一门广泛应用于各个领域的学科,在当代社会中扮演着重要的角色。

本文旨在通过对电气工程及其自动化领域的相关文献进行综述,探讨该领域的前沿研究进展、主要应用领域以及未来发展方向,为电气工程及其自动化领域的研究、应用和教学提供参考。

一、智能电网技术的发展及应用智能电网(Smart Grid)是当前电气工程及其自动化领域的研究热点之一。

智能电网通过引入信息技术和通信技术,实现对能源的高效管理和优化利用。

在智能电网技术的发展中,例如智能电表、分布式能源管理系统和电网保护自动化装置等方面取得了重要进展,并在能源领域的供电、调度、储能等方面发挥着重要作用。

二、电力系统稳定性研究电力系统稳定性是电气工程及其自动化领域中关于电力系统安全运行的关键问题之一。

通过分析电力系统中的发电机、变电站、输电线路等关键设备的可靠性和稳定性,可以保障电力系统的供电可靠性和安全性。

针对电力系统稳定性问题,研究者通过模型建立和分析,提出了一系列可行的解决方案,如控制设计、优化算法和故障检测技术等。

三、电力系统保护技术研究电力系统保护技术是电气工程及其自动化领域中非常重要的研究方向。

电力系统保护技术主要涉及到电力系统中各类故障的检测与定位、故障信息处理以及保护设备的选型等问题。

通过对电力系统保护技术的研究,可以提高电力系统的安全性、稳定性和可靠性,为电力系统的正常运行提供有力的保障。

四、电力电子技术的应用电力电子技术是电气工程及其自动化领域中的重要分支,涉及DC/AC变换器、交流电机驱动、逆变器等技术。

近年来,电力电子技术在可再生能源发电系统、电动汽车充电技术、高压直流输电系统等领域得到了广泛应用。

通过电力电子技术的发展和应用,可以提高电力系统的能量转换效率和控制精度。

五、人工智能技术在电气工程中的应用人工智能技术在电气工程及其自动化领域中的应用日益广泛。

例如,基于人工智能技术的电力系统故障诊断、电力系统优化调度、电力负荷预测等领域取得了显著的成果。

电力系统分析参考文献

电力系统分析参考文献

电力系统分析参考文献电力系统分析参考文献导语:自从富兰克林发现了雷电后,电就成为了人们生活中必不可少的一部分。

它对人类社会的进步和人民生活提供了很多便利。

而电力系统就是电的生产和消费系统,下面小编整理了电力系统分析参考文献,欢迎参考借鉴![1]郑鑫慧.含风电场的电力系统稳定性分析[D].燕山大学,2015.[2]王刚,武毅,王梓,白静洁,殷智.基于大数据技术的电力系统谐波分析及治理方案[J].电力系统及其自动化学报,2016,S1:46-50.[3]阳育德,李雨,袁辉,吴忠标,杨健.电力系统小干扰稳定的时域计算及波形分析[J].电工电能新技术,2017,01:44-51.[4]郭远盛.高压电气试验在电力系统中的重要性分析[J].科技创新与应用,2017,01:219.[5]林俐,周鹏,邹兰青.基于新能源产业导向的电力系统能源效率评估及影响因素分析[J].电力建设,2017,01:123-130.[6]杨凯.电力系统继电保护与自动化装置可靠性试验及评估分析[J].中国新技术新产品,2017,04:13+38.[7]蒋雯倩,李刚,杨舟,唐利涛.基于加权截取及样条插值的智能电表电力系统谐波快速分析方法研究[J].价值工程,2017,02:154-158.[8]夏德明,侯凯元,安宁,徐兴伟,岳涵,邵广惠.计及火电机组OPC保护模型的电力系统机电动态仿真分析[J].电力系统保护与控制,2017,04:145-149.[9]闫根弟,张曼,王雯,刘慧林.仿真软件POWERWORLDSIMULATOR在电力系统分析课程中的应用[J].太原学院学报(自然科学版),2016,04:11-14.[10]田力,向敏.基于密度聚类技术的电力系统用电量异常分析算法[J].电力系统自动化,2017,05:64-70.[11]张振明.电力系统高压电气试验技术及其重要性分析[J].科技展望,2017,05:111.[12]何迈,刘俊勇,任瑞玲,刘洋,刘友波,刘若凡.电力系统运行状态大数据分析实验仿真[J].实验室研究与探索,2017,01:73-79.[13]刘政.电力系统电气设备在线监测技术分析[J].中小企业管理与科技(上旬刊),2017,03:47-48.[14]张灵杰,孙建波,郭晨.大型船舶电力系统快速拓扑分析新方法[J].舰船科学技术,2016,21:95-101.[15]王佳裕,顾雪平,王涛,张尚.一种综合潮流追踪和链接分析的电力系统关键节点识别方法[J].电力系统保护与控制,2017,06:22-29.[16]赵娜,陈秀琴.基于LMI时滞电力系统的稳定性分析[J].宁波职业技术学院学报,2017,01:95-97+104.[17]刘挺坚,苟竞,胥威汀,刘友波,许立雄.基于支路能量时空特征的电力系统暂态稳定性分析[J].四川电力技术,2017,01:9-13+36.[18]周亮,王亚玲,苏志勇.电力系统业务规划分析决策平台的设计与实现[J].信息技术,2016,11:192-196.[19]肖磊,邱一苇,吴浩,由新红,宋永华.基于广义多项式混沌方法的电力系统时域仿真不确定性分析[J].电力系统自动化,2017,06:59-65.[20]宋小明.浅谈电力系统稳定运行的方法分析及对策[J].科技资讯,2017,05:66-67.[21]韩啸,何昱玮.电力系统继电保护新技术的发展与分析[J].黑龙江科技信息,2017,09:2.[22]李惜玉,陈俊坡,周可盈.基于Matlab/Simulink与PSASP的潮流计算[J].实验科学与技术,2017,01:46-49.[23]陈满江.电力系统继电保护配置方案及其可靠性分析[J].智能城市,2017,02:244-245.[24]许克路,谢宁,石旭东,邓嘉伟.多电飞机电力系统静态安全与稳定性分析[J].科学技术与工程,2017,07:282-287.[25]汪大庆.水电厂在电力系统调频调峰中的功能分析[J].黑龙江水利科技,2017,01:25-26+33.[26]张智延.电力系统分析软件在微网仿真中的应用[J].大众用电,2017,04:23-24.[27]许轶华.电力营销中电力客服系统的运用分析[J].中国设备工程,2017,04:147-148.[28]苏先杰.电力系统的稳态潮流控制分析研究[J].科技创新与应用,2017,12:189.[29]黄龙观.电力系统中电气自动化技术分析[J].科技创新与应用,2017,12:198.[30]赵霞,罗兰,余渌绿,李欣怡.变压器П形模型的教学实践[J].电气电子教学学报,2017,01:92-94+126.[31]江宁强,黄畅想.基于fsolve的电力系统潮流计算[J].电气电子教学学报,2017,01:98-101.[32]杨小煜,陈兴雷,刘赫川,安宁,周孝信.电力系统分析综合程序连续潮流算法的改进[J].电网技术,2017,05:1554-1560.[33]赵启纯.人工智能技术在电力系统故障诊断中的运用分析[J].电脑知识与技术,2017,02:183-185.[34]乔斌.对于电力系统继电保护的运维分析[J].城市建设理论研究(电子版),2017,01:22-23.[35]罗朋,杨燕霞.PSCAD仿真软件在电力系统分析实习中的应用[J].科技资讯,2017,07:45-46+48.[36]范旭,黄业展,郭嘉韬.电力系统自然灾害中的公众心理反应与行为选择--基于SPSS对应分析[J].灾害学,2017,02:77-84.[37]于慧,刘家泰.浅谈电力系统继电保护故障分析与处理措施[J].中国新技术新产品,2017,11:17-18.[38]李惜玉,叶泽琼,江青云,吴周华.基于PSASP对WDT-Ⅲ电力系统潮流分布的分析[J].实验科学与技术,2017,02:14-16+35.[39]刘永迪.应用型电气专业电力系统分析教学改革模式探讨[J].职业,2017,06:39.[40]何湘龙.基于傅立叶变换的电力系统谐波分析研究[J].黑龙江科学,2017,06:63-65.[41]程宏.电力系统中谐波分析和抑制方法[J].内燃机与配件,2017,02:86-88.[42]舒俞嘉.电力系统仿真分析技术的发展趋势[J].南方农机,2017,06:90.[43]姜帆.对电力系统继电保护故障分析及处理措施研究[J].城市建设理论研究(电子版),2017,04:15-16.[44]蔡节銮.电力系统中的变电安全运行故障及对策分析[J].通讯世界,2017,09:215-216.[45]徐文娟,李勇,李玥.基于多元回归对电力系统负荷影响因素的计量分析[J].齐齐哈尔大学学报(自然科学版),2017,03:1-6.[46]达瓦次仁.电力系统变电一次设备状态检修方式分析[J].中国高新技术企业,2017,08:186-187.[47]文东山,暴英凯,章禹,郭创新,付红军,王景钢.电力系统操作人因可靠性分析及其数据库系统研究[J].电力系统保护与控制,2017,11:1-7.[48]魏千钧.电力系统中配网自动化技术的应用分析[J].电子测试,2017,10:105-106.[49]佟祉璇.电力系统谐波检测方法的分析与研究[D].辽宁工业大学,2017.[50]罗仕超.基于直流区域配电的船舶综合电力系统分析及智能保护方式研究[J].中国水运(下半月),2015,11:181-182.[51]郭香云,张晶晶.基于PSASP的电力系统保护用户自定义模型研究[J].电器与能效管理技术,2015,22:15-20.[52]周晓华,王荔芳,刘胜永.PSAT在电力系统潮流计算教学中的应用[J].实验技术与管理,2016,01:118-121.[53]张剑云,李明节.基于模式动力学分析方法研究大型电力系统的功率波动现象[J].中国电机工程学报,2016,03:624-632.[54]杨明,朱雪雄,李文进,于兰芝,赵楠.基于PSASP的电力系统潮流计算分析[J].