人教a版必修二 1.1.1 空间几何体的结构特征.ppt
高中数学1.1空间几何体的结构 优秀课件1
![高中数学1.1空间几何体的结构 优秀课件1](https://img.taocdn.com/s3/m/5ee79741b207e87101f69e3143323968011cf49b.png)
2
①
当 0 9 0 时 , S 1 l2 sin
2
S0
1 2
l2
sin
② 当 90180时 , P
S0
1 l2 sin
2
1 2
l2
sin 90
即 S0
1 2
l2.
l
P
l
综上选 B.
A
O
BA
O
B
C
C
作业
1. 《导学精练》1.1.1 活页+蓝皮〔分层要求〕 2.预习教材“简单组合体的结构特征〞
简单组合体
圆柱、圆锥、圆台的轴截面问题 通常我们称过旋转体旋转轴的截面为轴截面.
圆柱、圆锥、圆台轴截面分别是矩形、等腰三角形、 等腰梯形,这些轴截面集中反映了旋转体的各主要元 素,处理旋转体的有关问题一般要作出轴截面.
练习. 以下命题中错误的选项是〔 〕 A.圆柱的轴截面是过母线的截面中面积最大的一个. B.圆锥的轴截面是所有过顶点的截面中面积最大的一个. C.圆台的所有平行于底面的截面都是圆. D.圆锥的所有轴截面都是全等的等腰三角形.
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.空 间几何体是几何学的重要组成局部,它在土木建筑、机械设计、航海测绘等 大量实际问题中都有广泛的应用.
观察与思考
空间我几们何周体围的存定在义着:各种各样的物体,它们都占 据着空如间果的只一考局虑部物. 体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体.
第一章 空间几何体
本节我们从空间几何体的整体观察入手,研 究空间几何体的结构特征.
观察与思考
由假观设察干以平下面物多体边的形形围状成和的大几小何,体试叫给做出多相面体. 应的空间几何体,说说有它们的共同特征。
【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
![【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)](https://img.taocdn.com/s3/m/1c3adbb8964bcf84b8d57b12.png)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥
1.1.1棱柱、棱锥、棱台的结构特征 课件(人教A必修2)
![1.1.1棱柱、棱锥、棱台的结构特征 课件(人教A必修2)](https://img.taocdn.com/s3/m/8560a37127284b73f2425053.png)
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
变式训练 1. 下列命题正确的是( )
A. 棱柱的底面一定是平行四边形 B. 棱锥的底面一定是三角形
C. 棱锥被平面分成的两部分不可能都是棱锥
D. 棱柱被平面分成的两部分可以都是棱柱
栏目 导引
第一章
空间几何体
解析: 选D.棱柱、棱锥的底面可以是任意多边 形, 所以排除A、B, 沿着棱锥底面的一条对角 线将棱锥分成两个部分可以得到两个部分都 为棱锥, 排除C.对于D, 只要这个平面与底面 平行就能够得到两个棱柱.
栏目 导引
第一章
空间几何体
题型三
例3
多面体的侧面(表面)展开图
(本题满分10分)根据下图所给的几何
体的表面展开图, 画出立体图形.
栏目 导引
第一章
空间几何体
【思路点拨】使图中相同的点重合, 沿虚线 折叠成立体图形. 【解】(1)ABCD为四边形, 其余面为共顶点P 的三角形, 符合棱锥特征. 是以ABCD为底面, P为顶点的四棱锥.3分
第一章
空间几何体
学 海 无 涯 苦 作 舟
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
第一章
空间几何体
栏目 导引
如果我们只考虑物体的形状和大小,而不考虑其它 问题 1:观察下面的图片, 这些图片中的物体 因素,那么由这些物体抽象出来的空间图形就叫做 具有怎样的形状 ?我们如何描述它们的形状? 空间几何体。
栏目 导引
必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
![必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征](https://img.taocdn.com/s3/m/b389c3efc1c708a1294a4422.png)
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:
1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)
![1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)](https://img.taocdn.com/s3/m/f4b1af54a32d7375a41780f7.png)
(2)有关概念: ①底面:_两__个__互__相__平__行__的__面__; ②侧面:_其__余__各__面__; ③侧棱:_相__邻__侧__面__的__公__共__边__; ④顶点:_侧__面__与__底__面__的__公__共__顶__点__.