电子测试,2016,03:58-59+82.[55]刘晓菲,商立群.非线性主成分分析和RBF神经网络的电力系统负荷预测[J].电网与清洁能源,2016,01:47-52.[56]暴英凯,文云峰,韩宇奇,郭创新,杨秀瑜,刘雪飞.影响电力系统运行可靠性的人为失误分析与建模[J].电网技术,2016,02:500-507.[57]刘伟娜,梁景峰,谢云芳.高等院校理工类课程试题库系统的设计与开发[J].教育教学论坛,2016,09:117-118.[58]张程,于永军,李华强,徐行.考量能量裕度及权重因子的电力系统节点综合脆弱性分析[J].电力自动化设备,2016,03:136-141.[59]郑新芳.电力工程设计中电力系统规划设计的应用分析[J].河南科技,2015,23:150+153.[60]杨明,朱雪雄,李文进,于兰芝,赵楠.应用PSASP对电力系统潮流及无功优化的仿真分析与应用[J].中国培训,2016,04:46.[61]李培强,曾小军,李欣然,胡泽,柯飞,谭庄熙.基于神经网络的分布式电源统一等效建模及其在PSASP中的应用[J].电网技术,2016,04:1224-1230.[62]盛剑辉,李海玲.浅析电力系统分析与规划[J].技术与市场,2016,04:69-70.[63]陆兴华,郑永涛.基于非线性时间序列分析的电力系统负荷预测模型[J].电力与能源,2016,02:197-201.[64]展宗波,赵健.电气工程及其自动化技术下的电力系统自动化发展分析[J].山东工业技术,2016,11:177-178.[65]邢志坤,宋桂贤,金涛.计及负荷特性的电力系统小信号稳定性分析[J].电力系统及其自动化学报,2015,S1:18-22.[66]廖庭坚,刘光晔,雷强,朱永强,刘媛媛,张涛.计及电动机负荷的电力系统动态等值分析[J].电网技术,2016,05:1442-1446.[67]李雨.基于希尔伯特–黄变换的电力系统小干扰稳定分析方法[J].广东电力,2016,04:45-49+88.[68]殷桂梁,荣毅,张佳楠,柴晓磊.可达性分析理论在电力系统中的应用综述[J].智能电网,2016,05:506-511.[69]陈莉.电力系统继电保护的故障及运维要点分析[J].质量探索,2016,06:59-60.[70]李惜玉,叶泽琼,吴周华,江青云.基于PSASP对WDT-Ⅲ电力系统潮流分析[J].计量与测试技术,2016,06:2-4.[71]赵紫颖,童小鹏,师秀凤.基于MATLAB的电力系统潮流计算设计--用Simulink仿真进行潮流计算[J].价值工程,2016,21:185-187.[72]马静,高翔,李益楠,王增平.考虑风速随机特征的多工况电力系统稳定性分析[J].电力自动化设备,2016,08:26-32.[73]华超,俞孟蕻,许琳莉.大型钻井船电力系统谐波分析[J].机电设备,2016,04:10-14.[74]刘威,张东霞,王新迎,刘道伟,吴茜.基于随机矩阵理论的电力系统暂态稳定性分析[J].中国电机工程学报,2016,18:4854-4863+5109.[75]周涛,陈中,郭瑞兴.基于闭环阻尼转矩分析法的电力系统稳定器参数整定[J].电力系统自动化,2016,18:56-60.[76]张琛,李征,蔡旭,汪宁渤.面向电力系统暂态稳定分析的双馈风电机组动态模型[J].中国电机工程学报,2016,20:5449-5460+5721.[77]李世明.基于信号分析的电力系统低频振荡辨识方法研究综述[J].电力与能源,2016,04:420-426.[78]孔晶.电力系统窃电特点及反窃电技术分析[J].通讯世界,2016,22:147-148.[79]刘超,杨蕾.基于工作过程系统化的`“电力系统分析”本科课程改革[J].高教学刊,2016,21:168-169.[80]翟江,夏天,田芳,訾鹏,安宁,李亚楼,徐得超.PSASP用户自定义建模混合步长仿真机制的实现与应用[J].电网技术,2016,11:3497-3502.[81]徐德明,迟正刚.基于卓越电气工程师培养的电力系统分析课程改革[J].大学教育,2016,11:161-162.[82]颜天成.东西关电站主接线系统潮流计算软件设计与实现[D].电子科技大学,2016.[83]郭香云.基于PSASP的电力系统保护建模分析[D].合肥工业大学,2016.[84]周迪.电力通信资源管理系统的研究与分析[D].云南大学,2015.[85]邹炜.电力公司智能签封系统的研究与分析[D].云南大学,2016.[86]徐玉磊.飞机配电系统建模与控制的仿真研究[D].中国民航大学,2015.[87]周丽英.风电场并网对电力系统电压稳定性影响研究[D].湖南大学,2016.[88]暴英凯.人为因素对电力系统运行可靠性影响分析[D].浙江大学,2016.[89]赵妍.电力系统低频振荡状态监视与分析方法研究[D].哈尔滨工业大学,2016.[90]魏震波,苟竞.复杂网络理论在电网分析中的应用与探讨[J].电网技术,2015,01:279-287.[91]颉迪,卢占会,李庚银,刘忠义.一类含异步风电机组的电力系统小干扰区间稳定性分析[J].中国电机工程学报,2015,03:609-614.[92]何智龙,苏娟,覃芳.db20和db3小波变换的电力系统谐波联合分析[J].智能电网,2015,02:129-132.[93]马洪涛.基于混沌分析法的舰船电力系统稳定性研究[J].舰船科学技术,2015,01:152-156.[94]滕予非,宁联辉,李甘,王锡凡,路明.含分频风电的电力系统机电暂态计算方法以及暂态特性分析[J].电力系统自动化,2015,02:67-73+99.[95]陈晨,刘俊勇,刘友波,蒋长江,苟竞,刘若凡.一种考虑变电站内部的电力系统可靠性分析[J].电力自动化设备,2015,02:103-109.[96]訾鹏,周孝信,田芳,安宁,侯俊贤,张石,陶向宇.双馈式风力发电机的机电暂态建模[J].中国电机工程学报,2015,05:1106-1114.[97]张晋轩.电力系统稳态分析课程的教改与探讨[J].中小企业管理与科技(下旬刊),2015,03:217-218.[98]孙仲民,黄俊,杨健维,臧天磊,何正友.基于切比雪夫窗的电力系统谐波/间谐波高精度分析方法[J].电力系统自动化,2015,07:117-123.[99]盛锴,魏乐,江效龙,寻新.基于PSASP和Simulink的汽轮机调节系统建模与仿真校核[J].中国电力,2015,02:1-6+26.[100]高品,姬楠.MATLAB在电力系统分析中的应用[J].中外企业家,2015,08:170.[101]于永进,吉兴全,公茂法,黄鹤松.基于PSASP的电力系统潮流分析[J].科技创新导报,2015,08:178-179.[102]刘书铭,李陈莹,李琼林,崔雪,刘会金.电力系统串联谐波谐振的特性分析与灵敏度计算[J].电力系统保护与控制,2015,09:21-27.[103]肖长春.并行处理在电力系统分析中的应用分析[J].科技资讯,2015,09:26.[104]王亮,张冰,武诚,马琳琳,张亚萍,史方芳,李常刚,张恒旭.电力系统SCADA数据的一致性分析[J].山东电力技术,2015,04:33-37.[105]崔航,屠念念,张景明.PSASP与Matlab/SimPowerSystems联合仿真接口方法研究[J].电力建设,2015,06:89-95.[106]李阳海,黄莹,刘巨,姚伟,文劲宇.基于阻尼转矩分析的电力系统低频振荡源定位[J].电力系统保护与控制,2015,14:84-91.[107]卞建鹏,崔跃华,杨静.卓越工程师培养目标下的电力系统分析课程设计[J].科教文汇(上旬刊),2015,07:49-50.[108]尚安利,夏立.舰船电力系统图迹分析重构算法[J].电力系统及其自动化学报,2015,07:30-34+41.[109]史坤鹏,张雪敏,赵伟,范国英,傅吉悦.计及静态安全分析熵特性的电力系统自组织临界过程仿真[J].电力系统自动化,2015,13:38-43+123.[110]汤蕾,沈沉,张雪敏.大规模风电集中接入对电力系统暂态功角稳定性的影响(二):影响因素分析[J].中国电机工程学报,2015,16:4043-4051.[111]张献花.电力系统可靠性分析及其提高对策探究[J].中国高新技术企业,2015,30:36-37.[112]刘鲁锋,付立军.电力系统拓扑分析的LU矩阵分解算法[J].电网技术,2015,10:2869-2874.[113]孙树明,谢昶,吕颖,鲁广明,史东宇,于之虹,严剑峰,李雨蔓.电力系统在线安全稳定分析应用模式[J].电网技术,2015,10:2875-2881.[114]王新春,轩杨.基于Matlab的电力系统潮流计算分析[J].滨州学院学报,2015,04:81-87.[115]衣涛,王承民,谢宁,张焰.电力系统的多重(维)鞍结分岔点及其特征分析[J].电工技术学报,2015,20:145-150.[116]梁立龙,白雪峰.计及风速相关性的含风电电力系统暂态稳定分析[J].电网技术,2015,11:3228-3232.[117]杨劲,毛晓明,郑良佳.基于不同感应电动机负荷模型的电力系统仿真分析比较[J].电力科学与技术学报,2015,03:109-114+130.[118]薄其滨.含风电的电力系统频率动态分析[D].西南交通大学,2015.[119]柳亚芳.基于参数辨识的架空导线载流温升热路模型研究[D].南京理工大学,2015.[120]贾林杰.太原电网薄弱环节辨识及可靠性提高措施研究[D].华北电力大学,2015.[121]许纹碧.随机复杂电力系统稳定性分析与应用研究[D].上海交通大学,2015.[122]谢文麟.基于小波分析的电力系统低频振荡研究[D].哈尔滨工业大学,2015.[123]罗远翔.基于能量函数的含风电电力系统暂态稳定分析与控制[D].中国农业大学,2015.。