【对点训练】 1.棱柱的侧面 ( A.是平行四边形 C.是三角形
分类 按底面多边形的边数分:三棱锥、四棱锥、…
【对点训练】 1.下列图形所表示的几何体中,不是棱锥的为 ( )
【解析】选A.根据棱锥的结构特征,可知A不是棱锥.
2.下面描述中,不是棱锥的几何结构特征的为 ( ) A.三棱锥有四个面是三角形 B.棱锥都有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱交于一点
形的几何体不一定是棱台;③两个互相平行的面是正
方形,其余各面是四边形的几何体一定是棱台.其中正
确的说法的序号有 ( )
A.0个
B.1个
C.2个
D.3个
【解析】选C.①正确,因为具有这些特 征的几何体的侧棱一定不相交于一点, 故一定不是棱台;②正确,如图所示;③不正确,当 两个平行的正方形完全相等时,一定不是棱台.
顶点:侧面与上(下)底面的 _公__共__顶__点__
分类
由几棱锥截得即为几棱台:如三棱台、四棱 台、…
【对点训练】 1.下列三种叙述,正确的有 ( ) ①用一个平面去截棱锥,棱锥底面和截面之间的部分 是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体 是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六
A.南
B.北
C.西
D.下
【解析】选B.正方体展开图还原为正方体,如图所示, 故标△的方位为北.
【补偿训练】如图,在三棱锥V-ABC中,VA=VB=VC=4, ∠AVB=∠AVC=∠BVC=30°,过点A作截面△AEF,求 △AEF周长的最小值.
高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征
![高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/62467b2cff4733687e21af45b307e87101f6f8ec.png)
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究四
探究一棱柱、棱锥、棱台的结构特征
棱柱、棱锥、棱台的定义是识别和区分多面体结构特征的关键.因此,在涉
及多面体的结构特征问题时,先看是否满足定义,再看它们是否具备各自的
第一章
空间几何体
-1-
1.1
空间几何体的结构
-2-
第1课时
棱柱、棱锥、棱台的结构特征
-3-
首 页
学习目标
1.了解空间几何体的分类及其相关
概念.
2.了解棱柱、棱锥、棱台的定义,知道这
三种几何体的结构特征,能够识别和区
分这些几何体.
J 基础知识 Z 重点难点
ICHU ZHISHI
思维脉络
HONGDIAN NANDIAN
解析:当截得棱台的棱锥的侧棱不相等时,棱台的侧棱不相等.
答案:C
3
S 随堂练习
UITANG LIANXI
4
5
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
2
3
S 随堂练习
UITANG LIANXI
4
5
3.如果一个棱锥的侧面都是正三角形,则该棱锥最多是
棱锥.
度最短为多少?
首 页
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
高中数学人教A版必修二课件:棱柱、棱锥、棱台的结构特征 课件(37张)
![高中数学人教A版必修二课件:棱柱、棱锥、棱台的结构特征 课件(37张)](https://img.taocdn.com/s3/m/b9e68551e45c3b3567ec8ba1.png)
[答案] (2)(3)(4)
[类题通法]
判断棱锥、棱台形状的两个方法 (1)举反例法: 结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台 结构特征的某些说法不正确.
(2)直接法:
棱锥 定底面 棱台
只有一个面是多边形, 两个互相平行的面,
此面即为底面 即为底面
看侧棱
相交于一点
延长后相交于一点
[活学活用] 2.试判断下列说法正确与否: ①由六个面围成的封闭图形只能是五棱锥;
形绕某定直线旋转而成?
提示:可以.
[导入新知] 1.空间几何体
概念
空间 几何 体
定义
在我们周围存在着各种各样的物体,它们都占据着空 形状 和_____ 大小 , 间的一部分.如果我们只考虑物体的_____ 而不考虑其他因素,那么由这些物体抽象出来的空间 图形就叫做空间几何体
概念
定义 平面多边形 围成的几何体叫做多面 由若干个_____________
答案:A
棱锥、棱台的结构特征 [例2] 下列关于棱锥、棱台的说法:
(1)用一个平面去截棱锥,底面和截面之间的部分组成的
几何体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)棱锥的侧面只能是三角形; (4)由四个面围成的封闭图形只能是三棱锥;
(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确
面 ;相 多面 体.围成多面体的各个多边形叫做多面体的___ 体 公共边 叫做多面体的棱;棱与棱的 邻两个面的________ 公共点 叫做多面体的顶点 ________ 旋转 直线 旋转 由一个平面图形绕它所在平面内的一条定_____ 封闭几何体 叫做旋转体,这条定直线叫做 所形成的____________ 轴 旋转体的____
高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件
![高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件](https://img.taocdn.com/s3/m/f95e012c50e2524de4187e32.png)
第六页,编辑于星期日:二十二点 一分。
新课引入 中国人认为:没有规矩不成方圆,按照制定出来的规矩做 事,就可以获得整体的和谐统一.在中国传统文化中,“天圆 地方”的设计思想催生了“水立方”,它与圆形的“鸟 巢”——国家体育场相互呼应,相得益彰,可以说“水立方” 就是现代时尚和中国传统文化的智慧结晶,它的建成是我的中 华民族的骄傲,它给我们带来了美的享受和美的向往.“鸟巢” 和“水立方”也都是由一些简单几何体组成的,本节我们学习 棱柱、棱锥、棱台等这些简单几何体的结构特征.
些物体抽象出来的空间图形就叫做空间几何体
第一章 1.1 1.1.1
第九页,编辑于星期日:二十二点 一分。
概念
定义
一般地,我们把由若干个 平面多边形 围成的几何体叫
多面 做多面体.围成多面体的各个多边形叫做多面体的 面 ;
体 相邻两个面的 公共边 叫做多面体的棱;棱与棱的 公共点
叫做多面体的顶点
旋转 体
故(1)(2)(3)正确,(4)不正确.
第一章 1.1 1.1.1
第三十一页,编辑于星期日:二十二点 一分。
根据下列关于几何体的描述,说出几何体的名称: (1)由八个面围成,其中两个面是互相平行且全等的正六 边形,其他各面都是矩形; (2)由五个面围成,其中一个面是正方形,其他各面都是 有一个公共顶点的全等三角形; (3)由五个面围成,其中上、下两个面是相似三角形,其 余各面都是梯形,并且这些梯形的腰延长后能相交于一点.
定义 之间的部分叫做棱台 原棱锥的底面和截面分别叫做棱台的下底面 和 上底面
有关 ;其他各面叫做棱台的 侧面 ;相邻侧面的公共边 叫 概念 做棱台的侧棱;底面与 侧面 的公共顶点叫做棱台的
(教师用书)高中数学 1.1.1 棱柱、棱锥、棱台的结构特征课件 新人教版必修2
![(教师用书)高中数学 1.1.1 棱柱、棱锥、棱台的结构特征课件 新人教版必修2](https://img.taocdn.com/s3/m/b8e4a7cd81c758f5f61f675d.png)
Hale Waihona Puke 空间几何体的结构第1课时
棱柱、棱锥、棱台的结构特征 教师用书独具演示
●三维目标 1.知识与技能 (1)能根据几何结构特征对空间物体进行分类. (2)通过观察实例,认识棱柱、棱锥、棱台的结构特征. (3)能运用棱柱、棱锥、棱台的结构特征描述现实生活中 简单物体的结构.