电力系统论文参考文献论文文档2篇

电力系统论文参考文献论文文档2篇

电力系统论文参考文献论文文档2篇Power system papers references paper documents编订:JinTai College电力系统论文参考文献论文文档2篇前言:论文格式就是指进行论文写作时的样式要求,以及写作标准,就是论文达到可公之于众的标准样式和内容要求,论文常用来进行科学研究和描述科研成果文章。

本文档根据论文格式内容要求和特点展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意调整修改及打印。

本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:电力系统论文参考文献论文文档2、篇章2:物理接替论文参考文献文档篇章1:电力系统论文参考文献论文文档摘要:电力系统操作关系着电气设备的运行安全可靠性,甚至还影响着电力系统操作人员的身体健康与生命安全。

随着电力系统以及电气设备功能的逐渐全面化,电力系统操作也变得更加复杂,一旦发生误操作,后果不堪设想。

文章对电力系统中的防误操作措施进行了分析,并在此基础上就如何应用防误操作装置进行了阐述。

关键词:电力系统;防误操作措施;防误操作装置;操作人员;电气设备虽然电力系统为社会经济发展提供了动力保障,但在实际操作过程中,各种误操作现象时有发生,对人身安全以及社会经济发展造成了非常大的威胁。

因此,在当前的形势下,加强对电力系统误操作情况以及应对措施、防误操作装置应用研究,具有一定的现实意义。

1目前我国电力系统防误工作存在的问题及原因1.1没有充分认识到组织措施的重要性虽然近几年各大电力公司都开始大范围的安装防误闭锁装置,但是同期的误操作事故也有所上升,造成事故的主要原因是操作票错误或者无票操作等。

可以看出,因为操作人员粗心大意、责任心不够或者违章操作而造成的误操作数量大大增加,这也说明了要想完全预防误操作事故,只抓技术远远不够,防误闭锁装置只能作为补充措施。

电力系统分析总结范本(2篇)

电力系统分析总结范本(2篇)

电力系统分析总结范本1、我国采用的额定频率为50hz,正常运电压vg(2)适当选择变压器的变比(3)的情况,它主要用来安排发电设备的检修行时允许的偏移为±0.2~±0.5hz;用户供电电压对于____kv及以上电压级的允许偏移±____%,____kv及以下允许偏移±____%。

2、设某一网络共有n个节点,pq节点m个,平衡节点____个,在潮流计算中用直角坐标牛顿-拉夫逊法时,其修正方程的雅可比矩阵的阶数为2(n-1),用极坐标牛顿-拉夫逊法时,其修正方程的雅可比矩阵的阶数为n-1+m,变量中电压的幅值数为m个。

3、电力系统发出的有功功率不足时偏低,系统无功功率不足时偏低。

4、静态稳定性的判据是△pe/△δ>0;暂态稳定性是以电力系统受到扰动后功角随时间变化的特性作为暂态稳定的判据。

5、电力系统的备用容量有哪些。

哪些属于热备用。

答。

备用容量按其作用可分为负荷备用、事故备用、检修备用和国民经济备用,按其存在形式可分为热备用和冷备用。

负荷备用属于热备用。

6、电力系统地调压措施有哪些。

答。

(1)调节励磁电流以改变发电机端改变线路的参数(4)改变无功功率的分布7、电力系统的二次调频是指什么。

如何才能做到频率的无差调节。

答。

变化负荷引起的频率变动仅靠调速器的作用往往不能将频率偏移限制在容许的范围之内,这时必须有调频器参与频率调整,这种调整通常称为频率的二次调整。

由调速器自动调整负荷变化引起的频率偏移,不能做到无差调节,必须进行二次调整才能实现无差调节。

8、当系统出现有功功率和无功功率同时不足时,简述调频与调压进行的先后顺序及其原因。

答。

当系统由于有功功率不足和无功功率不足因为频率和电压都偏低时,应该首先解决有功功率平衡的问题,因为频率的提高能减少无功功率的缺额,这对于调整电压是有利的。

如果首先去提高电压,就会扩大有功的缺额,导致频率更加下降,因而无助于改善系统的运行条件。

电气系统设计文献综述

电气系统设计文献综述

电气系统设计文献综述-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN成绩:西安建筑科技大学毕业设计 (论文)文献综述院(系):信息与控制工程学院专业班级:自动化0901毕业设计论文方向: 某污水处理工程电气系统设计综述题目:电气系统设计 _学生姓名:薛超 _学号: 0指导教师:陈登峰2013 年 3 月 20 日电气系统设计摘要:本文简单介绍了电气系统设计的基本原则、防雷接地、电缆敷设等相关内容。

为设计污水处理电气系统打下牢固基础。

关键词:电气系统;电缆敷设;工作原理;防雷接地1.前言随着世界工业化进程的迅猛发展,环境问题日益严峻。

生产和生活污水这一重要污染源引起了世界各国政府的关注。

治理水污染的课题已被列入世界环保组织的工作日程之一。

而防止水污染最行之有效的措施就是兴建污水处理厂,将污水变为对环境没有危害的净水再排放到自然环境中。

现代污水处理厂的规模越来越大,一旦供电系统发生故障,将会造成设备瘫痪,导致全厂停运,造成重大损失。

因此,合理的供配电系统设计是保证污水处理厂正常运行的必要前提。

污水处理工程供电属于工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。

众所周知,电能是现代工业生产的主要能源和动力。

电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。

因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。

电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,改善工人的劳动条件,有利于实现生产过程自动化。

从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。

因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。

电力系统综述

电力系统综述

电力系统综述电力系统是指由各种电力设备、输电线路和配电设备组成的系统,用于产生、传输和分配电能。

它是现代社会不可或缺的基础设施,为各行各业的正常运行提供了稳定可靠的电力供应。

本文将对电力系统的组成、运行原理以及未来发展趋势进行综述。

一、电力系统的组成电力系统由发电厂、输电网和配电网组成。

发电厂主要负责将机械能转化为电能,一般采用燃煤、燃气、核能或可再生能源发电。

输电网包括各级变电站和输电线路,将发电厂产生的高压电能传输到各个地方。

配电网将输电网传输过来的高压电能变成低压电能,供应给居民和工业用户。

二、电力系统的运行原理电力系统的运行原理主要包括发电、输电和配电三个环节。

发电环节是指发电厂将各种能源转化为电能的过程,通过发电机产生交流电或直流电。

输电环节是指将电能从发电厂输送到用户的过程,需要经过变电站升压、输电线路传输和变电站降压等环节。

配电环节是指将输送到用户的电能分配到各个用电设备的过程,通过变压器将高压电能变成低压电能,再通过配电设备供应给用户。

三、电力系统的发展趋势1. 智能化:随着信息技术的不断发展,电力系统正朝着智能化方向发展。

智能电网可以实现对电力的高效管理和优化控制,提高电力系统的稳定性和可靠性。

2. 低碳化:应对全球气候变化和能源安全问题,电力系统正加速向低碳化方向转型。

大规模利用可再生能源、提高能源利用效率,将成为未来电力系统的发展趋势。

3. 储能技术:储能技术是解决可再生能源波动性问题的重要手段。

电力系统未来将更多地采用储能技术,实现电能的储存和释放,以满足用户的需求。

4. 分布式电源:传统的电力系统主要依靠集中式发电厂提供电力,而分布式电源可以将发电设备布置在用户附近,减少输电损耗,并增加系统的可靠性。

5. 电动化:随着电动汽车的快速发展,电力系统将面临更大的负荷压力。

电力系统需要加强对电动车辆充电设施的建设管理,以满足未来电动车辆的充电需求。

总结:电力系统是现代社会不可或缺的基础设施,它的组成包括发电厂、输电网和配电网。

电力系统分析(5篇)

电力系统分析(5篇)

电力系统分析(5篇)电力系统分析(5篇)电力系统分析范文第1篇电力作为经济社会进展的基本能源,在智能电网建设进程中,实现了对传统电能粗放型管理向集约型的转变,尤其是在电能数据采集和计量上,以其富裕柔性、高互动性和牢靠性满意了用电户对电能实时性的要求,也为智能电网平台构建供应了技术支撑。

电力营销是建立在用电信息收集基础上,结合电力系统的智能化管理来满意电力服务目标,特殊是在智能电表的讨论与应用中,实现了电能数据采集、计量、归集和处理,也节省了电力企业电能管理成本,提升了电力企业信誉和服务水平。

1电力营销的主要业务及客户需求分析电力营销系统主要包括客户服务单元、营销业务单元、营销工作质量单元及营销决策支撑体系四部分。

其中,客户服务层主要通过营业厅、互联网来满意用电户的信息查询、询问、受理用电户的紧急服务或投诉举报等业务,也是电力营销系统中提升企业形象,赢得市场竞争的关键点;营销业务层主要从电力标准化、规范化管理上,从详细业务的处理上来优化管理,提升服务效率。

如对新装、增容、变更服务、电能计量、电费收缴、合同管理、负荷管理等业务;电力营销工作质量管理层,主要从客户服务及电力营销业务考核上,就工作流程、工作任务、合同执行状况,以及投诉举报工作进行监督,督促相关责任部门完善落实;电力决策支撑层,主要从电力营销策略制定、市场调研、市场开发、运营管理、客户管理、电力营销效益评估及企业战略规划上供应科学决策依据,帮助电力营销决策工作。

我国电力营销工作起步较晚,与发达国家相比还较为滞后,用电户对电力营销业务需求还处于较低层面。

通常状况下,在保障电力供应稳定性上,结合电力服务经济社会进展实际,从故障排解响应速度、提升优质电力服务质量上,电力营销在客户需求分析上主要表现在:一是满意电能供应牢靠性,从停电缘由、电网改造、电力设备故障处理、电力供需不平衡等方面来提升供电牢靠性;二是满意共性化电力服务需求,当前在共性化服务上,主要集中在用电户电能信息采集,以及实现供电、用电双向互动交互;三是快速电能故障处理及响应速度,着力从电力故障点推断、解决用电户故障问题,实现快速响应处理;四是丰富用电业务办理渠道,当前主要以营业厅为办理渠道,人工受理方式降低了用电满足度,要拓宽网络办理,实现智能化受理;五是用电信息不透亮,当前用电户所获得的用电信息范围狭窄,无法全面了解、准时获得用电信息,导致电力营销策略规划缺乏引导性。

建筑电气文献综述

建筑电气文献综述

建筑电气文献综述建筑电气是指建筑物内部所有使用电力设备及其供电系统,在建筑领域起着至关重要的作用。

建筑电气的优化设计,能够为建筑物提供更加稳定、安全、节能的电力系统。

本文将通过对建筑电气方面的相关文献进行综述,来了解目前建筑电气领域的研究现状和发展趋势。

建筑电气设计建筑电气设计是指对建筑物内各个电力设备及设备间的布线、开关、电源等进行规划、设计和布局的过程。

建筑电气的设计需要考虑到安全、节能以及便利性等多方面的因素。

在《建筑电气规划设计规范》中,明确规定了建筑电气设计的基本要求和标准,包括用电容量的估算、布线方式的选择、照明系统的设计等方面。

近年来,随着建筑物智能化和绿色化的需求不断增加,建筑电气设计也逐渐向智能化、绿色化方向发展。

通过对《建筑节能设计标准》和《建筑智能化设计规范》进行综述,发现绿色化建筑电气设计的核心目标是降低能耗,通过科学合理的能源利用,减少建筑对环境的负面影响。

智能化建筑电气设计则是利用新技术、智能化系统提高电气设备的管理效率,提高生产效率,降低生产成本。

建筑照明系统设计照明系统是建筑电气设计中重要的一部分,是建筑物内部提供照明的电力设备组成的系统。

照明系统的设计需要考虑到照度、色温、色彩还原度等多种因素。

而对于不同类型的建筑,其照明设计的要求也有所不同。

在《灯具、照明设备初步选型和位置布置原则》中,提出了照明系统的设计原则和选型方法。

同时,随着LED技术的发展,LED灯具逐渐成为建筑照明的首选。

LED灯具具有节能、寿命长等优点,成为绿色化建筑照明的重要选择。

而在《建筑照明设计规范》中,也对室内照明、房间照明、照明控制等方面提出了具体的设计要求和方法。

建筑电力系统保护在建筑电气设计中,电力系统的保护是非常重要的一部分。

电力系统保护的目的是防止电力设备出现故障或事故,避免对人员和建筑物造成损害。

建筑电气保护系统包括过电压保护、欠电压保护、漏电保护、短路保护、过载保护等多种保护技术。

毕业论文文献综述电力与能源工程领域的研究成果及展望

毕业论文文献综述电力与能源工程领域的研究成果及展望

毕业论文文献综述电力与能源工程领域的研究成果及展望电力与能源工程领域一直是科技研究的热点之一,随着社会的发展和能源需求的增加,对电力与能源工程领域的研究也变得愈发重要。

本文将对电力与能源工程领域的研究成果进行文献综述,并展望未来的发展方向。

一、电力工程领域的研究成果在电力工程领域,研究人员们致力于提高电力系统的效率、可靠性和稳定性。

近年来,智能电网技术成为研究的热点之一。

智能电网利用先进的通信和信息技术,实现了电力系统的远程监控、故障诊断和智能优化调度,极大地提高了电力系统的运行效率。

此外,可再生能源的大规模接入也是电力工程领域的重要研究方向。

太阳能、风能等清洁能源的利用不仅可以减少对传统能源的依赖,还可以降低环境污染,为可持续发展做出贡献。

二、能源工程领域的研究成果能源工程领域的研究主要集中在能源的开发利用和节能减排方面。

近年来,研究人员们通过对传统能源的改进和创新,提高了能源利用效率。

例如,燃煤电厂的超临界和超超临界技术的应用大大提高了燃煤发电的效率,减少了二氧化碳等排放物的排放。

此外,能源储存技术也是能源工程领域的研究热点之一。

随着可再生能源的快速发展,如何解决可再生能源的间歇性和不稳定性成为了一个亟待解决的问题。

能源储存技术可以有效地解决这一问题,提高能源利用效率。

三、电力与能源工程领域的展望未来,电力与能源工程领域将继续面临许多挑战和机遇。

一方面,随着能源需求的增加和环境污染的加剧,如何实现清洁、高效、可持续的能源利用将成为电力与能源工程领域的主要研究方向。

另一方面,随着信息技术的快速发展,智能电网、能源互联网等新技术的应用将为电力与能源工程领域带来新的发展机遇。

未来,电力与能源工程领域的研究将更加注重系统集成、跨学科合作,实现能源的高效利用和可持续发展。

综上所述,电力与能源工程领域的研究成果丰硕,未来的发展前景广阔。

通过不懈努力和持续创新,电力与能源工程领域将为人类社会的可持续发展做出更大的贡献。

电力系统可靠性及其综述

电力系统可靠性及其综述

电力系统可靠性综述文献引言:电力系统可靠性[1]是指电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能量的能力的量度,包括充裕度和安全性两个方面。

充裕度是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑到系统元件的计划停运及合理的期望非计划停运,又称为静态可靠性,即在静态条件下电力系统满足用户电力和电能量的能力;安全性是指电力系统承受突然发生的扰动,如突然短路或未预料到的失去系统元件的能力,也称为动态可靠性,即在动态条件下电力系统经受住突然扰动且不间断地向用户提供电力和电能量的能力。

电力系统可靠性是通过定量的可靠性指标来量度的。

一般可以是故障对电力用户造成的不良后果的概率、频率、持续时间、故障引起的期望电力损失及期望电能量损失等,不同的子系统可以有不同的可靠性指标。

电力系统规模很大,习惯上将电力系统分成若干子系统,根据这些子系统的功能特点分别评估各子系统的可靠性。

1.发电系统可靠性发电系统可靠性是指统一并网的全部发电机组按可接受标准及期望数量满足电力系统的电力和电能量需求的能力的量度。

发电系统可靠性指标可以分为确定性和概率性两类。

过去曾广泛应用确定性可靠性指标来指导电力系统规划和运行,如百分数备用法和偶然故障备用法。

这两种方法均缺乏应有的科学分析,目前已逐渐被概率性可靠性指标所代替。

概率法常用的可靠性指标有:电力不足概率(LOLP)、频率及持续时间(F&D)、电量不足概率(L O E P)、电力不足期望(LOLE)。

国际上曾一度采用LOLP(loss of load probability)作为发电系统可靠性指标,但该方法过于粗略,评估误差较大,且无法计算有关电量指标。

后来人们又提出了更为详细的计算电力不足概率的指标和方法,即电力不足小时期望值LOLH(h/a)。

该方法以每天24h的实际负荷变化情况为负荷曲线模型,计算出电力不足小时期望值。

国际上关于发电系统可靠性计算的另一个常用的指标为电量不足期望值EENS [2]意义为在某一研究周期内由于供电不足造成用户减少用电量的期望值。

供配电毕业设计文献综述范文

供配电毕业设计文献综述范文

供配电毕业设计文献综述范文
供配电毕业设计文献综述范文应由本人根据自身实际情况书写,以下仅供参考,请您根据自身实际情况撰写。

随着社会的发展和人们生活水平的提高,供配电系统在人们生活中扮演着越来越重要的角色。

供配电系统是电力系统的重要组成部分,它负责将电能从发电厂输送到各个用户,为人们的生产和生活提供必要的能源。

因此,供配电系统的设计和运行对于保证电力系统的稳定性和安全性具有重要意义。

在供配电系统的设计中,需要考虑多种因素,如负荷分布、电源容量、线路容量、变压器容量等。

这些因素对于供配电系统的稳定性和安全性都有重要影响。

因此,在进行供配电系统的设计时,需要综合考虑这些因素,以制定出最优的设计方案。

近年来,随着技术的发展和进步,越来越多的新技术被应用到供配电系统中。

例如,智能电网、分布式电源、储能技术等。

这些技术的应用可以大大提高供配电系统的稳定性和可靠性,减少能源浪费和环境污染。

此外,随着人们对于环境保护的重视程度不断提高,越来越多的研究关注到了供配电系统中的节能减排问题。

例如,通过优化供配电系统的运行方式,降低线损和变压器损耗,提高电力设备的运行效率等措施,可以有效地减少能源浪费和环境污染。

综上所述,供配电系统的设计和运行是一项复杂的工程,需要考虑多种因素和技术。

未来的研究应该关注如何将新技术应用到供配电系统中,以提高系统的稳定性和可靠性,同时关注节能减排问题,为环境保护做出更大的贡献。

电力系统暂态稳定性分析文献综述

电力系统暂态稳定性分析文献综述

电力系统暂态稳定性分析文献综述前言电力系统是现代社会不可或缺的能源支撑系统,而暂态稳定性则是保障电力系统供电可靠性的重要保证。

在电力系统运行中,由于各种原因可能导致暂时性的电压和功率波动,而电力系统暂态稳定性的强弱直接影响到系统对这些波动的响应程度。

因此,对电力系统暂态稳定性的分析研究成为了电力工程中的重点方向之一,本文就电力系统暂态稳定性分析的相关文献进行了综述。

电力系统暂态稳定性分析的基本理论电力系统的暂态稳定性可以定义为系统在外部干扰下出现暂时性变化后恢复正常工作的能力。

电力系统暂态稳定性分析的基本理论主要包括:暂态稳定性问题的提出与定义、电力系统暂态稳定性分析的基本思路、暂态稳定性分析的一般方法以及电力系统暂态稳定界限的确定。

暂态稳定性问题的提出和定义是电力系统暂态稳定性分析的基础,在这个基础之上,电力系统暂态稳定性分析的基本思路包括了电力系统的暂态问题的分析和电力系统的暂态稳定性问题的分析。

这两个问题的分析方法不同,但需要基本知识和基本概念的支持。

暂态稳定性分析的一般方法包括电力系统分析的方法和稳定性分析的方法。

电力系统的分析方法主要是分析电力系统的基本参数和电路的结构,找出系统中的故障和问题,以及寻找改进和优化方案。

电力系统的稳定性分析方法包括了对系统进行抽象化、数学建模、稳定性指标的选取等一系列的分析工作。

最后是确定电力系统暂态稳定界限,这是一个非常重要的工作。

电力系统暂态稳定性分析的研究方法在电力系统暂态稳定性分析的研究方法方面,主要包括:基于机器学习的电力系统暂态稳定性预测方法、基于大数据技术的暂态稳定性分析方法和基于系统分析的暂态稳定性评估方法。

首先,基于机器学习的电力系统暂态稳定性预测方法通过对历史数据进行训练,建立模型对未来的暂态稳定性进行预测,既可以较快地得出结果,提高工作效率,也可以较为准确地预测电力系统的暂态稳定性。

其次,基于大数据技术的暂态稳定性分析方法通过记录和处理大量的电力系统状态数据,建立高维度的模型,来解决传统方法中不可避免的维度灾难问题,从而分析电力系统的暂态稳定性。

输电线路文献综述

输电线路文献综述

输电线路文献综述输配电线路的运行根本任务是保证输配电线路不间断地供电,随着电力建设的发展,山区输电线路的建设项目逐渐增加。

相对于平原地区的架空输电线路,山区架空线路的地线和基础有其自身的特点,应在设计中给予充分的重视。

安全可靠、经济合理、技术先进是以往输电线路工程的设计原则,如今随着人们环保意识的加强,环境保护、水土保持问题日益被社会各方和建设单位的重视,有的地方甚至提出了更高的要求。

有效地保护环境、保护山区林木植被,不破坏绿化也顺应了目前建设资源节约型、环境友好型社会的潮流,这对山区地形输电线路的设计、施工和运行维护提出了更高的要求。

山区输电线路在路径选择、导线选型、机电施工、防雷接地、基础设计等方面有不同于普通地形的特点,高海拔、大档距、大高差等是山区输电线路的典型特征,在设计中需要注意的问题较多。

在山区地段,施工交通运输、基础开挖比较困难。

基础设计中,应针对实际地质。

水文情况,经过多方案比较,基础设计在满足安全可靠的前提下采用全方位高低柱基础。

根据现场实际地形情况,综合考虑工程的实际地形条件、运输条件、施工条件、基础平整、土石方开挖等因素,达到降低工程造价、方便施工、缩短工期的目的。

降低杆塔接地装置的接地电阻是提高输变电线路耐雷水平的一项十分重要的措施.特别是对于多石少土的山区输电线路杆塔.在架空输电线路设计中,防雷设计是必须考虑的一个重要因素,随着电力系统的发展,雷击输电线路而引起的事故也日益增多尤其在雷电活动强烈、土壤电阻率高、地形复杂的山区地区,雷击输电线路而引起的事故率更高,造成巨大的经济损失。

目前我国输电线路杆塔基础大致可分为利用原状土和非利用原状土两大类,利用原状土基础材料量省,承载能力高。

鉴于山地和丘陵地区地基承载力较高,但覆盖层厚度各区域不尽相同,因此,基础型式考虑尽量利用原状土,根据山区特有的地质条件进行优化设计,减少基坑的开挖和植被的破坏。

山区输电线路大都处于海拔较高、地势险要、交通不便、地形复杂的地区。

电力电子文献综述范文

电力电子文献综述范文

急求文献综述范文!(电气类或社科类)理水患的方法,既不能固执不知变通,拘泥于古代的典章制度,也不能随意相信别人的话。

原因是地形有高有低,水流有快有慢,池塘有深有浅,河流的形势有弯有直,不经过观察和测量就不能了解它的真实情况,不经过访问,征求意见就不能彻底摸清情况,因此必须亲自登山涉水,亲自辛劳,不怕吃苦。

从前海瑞治理河流的时候,轻装便服,冒着风雨,在荒村乱流中间来来往往,亲自发给民工钱粮,一厘也不克扣,并且随同的管理差役也不曾横索一文钱财。

必须像这样,才能做成事情。

如果贪图安逸,害怕辛劳,计较私利,忘记公益,只想远远地躲开嫌疑,避免抱怨,那么事情就做不成,水利也就办不好了。

机电系毕业论文范文在自律分配系统中,各个子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同的环境条件作出不同反应。

其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。

这样,既明显地增加了系统的适应能力(柔性),又不因某一子系统的故障而影响整个系统。

3.全息系统化——智能化。

今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。

这主要收益于模糊技术、信息技术(尤其是软件及芯片技术)的发展。

今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。

这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。

仿生学研究领域中已发现的一些生物体优良的机构可为机电一体化产品提供新型机体,但如何使这些新型机体具有活的“生命”还有待于深入研究。

这一研究领域称为“生物——软件”或“生物系统”,而生物的特点是硬件(肌体)——软件(大脑)一体,不可分割。

看来,机电一体化产品虽然有向生物系统化发展趋,但有一段漫长的道路要走。

5.微型机电化——微型化。

目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。

电力系统暂态稳定性分析文献综述

电力系统暂态稳定性分析文献综述

文献综述摘要:随着电网规模扩大,电网动态特性更加复杂多变,发生由暂态失稳而引发的大停电事故更加频繁,因此加强对电力系统暂态稳定分析的研究具有重要意义。

本文对目前电力系统暂态稳定分析方法的现有研究文献进行了调研和综述.关键词:电力系统暂态稳定稳定分析引言:随着三峡电站的投产运行,全国联网、西电东送工程的实施,使得我国电网正朝着大电网、超高压、远距离、交直流并联输电方向快速发展。

电网规模的扩大带来巨大经济效益的同时,也出现了新的技术问题,如:长距离弱联络线并列运行,形成输电瓶颈,降低了系统的稳定裕度,动态特性更加复杂多变。

另外,电力市场竞争机制的引入,使得系统运行动态特性更加不可预测.同时,电网互联后,受扰动的影响而波及的范围会更广,更易引发大停电事故.研究表明,诸多大停电事故是由于暂态失稳而引发的。

而目前的暂态稳定紧急控制策略多基于预想事故集而制定的。

缺乏有效的在线稳定分析软件是错失紧急控制时机,从而引发大停电事故的重要原因之一。

因此,加强研究大电网安全稳定性分析具有十分重要的意义。

1。

电力系统暂态稳定及其意义对于某一特定的稳定运行状态,以及对于某一特定的扰动,如果在扰动后系统可以达到一个可以接受的稳定运行状态,则对此初始状态及此扰动面言,称之为暂态稳定。

电力系统是一个复杂的动态系统,一方面它必须时刻保证必要的电能质量及数量;另一方面它又处于不断的扰动之中,扰动发生的时间、地点、类型、严重性均有随机性,扰动发生后的系统动态过程中一旦发生稳定性问题,系统可能在几秒内发生严重后果,造成极大的经济损失和社会影响.电力系统暂态分析的主要日的是检查系统在大的扰动下(如故障、切机、切负荷、重合闸操作等情况),各发电机组间能否保持同步运行,如果能同步运行,并具有可接受的频率和电压水平,则称此电力系统在这一大扰动下是暂态稳定的.在电力系统规划、设计、运行等工作中都要进行大量的暂态分析。

通过暂态分析还可以考察和研究各种稳定措施的效果以及稳定控制的性能,因此通过仿真来验证所求结果是否正确,即电力系统在某一状态时是否是稳定的其有重要意义.电力线系统稳定的破坏,往往会导致系统的解列和崩溃,造成大面积停电,所以保证电力系统稳定是电力系统安全运行的必要条件。

基于对称分量法对电力系统故障分析的文献综述..

基于对称分量法对电力系统故障分析的文献综述..

毕业设计(论文)文献综述设计(论文)题目:基于对称分量法的电力系统故障计算程序的设计专业:学生姓名:学号:指导教员:一.本课题的目的与意义:在电力系统的运行过程中,不可避免地会出现故障。

尽管故障出现的几率很小,持续的时间也不长,但产生的后果却往往十分严重。

电力系统发生故障时,运行状态将经历急剧变化。

轻则造成电流增大,电压下降,从而危及设备的安全或使设备无法正常运行;重则将导致电力系统对用户的正常供电局部甚至全部遭到破坏,从而对国民经济造成重大损失。

因此对电力系统故障应予以高度重视。

作为电力系统三大计算之一,电力系统的故障计算主要计算电力系统的故障所引起的电磁暂态过程,即电参量(电压、电流)和磁参量(磁链)的变化情况,分析故障发生的原因及其产生的后果,从而为防止故障的发生和尽可能减少故障产生的损害提出有效措施。

电力系统的故障属暂态范畴,大部分电磁量将随时间变化,描述其特性的是微分方程,这给分析计算带来一定困难。

在分析过程中通常尽量避免对微分方程直接求解,而是采用一定的工具(如拉普拉斯变换)和假设使问题得以简化,即把“微分方程代数化,暂态分析稳态化”。

在分析不对称故障时,各相之间电磁量的耦合使问题的分析更为复杂,此时常用的分析方法是尽量避开对不对称故障直接求解,而是采用一定的工具(如对称分量变换)将不对称问题转化为对称问题的迭加进行处理,即把“不对称问题对称化”。

这就是电力系统故障计算方法的特点。

电力系统中发生故障的原因,大部分是由于相与地的短路或相与相之间的短路。

电力系统简单故障包括:三相短路、单相接地、两相短路、两相短路接地、单相断线和两相断线等六种故障形式。

本毕业设计采用对称分量法进行简单故障计算,并完成程序的设计。

完成对简单故障进行计算之外,本毕业设计可采用基于多端口戴维南等值网络的方法计算复杂故障,并编程验证方法的有效性。

二.电力系统故障计算的基本知识1.故障概述(一) 故障的分类凡造成电力系统运行不正常的任何连接或情况均称为电力系统的故障。

区域电力系统分析文献综述

区域电力系统分析文献综述

附录1区域电力系统规划设计及最优励磁控制的文献综述在高速发展的现代社会中,电力工业是国民经济的基础,在国民经济中的作用已为人所共知:它不仅全面地影响国民经济其它部门的发展,同时也极大地影响人民的物质和文化生活水平的提高,影响整个社会的进步。

改革开放以来,电力工业取得了突飞猛进、举世瞩目的辉煌成就,从1996年起,我国发电机装机容量和年发电均居世界第二位,超过了俄罗斯和日本,仅次于美国,进入世界电力生产和消耗大国行列。

发电厂规模和单机容量的大幅度提高,标志着我国的电力工业已经进入一个飞速发展的新时期⑹。

电能是现代社会中最重要、也是最方便的能源。

电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特占:八、、・1电能的生产和消费具有同时性由于电能的生产和消费是一种能力形态的转换,要求生产与消费同时完成,因此电能难于储存。

从这个特点出发,在电力系统运行时就要求发电厂在任何时刻发出的功率,必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损耗之和⑺。

2电能与国名经济各部门和人民日常生活关系密切由于电能可以方便地转化为其他形式的能,且易于远距离传送和自动控制,因此得到广泛的应用。

供电的突然中断会产生严重的后果。

3电力系统的过度过程非常短暂由于电能以光速传播,所以运行情况发生变化所引起的电磁和机电过度过程十分短暂。

电力系统正常操作和发生故障时,从一种运行状态到另一种运行状态的过渡极为迅速,这就要求必须采用各种自动装置(包括计算机)来迅速而准确地完成各项调整和操作任务⑹。

从电力系统以上的特点出发,根据电力工业在国民经济中的地位和作用,决定了对电力系统运行有一下要求:1保证安全可靠地供电电力系统供电中断将使生产停顿、生活混乱、甚至危及人身和设备安全,给国民经济带来严重的损失。

为此,首先要保证电力设备的产品质量,努力搞好设备的正常运行维护;其次,要提高运行水平和自动化程度,防止误操作的发生,在事故发生后应尽量防止事故扩大,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录1
区域电力系统规划设计及最优励磁控制的文献综述
在高速发展的现代社会中,电力工业是国民经济的基础,在国民经济中的作用已为人所共知:它不仅全面地影响国民经济其它部门的发展,同时也极大地影响人民的物质和文化生活水平的提高,影响整个社会的进步。

改革开放以来,电力工业取得了突飞猛进、举世瞩目的辉煌成就,从1996年起,我国发电机装机容量和年发电均居世界第二位,超过了俄罗斯和日本,仅次于美国,进入世界电力生产和消耗大国行列。

发电厂规模和单机容量的大幅度提高,标志着我国的电力工业已经进入一个飞速发展的新时期[6] 。

电能是现代社会中最重要、也是最方便的能源。

电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特点:
1 电能的生产和消费具有同时性
由于电能的生产和消费是一种能力形态的转换,要求生产与消费同时完成,因此电能难于储存。

从这个特点出发,在电力系统运行时就要求发电厂在任何时刻发出的功率,必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损耗之和[7]。

2 电能与国名经济各部门和人民日常生活关系密切
由于电能可以方便地转化为其他形式的能,且易于远距离传送和自动控制,因此得到广泛的应用。

供电的突然中断会产生严重的后果。

3 电力系统的过度过程非常短暂
由于电能以光速传播,所以运行情况发生变化所引起的电磁和机电过度过程十分短暂。

电力系统正常操作和发生故障时,从一种运行状态到另一种运行状态的过渡极为迅速,这就要求必须采用各种自动装置(包括计算机)来迅速而准确地完成各项调整和操作任务[8]。

从电力系统以上的特点出发,根据电力工业在国民经济中的地位和作用,决定了对电力系统运行有一下要求:
1 保证安全可靠地供电
电力系统供电中断将使生产停顿、生活混乱、甚至危及人身和设备安全,给国民经济带来严重的损失。

为此,首先要保证电力设备的产品质量,努力搞好设备的正常运行维护;其次,要提高运行水平和自动化程度,防止误操作的发生,在事故发生后应尽量防止事故扩大,等等。

当然,要防止事故的产生是不可能的,而各类电力负荷对供电可靠性的要求也是不同的。

首先要保证第一类负荷,然后保证第二类负荷,最后保证第三类负荷。

当系统长生事故,出现供电不足的情况下,应首先切除第三类负荷,以保证第一、第二类负荷的用电。

通常,对第一、而类负都设置有两个或两个以上的独立电源,一边在任意电源故障时,保证供电不致中断。

2 保证良好的电能质量[11]
电能质量的指标是频率、电压和交流点的波形。

当三者在允许的变动范围之内时,为质量合格的电能;当上述三者偏差超过容许范围时,不仅严重影响用户的工作,对电力系统本身的运行也又严重危害。

因此,保证良好的电能质量是电力系统运行的重要任务。

3 保证电力系统运行的经济性[6]
电能生产的规模很大,消耗的能源在国民经济能源总消耗中占的比重很大,而且电能又是工农业生产的主要动力,因此,提高电能生产的经济性具有十分重要的意义。

表征电力系统经济性的指标有煤耗、网损率和厂用电率。

煤耗是指发电厂生产1KWh电能所消耗的标准煤量;网损率是指电力网中损耗的电量占向电力网供电电量点百分比;厂用电率是指发电厂自用电量占发电量的百分比。

我国电力系统中,发电机单机容量不断增长,300MW的单机已成为系统中的主力机组,600MW的单机也逐步进入一些大型电力系统[9]。

世界各国电力工业发展的经验告诉我们,电力系统愈大,调度运行就愈能合理和优化,经济效益就愈好,应变事故的能力就愈强。

所以很多发达国家的电力系统都已联合成统一的国家电力系统,甚至联合成跨国电力系统。

例如,西欧各国、前苏联与东欧各国、北欧各国、北美的美国与加拿大的电力系统都已互联。

这可以说是现代化电力工业发展的重要标志。

我国也必然要向这一方向发展[10]。

全国电力供需局部地区、局部时段缺电的情况将依然存在,煤电衔接、电价改革、电源与电网的协调等仍是行业发展需要进一步解决的问题。

由于行业发展临近拐点,电源建设应选择符合国家政策支持范围的项目,电网领域的投资价值则逐渐显现。

“十一五”期间,中国将迎来电网建设的新高潮。

到2010年,国家电网在跨区域电网建设方面,交流特高压输电线路建设规模将达到4200千米,变电容量达到3900万千伏安,跨区送电能力达到7000万千瓦;在城乡电网建设方面,220千伏及以上交直流输电线路要超过34万千米,交流变电容量超过13亿千伏安[6]。

现代控制理论的主要内容有最优控制理论(其中包括线性最优控制理论、非线性最优控制理论及随机最优控制理论等)、自适应控制理论、系统辨识理论及模糊控制理论等。

其中在电力系统发展较完善、应用较广泛的是线性最优控制理
论,非线性最优控制理论,正处于发展之中的是智能自适应最优控制理论[12]。

最优控制理论的主要特点是:(1)不是建立在传递函数的基础上,而是建立在空间状态方程的基础上,是基于系统稳定性的方法;(2)适用于多控制量的系统;(3)可以根据被控对象的实际要求,用解析的方法得出最优控制规律,以保证要求的性能指标达到极值;(4)不局限于常系数线性系统,而亦适用于时变的线性系统、非线性系统及离散系统等[3]。

按最优控制理论设计的励磁控制器具有以下一些优点:(1)可直接根据解析结果整定控制器的最优参数;(2)系统在偏离设计的最优运行状态下的动态响应与设计的最优运行状态下的动态响应之间相差甚微,即在运行方式较大的变化范围内最优励磁控制器均能对系统的振荡给出接近于最优的阻尼效应;(3)最优励磁控制规律是全部状态量的最优的线性组合,这种组合能够保证系统在过渡过程中各状态量对其稳态值的平方误差的积分最小,故其控制效果不受振荡频率的影响[4]。

这就是说,最优励磁控制器无论在系统发生一般频率的振荡(0.5~2Hz)或是超低频振荡(0.017~0.08Hz)或是次同步振荡(10~40Hz),均能有效地予以抑制;(4)可使系统获得高动态稳定极限[5]。

描述发电机系统的运动方程是一系列非线性方程,线性最优控制将这些非线性方程在时域内逐点线性化,计算出最优控制规律。

控制效果与PID+PSS比较可提高发电机的静稳20%,提高暂稳30%。

其局限性之一是线性化的结果与实际的非线性方程有一定的偏离;其二是当电力系统的接线方式发生变化,其描述系统的状态方程将和实际的系统出现偏差而导致控制性能出现微小的下降。

但这种控制规律比起PID+PSS仍然具有明显的优势[1]。

非线性最优控制则通过微分几何反馈精确线性化方法,即采用坐标变换将非线性方程线性化,计算出控制规律后再返回非线性坐标系统得出最优控制规律。

控制效果与PID+PSS比较可提高发电机的静稳25%,提高暂稳35%。

其局限性之一与线性最优控制一样是当电力系统的接线方式发生变化而导致的控制性能微小下降;局限性之二是理论计算过程中进行坐标变换会出现不精确性。

但这种控制规律比线性最优控制规律在计算方法上要精确[2]。

期刊文献:
[1]钟俊强.分析电力系统规划设计在电力工程设计中的应用[J].广东科技. 2012
[2]程启明,胡晓青,周卉云,王映斐.同步发电机励磁系统的最优控制仿真[J].上海电力学院学报;2011
[3] 魏阳,张俊芳,卫鹏.线性最优励磁控制器的设计与仿真[J].电力科学与技术学报.2013
[4]薛媛媛,张俊芳.同步电机最优励磁控制系统的暂态稳定性研究[J].科技创新与应用.2013
[5]何蔚超,姚强.同步电机最优励磁控制系统的研究与仿真[J].电工电气.2011 图书文献:
[6]纪雯,电力系统设计手册[M]. 北京.中国电力出版社,2008
[7]曹绳敏,电力系统课程设计及毕业设计参考资料[M].北京.水利电力出版社,1995
[8]徐政,电力系统分析学习指导[M].北京.机械工业出版社,2003
[9]商国才,电力系统及自动化[M].天津.天津大学出版社,1999
英文文献:
[10]Arya L.D.,Koshti A.,Choube S.C..Distributed generation planning using differentialevolution accounting voltage stability consideration [J].International Journal of ElectricalPower and Energy Systems,2012 [11]Novoa C.'Jin T..Reliability centered planning for distributed generation considering windpower volatility[J].Electric Power Systems Research,2011
[12]Banerjee B.,Islam S.M..Reliability based optimum location of distributed generation[J].International Journal of Electrical Power & Energy Systems,2011。

相关文档
最新文档