2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出棱 柱、棱锥、棱台的几何结构特征. (2)让学生在观察、讨论、归纳、概括中获取知识. 3.情感、态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学 生学习的积极性,同时提高学生的观察能力. (2)培养学生的空间想象能力和抽象概括能力.
2.多面体与旋转体
类别
多面体
旋转体 由一个平面图形绕 它所在平面内的一 定直线 条 旋转所 封闭几何体 形成的
平面多边形 由若干个 定义 围成的几何体
类别 图形
多面体
旋转体
相关 概念
多边形 面:围成多面体的各个 轴:形成旋转体 公共边 棱:相邻两个面的 所绕的 定直线 公共点 顶点:棱与棱的
棱柱的结构特征
S-ABCD
棱台的结构特征
【问题导思】 观察下列多面体,分析其与棱锥有何区别联系?
【提示】 (1)区别:有两个面相互平行. (2)联系:用平行于棱锥底面的平面去截棱锥,其底面和 截面之间的部分即为该几何体.
棱台的定义、分类、图形及表示
棱台 图形及表示 平行于棱锥底面 定义:用一个 的平面去截棱锥,底面与截面 之间的部分叫做棱台 截面 底面 相关概念:上底面:原棱锥的 公共边 下底面:原棱锥的 侧面与上(下)底面 侧面:其余各面 侧棱:相邻侧面的 ABCD- 三棱台 顶点: 四棱台 A′B′C′D′ 的公共顶点 如图棱台可
高一数学人教版必修二空间几何体的结构ppt课件
![高一数学人教版必修二空间几何体的结构ppt课件](https://img.taocdn.com/s3/m/0521b02aba0d4a7303763aa9.png)
( D)
A.两个圆锥
B.两个圆柱
C.一个棱锥和一个棱柱
D.一个圆锥和一个圆柱
[解析] 如图所示的几何体是由一个圆锥和一个圆柱构成的组合体.
15
4.关于圆台,下列说法正确的是___②__③__④___. ①两个底面平行且全等; ②圆台的母线有无数条; ③圆台的母线长大于高; ④两底面圆心的连线是高.
个圆锥.如下图④所示.
26
命题方向3 ⇨旋转体中的计算问题
典例 3 如图所示,用一个平行于圆锥 SO 底面的平面截 这个圆锥,截得圆台上、下底面的面积之比为 1∶16,截去的圆 锥的母线长是 3 cm,求圆台 O′O 的母线长.
[思路分析] 旋转体的轴截面中有母线、底面半径、高等 主要元素,因而,在涉及这些元素的计算时,通常利用轴 截面求解.在圆台的轴截面中,将等腰梯形的两腰延长, 在三角形中可借助相似求解.这种立体问题平面化是解答 旋转体中计算问题最常用的方法.
( B)
[解析] 圆台的母线延长线交于一点,则A项不正确;圆 台的母线大于高,则C项不正确;圆台的母线与底面相交, 则D项不正确;很明显B项正确.
36
4.已知圆锥 SO 的母线长为 5,底面直径为 8,则圆锥 SO 的高 h=__3___. [解析] 如图 ∵圆锥的底面直径 AB=8 ∴圆锥的底面半径 R=OA=4 又∵SA=5 ∴圆锥的高 h=SO= 52-42=3.
[解析] 沿 BC 剪开,将圆柱体的侧面的一半展开得到矩形 BADC.则 AD=4,
AB=3π·π=3. ∴AC= 32+42=5,即最短绳长为 5.
『规律方法』 1.一般地,沿多面体或旋转体的表面最短距离(路程)问题, 用侧面展开解决.
高中数学必修二全册课件ppt人教版
![高中数学必修二全册课件ppt人教版](https://img.taocdn.com/s3/m/5bdb97bce43a580216fc700abb68a98270feac55.png)
解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
高
平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……
高中数学《棱柱、棱锥、棱台的结构特征 》课件
![高中数学《棱柱、棱锥、棱台的结构特征 》课件](https://img.taocdn.com/s3/m/ce93446176a20029bd642dc0.png)
17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解析 棱柱是由一个平面多边形沿某一方向平移而形 成的几何体,因而侧面是平行四边形,故①对.
棱锥是由棱柱的一个底面收缩为一个点而得到的几何 体,因而其侧面均是三角形,且所有侧面都有一个公共点, 故②对.
棱台是棱锥被平行于底面的平面所截后,截面与底面之 间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相 交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.
所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.
29
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升 空间几何体的展开图
(1)解答空间几何体的展开图问题要结合多面体的结构 特征发挥空间想象能力和动手能力.
(2)若给出多面体画其展开图,常常给多面体的顶点标 上字母,先把多面体的底面画出来,然后依次画出各侧面.
数学 ·必修2
第一章 空间几何体
1.1 空间几何体的结构 1.1.1 棱柱、棱锥、棱台的结构特征
1
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课前自主预习
2
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点一 空间几何体的定义、分类及相关概念 1.空间几何体的定义
(3)若是给出表面展开图,则按上述过程逆推.
30
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 3】 根据如下图所给的平面图形,画出立 体图.
高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征
![高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/824d27bc19e8b8f67d1cb926.png)
解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开
图
示
底面:两个互相平行的面
及
侧面:底面以外的其余各面
相
侧棱:相邻侧面的公共边
关
顶点:侧面与底面的公共顶
概
点
念
记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,
1.1.1 棱柱、棱锥、棱台的结构特征
![1.1.1 棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/1009e13ee009581b6ad9eb26.png)
2.下列结论正确的是 ( B )
A.有两个面平行,其余各面都是四边形的几何体是棱柱 B.一个棱柱至少有五个面,六个顶点、九条棱 C.一个棱锥至少有四个面、四个顶点、四条棱 D.棱锥截去一个小棱锥后剩余部分是棱台 【解析】由棱柱的定义知,A不正确;棱数最少的三棱锥 有四个面、四个顶点、六条棱,C不正确;对于棱锥,用不 平行于底面的平面截去一个小棱锥后,剩余部分不是棱 台,D不正确;B正确.
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介 理查德·菲利普斯·费曼
(Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解,
【提升总结】
特殊的棱柱:
种类较多,
侧棱不垂直于底面的棱柱叫做斜棱柱; 可要记清.
侧棱垂直于底面的棱柱叫做直棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱叫做平行六面体;
侧棱垂直于底面的平行六面体叫做直平行六面体;
底面是矩形的直平行六面体叫做长方体;
棱长都相等的长方体叫做正方体.
探究点3 棱锥的结构特征 棱锥:一般地,有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的多面体叫 做棱锥.如图:
3. 下列命题中,正确的是 ( D ) A.有两个侧面是矩形的棱柱是直棱柱 B.侧面都是等腰三角形的棱锥是正棱锥 C.侧面都是矩形的四棱柱是长方体 D.底面为正多边形,且有相邻两个侧面与底面垂 直的棱柱是正棱柱
1.1.1空间几何体的结构.ppt
![1.1.1空间几何体的结构.ppt](https://img.taocdn.com/s3/m/ebbfb9620740be1e640e9a1a.png)
优秀课件
16
棱台的结构特征
1.棱台的概念:
棱台的底面:
原棱锥的底面和截
面分别叫做棱台的下底
面和上底面。
侧
棱
上底面
侧 面
下底面 顶 点
优秀课件
17
2.棱台的分类:
由三棱锥、四棱锥、五棱锥……截得的 棱台分别叫做三棱台、四棱台、五棱台……
E' F'
A'
E F
A
D' C'
B'
D C
B
优秀课件
7
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底. 棱柱的侧面:其余各面.
E' F'
A'
D' C'
B' 侧
棱柱的侧棱:
侧
面
棱 ED
相邻侧面的公共边. F
棱柱的顶点:
A
B
侧面与底面的公共顶点. 底面
C顶 点
优秀课件
8
棱柱的结构特征
3.棱台的表示:用顶点各底面各顶点的字母表示
棱台ABCD-A‘B’C‘D’
三棱台
四棱台
优秀课件
五棱台
18
例1.如图,过BC的截面截去长方体的 一角,所得几何体是不是棱柱?
D
F
C D
C
A
E
B D
F
D
A CBΒιβλιοθήκη AB AE
优秀课件
19
例2.有两个面互相平行,其余各面都是 平行四边形的几何体是不是棱柱?
人教A版数学必修2课件:第一章空间几何体空间几何体的结构特征(第一课时)
![人教A版数学必修2课件:第一章空间几何体空间几何体的结构特征(第一课时)](https://img.taocdn.com/s3/m/d8111d5242323968011ca300a6c30c225801f01a.png)
(4)
(5)
(6)
(7)
棱锥概念引入 视察下列多面体,有什么相同点
多面体2——棱锥
1.棱锥定义
定义:如果一个多面体的一个面是多边形,其余各面是
有一个公共顶点的三角形, 那么这个多面体叫做棱锥
S
棱锥的顶点
2.棱锥各部分名称
棱锥的侧棱
3.棱锥的表示方法
如:S-ABCDE
E
D O AB
棱锥的侧面
C
棱锥的底面
侧棱不 垂直于 底面
棱柱 斜棱柱
侧棱垂直 于底面
直棱柱
正棱柱
底面 是正 多边 形
其它直棱柱
问题1:有两个面互相平行,其 余各面都是四边形的几何体是棱 柱吗?
答:不一定是
问题2:有两个面互相平行,其 余各面都是平行四边形的几何体 是棱柱吗?
答:不一定是
视察下面的几何体,哪些是棱柱?
(1)
(2)
(3)
问题3:如何定义多面体与旋转体呢?
1.由若干视个察平下面列多物边体形的围形成状的和几大何小体,叫试做给多出面相体 应的空间几何体,说说有它们的共同特征。
2.由一个视平察面下图列形物绕体它的所形在状的和平大面小内,的试一给条出定相 直线应旋的转空所间成几的何封体闭,几说何说体有叫它做们旋的转共体同.特征。
与底面是类似的 与两底面是类似的
多边形
多边形
三角形
梯形
归纳小结1
空间几何体的定义:
如果只考虑物体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体
空间几何体的分类:
1.多面体:由若干平面多边形围成的几何体 2.旋转体:由一个平面图形绕它所在的平面 内的一条定直线旋转所成的封闭几何体
人教版高中数学必修二全册教学课件ppt
![人教版高中数学必修二全册教学课件ppt](https://img.taocdn.com/s3/m/1de8ab3ecdbff121dd36a32d7375a417866fc139.png)
开
关
答 旋转轴叫做圆台的轴,垂直于轴的边
旋转而成的圆面叫做圆台的底面,斜边旋
转而成的曲面叫做圆台的侧面,斜边在旋
转中的任何位置叫做圆台侧面的母线.
圆台用表示它的轴的字母表示,如上图的圆台表示为圆台 O′O.
研一研·问题探究、课堂更高效
填一填 研一研 练一练
问题 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
答案
返回
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
答案
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案
球的结构特征
球
图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?
课
时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
人教版高一数学必修二辅导讲义:1.1空间几何体的结构
![人教版高一数学必修二辅导讲义:1.1空间几何体的结构](https://img.taocdn.com/s3/m/f3895a8fa417866fb94a8e9b.png)
第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。
空间几何体的结构特征及三视图和直观图 经典课件(最新)
![空间几何体的结构特征及三视图和直观图 经典课件(最新)](https://img.taocdn.com/s3/m/1186630dfe4733687e21aad9.png)
图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )