补充章 期权定价的鞅方法
期权定价方法综述
期权定价方法综述期权定价方法综述期权是金融市场中一种重要的金融衍生品,它给予购买者在未来特定时间以特定价格购买或卖出某个标的资产的权利,而不具有强制性。
为了确定一个合理的期权价格,各种期权定价方法应运而生。
本文将对期权定价方法进行综述,并介绍其中几种经典的方法。
1. 期权定价的基本原理期权定价方法的起点是基于期权的内在价值、时间价值和风险溢价。
内在价值指的是期权当前的实际价值,即权利金与标的资产价格之间的差额;而时间价值是指未来时间期权可能产生的价值,因为期权有一定的时间延迟;风险溢价是指市场参与者对未来不确定性风险的补偿。
期权定价方法的目标是确定期权价格,使期权价值与其内在价值、时间价值和风险溢价相匹配。
2. 期权定价方法的分类2.1. 传统期权定价方法传统期权定价方法包括二项式模型、几何布朗运动模型和风险中性定价模型。
二项式模型基于离散时间和离散状态,适用于欧式期权定价。
几何布朗运动模型基于连续时间和连续状态,并假设标的资产价格服从几何布朗运动,适用于欧式和美式期权定价。
风险中性定价模型则基于市场风险中性的假设,将期权价格视为资产组合的风险中性价格,适用于欧式期权定价。
2.2. 数值模拟方法数值模拟方法包括蒙特卡洛模拟和蒙特卡洛树模拟。
蒙特卡洛模拟通过生成大量随机数模拟资产价格的演化,并计算期权价格的期望值,适用于各种类型的期权定价。
蒙特卡洛树模拟将二项式模型和蒙特卡洛模拟相结合,通过生成蒙特卡洛树模拟资产价格的演化,计算期权价格的期望值,适用于欧式和美式期权定价。
2.3. 波动率传播方法波动率传播方法包括BS模型、GARCH模型和SV模型。
BS模型基于标准布朗运动模型,假设标的资产价格服从几何布朗运动,并计算期权价格的解析解,适用于欧式期权定价。
GARCH模型和SV模型通过建立对资产价格波动率的模型,计算出期权价格的解析解,适用于欧式期权定价。
3. 期权定价方法的比较3.1. 传统期权定价方法相对简单,计算速度较快,适用于欧式期权定价,但对于复杂期权和美式期权可能不适用。
期权的定价
期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
期权定价的基本原理及方法
一个简单套利的例子
• 对一个欧式买权,假设 c=3 S0 = 20 T=1 r = 10% K = 18 D=0 • 这个期权的定价是否存在套利机会呢?
为了说明这个问题,我们可以构造如下简单的组合: 卖出一份股票,然后买入一份买权,多余的资金买入相同期限的无风险债券。 该组合初始投入为零。
买权到期时组合的收益情况: 若,ST K 执行期权,获得一份股票,该组合的收益为 Pay off=(S0 c) * (1 r) K (20 3) * (1 0.1) 18 0.7 若,ST K 不执行期权,通过市场买入一份股票,该组合的收益为 Pay off=(S0 c) * (1 r) ST (20 3) * (1 0.1) 18 0.7 因此,无论股价朝哪个方向运行,我们的策略都可以获得大于0. 元的利润。 7 所以这个期权的定价明显偏低。
11 12 13
期权价格 期权价格
买权价格
0 5
10
5
10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 28 29 30 19 18 17 16 15
期权内在价值 利率增加后的价格 红利率增加后的价格
14
利率对买权价值的影响
红利对买权价值的影响
2年期期权价格 期权内在价值 5年期期权价格
21 22 23 24 25 26 27 28 29 30
期权价格
21 22 23 24 25 26 27 28 29 30
期权内在价值 波动率增加后的价格
期限对买权价值的影响
波动率对卖权价值的影响
买权价格
10 15 20 25 10 15 20 25 0
鞅定价方法
鞅定价方法嘿,朋友!今天咱来聊聊鞅定价方法。
你知道吗,这鞅定价方法就像是一把神奇的钥匙,能打开金融世界里那神秘莫测的大门。
想象一下,金融市场就像一个巨大的迷宫,各种资产价格起起伏伏,让人眼花缭乱。
而鞅定价方法呢,就像是我们在迷宫里的指南针,帮我们找到正确的方向。
它可不是随随便便就出现的哦!那可是金融学者们经过无数次的思考和探索才发现的宝贝。
它基于一种很特别的理念,就好像是在告诉我们,市场里的价格变化虽然看似杂乱无章,但其实背后有着一定的规律可循。
比如说股票价格吧,它一会儿涨,一会儿跌,让人摸不着头脑。
但用鞅定价方法去分析,嘿,你就能发现一些有意思的东西。
它能让我们更清楚地看到价格波动的本质,就像给我们戴上了一副特殊的眼镜,让我们能看清那些隐藏起来的细节。
而且啊,这鞅定价方法可实用了呢!它能帮助投资者做出更明智的决策。
就好比你要去一个陌生的地方,有了一张详细的地图,是不是心里就更有底啦?鞅定价方法就是这样一张金融市场的“地图”。
你说,要是没有它,我们在金融的海洋里不就像没头苍蝇一样乱撞吗?那得损失多少机会,又得吃多少亏呀!所以说,鞅定价方法真的是太重要啦。
它能让我们对金融产品的价值有更准确的判断,不至于被那些表面的波动所迷惑。
这就像是一个聪明的侦探,能透过层层迷雾,找到事情的真相。
咱再想想,要是没有这样的方法,那些金融专家们怎么能在复杂的市场中如鱼得水呢?他们肯定是靠着这些厉害的工具呀!总之呢,鞅定价方法就是金融领域里的一颗璀璨明星,照亮了我们在金融世界里前行的道路。
它让我们能更好地理解市场,更好地把握机会。
你可别小瞧了它哟,说不定哪天它就能帮你在金融市场里大赚一笔呢!所以呀,一定要好好了解它,掌握它,让它为你所用。
怎么样,是不是觉得鞅定价方法很神奇呀?是不是也想赶紧去研究研究呢?哈哈!。
期权定价的三种方法
期权定价的三种方法期权是一种权利,持有者有权买卖证券或商品的特定数量。
期权的定价对投资者来说至关重要,因为它决定了期权的价值。
为了定价期权,投资者需要先了解市场和期权的各种因素,然后选择一种有效的定价方法。
本文将介绍期权定价的三种方法,分别是Black-Scholes 模型、蒙特卡罗模拟法和实际条件定价法。
Black-Scholes模型是一种简单而有效的期权定价模型,由美国经济学家贝克-施罗斯和美国数学家史蒂文-黑格森于1973年提出。
Black-Scholes模型假设期权价格受到无风险利率、资产价格、波动率和时间等因素的影响,通过分析复杂的概率函数实现定价。
Black-Scholes模型以期权价值收益率为基准,以确定期权价格是否有利于投资者。
另一种期权定价方法是蒙特卡罗模拟法,它能够模拟出异常动态市场中期权价格的情况。
蒙特卡罗模拟法可以预测风险事件如何影响期权价格,并计算不同投资决策下期权价格的变化。
它根据投资者的投资组合来确定抗风险性,以提供可靠的期权定价评估结果。
最后一种期权定价方法是实际条件定价法,它是基于真实的市场数据定价的。
实际条件定价法主要考虑的因素包括期权的行使价格、期权期限、可买入或卖出的股票价格等。
它可以考虑期权的复杂性,从而帮助投资者做出更精确的定价决策。
总之,期权定价方法有Black-Scholes模型、蒙特卡罗模拟法和实际条件定价法。
期权投资者可以根据他们对期权的理解以及对市场变化的看法,来灵活使用这些方法,以进行有效的期权定价。
期权定价是一个有挑战性的过程,但是把握住期权定价的技巧可以帮助投资者实现更好的投资回报。
许多期权定价模型都是针对特定市场环境的,所以投资者在使用期权定价方法时,需要充分考虑当前市场环境中的多种因素,以确保最优的定价结果。
此外,投资者也需要定期更新期权定价模型,以便于更好地捕捉新的变化并且按照新的变化作出有效的期权定价决定。
补充章 期权定价的鞅方法
• 一、鞅(martingale)与等价鞅测度 • 鞅是随机过程的一种,它的显著特点是未来的 期望等于现在。一个随机过程一般伴随着一个 测度。等价鞅测度即是把不是鞅的随机过程转 化成鞅的测度。这一测度和原来随机过程伴随 的测度等价。转化成鞅后,可是直接采用求数 学期望的方法来获得金融衍生产品的价格,如 期权,而不用解偏微分方程了。
dS dt S rdt dz Q Q ur dz dt
• 显然,由于转换后的漂移项从风险u转换 成了无风险r,则 Q是风险中性下的概率测 Q dz 度, 则是风险中性下的布朗运动 • 3 风险中性下概率测度的转换 • 可以从2中风险中性下的Q测度转换成风 险中性下的另一概率测度。
令:dz Q dz R dt , 代入可得: dS R rdt dz dt S (r+ 2 )dt dz R
• 4 小结 • a、每个随机过程都对应着一个概率测度 b、在概率测度转换过程时,各概率测度约束 下的随机变量期望值都相等。 • 三、Girsanov 定理 T 1 T 2 1 T 2 Q exp dz dt , 且 E exp( dt ) , t • 若 t t 0 0 2 2 0 • 则新测度R与原测度Q之间的对应关系为:
• 二、风险中性下的资产价格随机过程 • 1、在B-S模型中,资产价格服从Ito过程,即: dS dt dz P S
P dz • 此处, 代表在概率测度P下的布朗运动,P是
风险环境下的概率测度。 • 2、该过程可以转换为风险中性下的随机过程: • 令 dz P dz Q u r dt , 代入可得:
PR ( A) T dPQ
随机利率下股票价格服从指数O-U过程的期权定价
随机利率下股票价格服从指数O-U过程的期权定价
李美蓉
【期刊名称】《合肥工业大学学报(自然科学版)》
【年(卷),期】2009(032)004
【摘要】文章建立了股票价格服从指数O-U过程的随机微分方程,在风险中性的假设下利用Girsanov定理找到了该模型的唯一等价鞅测度;利用期权定价的鞅方法,得到了随机利率情形下股票价格服从指数O-U过程,并且影响利率的因素与影响股票价格的因素相关时欧式期权的定价.
【总页数】3页(P598-600)
【作者】李美蓉
【作者单位】合肥师范学院,数学系,安徽,合肥,230061;合肥工业大学,数学系,安徽,合肥,230009
【正文语种】中文
【中图分类】O211.6
【相关文献】
1.股票价格服从指数O-U过程的再装期权定价 [J], 傅强;喻建龙
2.股票价格服从指数O-U过程的复合期权定价方法探析 [J], 许聪聪;王建锋
3.随机利率下服从分数O-U过程的二元期权定价 [J], 张翠娥;徐云
4.股票价格服从指数O-U过程的双标的幂型欧式混合期权定价 [J], 黄武;徐云
5.股票价格服从指数O-U跳扩散过程的期权定价 [J], 朱霞;葛翔宇
因版权原因,仅展示原文概要,查看原文内容请购买。
期权定价期权定价公式
期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
第十二章 金融发展理论 《发展经济学》PPT课件
四、金融生态理论
金融生态是指对金融的生态特征和规律的系统性 抽象,反映金融内外部各因素之间相互依存、相 互制约的有机的价值关系。
金融生态环境包括两个层面,一是全局与宏观层 面的生态环境,包括政府、立法、司法环境等, 从法律体系上讲,有商业银行法、保险法、证券 法,还有票据法、担保法,以及其他的法规规章 等;二是地方层面上的生态环境。
9
2、从均值-方差理论到CAPM 夏普于1963年对模型进行了详细研究,在有风险 的情况下扩展了M-V理论并建立了资本资产定价 的均衡理论。
10
(二)CAPM的基本假设 存在着大量投资者,每个投资者的财富相对于所有投资
者的财富来说是微不足道的。投资者的价格的接受者, 单个投资者的交易行为不会影响证券的价格。这一假设 符合微观经济学中对完全竞争市场的定义。 投资者的投资都有一个相同的证券持有期,即投资期限 均相同,他们只考虑投资期内的投资行为,不考虑投资 期外的情况。这种行为是短视的,因为它忽略了在持有 期结束的时点上发生的事件的影响。短时行为通常为非 最优行为。
14
持有期限。标准CAPM没有明确指出投资者持有证券 或证券组合的时间长度,在实证研究中,大多数对 CAPM的检验采用阅读数据。怎样选择合适的收益率 的时间期限,应视具体的实证检验和实际金融市场 的发展程度及时间长短而定。 实际收益问题。标准CAPM是关于实际价格和实际收 益率的模型,但实际上能观察到的数据只是名义价 格,更遗憾的是CPI数据具有明显的之后特征;另外, 在分析中还需要预期通货膨胀数据而不是实际的通 胀率。解决这个问题的方法是用名义超额收益率替 代实际的超额收益率。
11
投资者的投资范围仅限于公开金融市场上交易的 金融工具。这一假设排除了可投资于非交易性证 券如教育(人力资本)、私有企业、政府基金证 券如市政大楼、国际机场等。此外,还假设投资 者可以在固定的无风险利率基础上自由接入或贷 出任何额度的证券,即允许卖空无风险证券,交 易的证券资产是无限可分的。
期权定价公式
期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。
第六章关于鞅方法定价
第六章关于鞅方法定价在上一章的二项树模型下,我们证明了,当完备市场中不成在套利时机时,市场存在独一概率——等价鞅测度——可以 用来给期权和期货定价。
在这一章,我们先在二项树模型下详细解释等价鞅测度的含义。
接着,我们讨论普通结果。
我们将证明,这个结果在比二项树模型更复杂的经济系统中也成立。
在许多背景下,我们并不需求应用市场平衡来给衍生资产定价,而是应用套利定价原理来停止定价——假设证券市场不存在套利时机,那么衍生证券的价钱完全由别的临时证券的价钱进程来决议。
在这个定价的进程中,我们通常把一个临时证券集的价钱进程视为给定而来停止定价。
这样就自然发生一个效果:如何确定被我们视为给定的价钱进程不存在套利时机? 价钱进程不存在套利时机的充沛必要条件是,经过变换概率测度和对价钱进程停止某种正轨化之后,这些价钱进程是鞅进程。
无套利和鞅进程之间的这种特殊关系也可以直接用来对衍生证券停止定价。
作为一个运用,我们将用这种方法来对期权停止定价,失掉期权定价的一种新的方法。
1.二项树模型中的等价鞅测度在二项树模型中模型图1一期二项式生成进程这里∆-t S =股票在时间∆-t 的价钱 q =股票价钱下跌的概率 r f =一期的无风险利率u =股票价钱下跌的乘子)11(>+>f r u d =股票价钱下跌的乘子()011<<<+d r f在每一期末,股票价钱或许以概率q 涨为∆-t uS ,或许以概率1-q 跌为∆-t dS 。
每期的无风险利率为r f 。
对r f 的限制为u r d f >+>1,这是无套利条件。
直观地可以看出,无论是1+>>r u d f 〔这时,无风险利率总比股票的风险报答率高〕还是u d r f >>+1〔这时,无风险利率总比股票的风险报答率低〕,都存在套利时机。
等价鞅测度的含义: 等价的含义:当实践的概率为正时,p 也为正。
条件希冀直观解释:在某种条件下的希冀值。
金融数学模型在外汇期权定价中的应用
毕业论文(设计)开题报告题目:金融数学模型在外汇期权定价中的应用学生姓名:指导教师:系别:专业、班级:学号:填表时间: 2010年xx月xx日一、立题依据(目的意义,国内外研究现状、水平与发展趋势)金融数学是一门新兴边缘学科,在国际金融界和应用数学界受到高度重视。
未定权益的定价和套期保值理论是金融数学研究的核心问题之一,它涉及现代余融学的资产定价理论、投资组合理论以及现代数学中的随机分析、随机控制、优化理论、数理统计等学科。
它的理论研究不仅丰富和发展了现代金融学,而且对数学的许多分支起到了推动力的作用。
在跨国公司竞争自热化的时代,对汇率风险的控制和转移已经成为各公司重心之一,能否控制好风险汇率成为了企业生死存亡的关键。
研究意义:金融数学是一门新兴边缘学科,在国际金融界和应用数学界受到高度重视,1997年Nobel经济学奖授予Scholes和Merton,就是为了奖励他们在期权定价(如著名Black--Scholes公式)II等金融数学方面的贡献。
随着金融市场的蓬勃发展,金融市场呈现出高度的不确定性与高风险性,特别是这几年金融衍生工具给国际金融业造成巨大冲击,促使学术界和实业界开始考虑如何正确评估衍生产品的风险性,如何加强对资产投资组合的风险管理,这客观上为人们对金融衍生证券的重视创造了前提条件。
其次,由于未定权益定价的基本原理已融于其它的经济理论中,这使得关于未定权益定价一般原理的探索、期权定价模型的建立及其实证检验分析被金融学界越来越重视。
再次,金融数学模型的建立,对金融市场风险分析、预测与监控有着非常重要的作用。
国内外研究现状、水平与发展趋势:金融数学的历史最早可以追溯到1900年法国数学家巴歇里埃(Bachelier L.)的博士论文——“投机的理论”。
这位法国天才在Einstein和Wiener(正式建立了Brown运动的数学模型1905年)之前就已经认识了Wiener函数的一些重要性质,即扩散方程和Brown运动的极值分布,并在其博士论文投机理论(The Theorv ofSpeculation)中首次用Brown运动来描述股票价格的变化,并给出了欧式买权的定价公式。
black schole 模型鞅方法
black schole 模型鞅方法Black-Scholes模型是金融领域中常用的一种衡量期权定价的数学模型,它基于一些假设,如市场完全有效、无风险利率不变、标的资产符合对数正态分布等。
鞅方法是Black-Scholes模型的一种求解过程,用于计算期权的理论价格。
在Black-Scholes模型中,期权的价格受到多个因素的影响,包括标的资产价格、行权价格、到期时间、无风险利率和波动率。
鞅方法的核心思想是通过构建一个鞅过程,将期权价格与标的资产价格联系起来,并利用鞅过程的性质来对期权进行定价。
具体而言,鞅方法通过构建一个投资组合,其中包括期权和标的资产的多个头寸,以达到对冲的目的。
通过对投资组合进行动态调整,使得投资组合的价值在任意时刻都保持不变,即为鞅过程。
根据鞅过程的性质,可以得出期权价格的偏微分方程,并通过求解该方程得到期权的理论价格。
鞅方法的求解过程中,需要对标的资产价格的变动进行建模。
Black-Scholes模型假设标的资产价格服从对数正态分布,这使得鞅方法可以得到解析解。
通过对标的资产价格的对数变换,可以将其转化为服从正态分布的随机变量,从而简化求解过程。
在鞅方法的求解过程中,需要计算期权的delta值,即期权价格对标的资产价格的变动的敏感度。
delta值可以用来衡量投资组合的对冲效果,通过调整投资组合中的期权和标的资产的头寸,可以使得投资组合的delta值为零,从而达到对冲的目的。
除了delta值,还需要计算期权的gamma值、vega值等,用于衡量期权价格对标的资产价格、波动率等因素的敏感度。
这些敏感度指标可以帮助投资者评估期权的风险和收益,并做出相应的投资决策。
鞅方法在Black-Scholes模型中的应用不仅限于期权定价,还可以用于其他金融衍生品的定价和风险管理。
通过建立适当的鞅过程,可以对金融衍生品的价格进行动态调整,实现对冲和风险管理的目标。
Black-Scholes模型鞅方法是一种重要的金融工具,用于期权定价和风险管理。
期权定价的鞅及其对偶鞅模型
期 权 定 价 的鞅 及 其 对 偶鞅 模 型
胡之英 , 刘新平
( 西 师范 大学数 学 与信 息科 学学 院 陕西 西安 706 ) 陕 10 2
摘 要 : 未定权益 的定价 问题 就是求其收益 函数 的贴现在 等价鞅 测度下的期望 , 考虑测度变换对 于期
鞅 对偶 鞅 文献标识码 : A 文章编号 : 10 9 9 ( 0 8 0 0 1 — 4 0 7— 7 3 2 0 )2— 0 1 0
果 E ( ‘ I ) <o 则 必存 在一 个测 度 P 满 足 。p c ,
,
( ) 是与 P 1P 等价的概率测度;
(警 …p 2 ) ( -
一
;
() t +【 s 个Q一 运 NO£ 3t = d是一 o o 布朗 动, (, )
其中 E (・ 表示 P ) 测度下的期望 , (・ 表示测度 P 下的期望. E ) 该定理是我们处理随机过程漂移率的一个不可缺少的工具 , 我们知道漂移率与测度相对应 , 从本定
,
令】 , =
, ( + f所以 d . + 卜,)t 0 =£ , J 5= s .( q d s
这样在 新 的等 价测度 P 下 , S 的预期收益 率等 于 卜- ,是市场 的无风 险利率 , 红利率 , qr q是 所有投
资者对股票的预期收益率都相同, 这说明 P 是无风险中性侧度.
理 可知 : 在 P 测 度下 是一 个带 有某 个 给定 漂移 函数 一 的 Bo n运 动. rw
收 稿 日期 :0 7—1 0 20 1— 1
基 金项 目: 国家 自然科 学基金 资助项 目( 0 7 07 . 42 13 ) 作者简介 : 胡之英 ( 90一) 女 , 18 , 河北省邢 台市人 , 硕士研究生 , 主要从 事应 用概率统计方面研究.
鞅在期权定价中的应用
The Annals of Applied Probability1999,Vol.9,No.2,504–528PRICING CONTINGENT CLAIMS ON STOCKSDRIVEN BY L´EVY PROCESSES1By Terence ChanHeriot-Watt UniversityWe consider the problem of pricing contingent claims on a stock whose price process is modelled by a geometric L´e vy process,in exact analogy withthe ubiquitous geometric Brownian motion model.Because the noise pro-cess has jumps of random sizes,such a market is incomplete and there isnot a unique equivalent martingale measure.We study several approachesto pricing options which all make use of an equivalent martingale measurethat is in different respects“closest”to the underlying canonical measure,the main ones being the F¨o llmer–Schweizer minimal measure and the mar-tingale measure which has minimum relative entropy with respect to thecanonical measure.It is shown that the minimum relative entropy measureis that constructed via the Esscher transform,while the F¨o llmer–Schweizermeasure corresponds to another natural analogue of the classical Black–Scholes measure.1.Introduction.We consider the problem of pricing contingent claims on a stock whose price at time t,S t,is modelled by a geometric L´e vy processdS t=σt S t−dY t+b t S t−dtwhere Y is a general L´e vy process(satisfying some additional conditions)and not merely a Brownian motion.The classical option pricing theory of Black and Scholes relies on the fact that the payoff of every contingent claim can be duplicated by a portfolio consisting of investments in the underlying stock and in a bond paying a riskless rate of interest;in other words,the risk of buying or writing an option can be completely hedged against.In such complete mar-kets,there is a unique measure which is equivalent to the canonical measure (the“real world”measure)and which makes the discounted price process a martingale.The unique fair price of a contingent claim is then the expectation under this martingale measure of the discounted payoff at maturity,which is essentially the content of the famous Black–Scholes formula.For the stock prices described above,there are many equivalent measures under which the discounted price process is a martingale,in contrast to the geometric Brownian model.In other words,such a market is incomplete—that is,contingent claims cannot in general be hedged by a suitable portfolio. Because there does not exist a unique equivalent martingale measure,it is not possible simply to use the martingale measure to price a contingent claim in the manner just described.Instead,additional criteria must be used to select Received April1997;revised November1997.1Supported in part by the Carnegie Trust for the Universities of Scotland.AMS1991subject classifications.Primary90A09,60G35;secondary60J30,60J75.Key words and phrases.Option pricing,incomplete market,equivalent martingale measures.504OPTION PRICING WITH L´EVY PROCESSES505an appropriate martingale measure from among the uncountably many such measures with which to price a contingent claim.Many different approaches to this problem have been proposed in recent years but there is as yet no definitive way of pricing contingent claims in incomplete markets which is preferable to the other possible methods in all situations.Moreover,compared to the large body of work devoted tofinding new approaches to option pricing in incomplete markets,relatively little seems to have been done to compare and to investigate the relationship between the various approaches.Part of the aim of this paper is to go a little way toward redressing the balance.For our particular model,we shall concentrate on various approaches to pricing options which are all based on the idea of using an equivalent martingale measure that is in different respects“closest”to the underlying canonical measure,the main ones being the F¨o llmer–Schweizer minimal measure and the martingale measure which has minimum relative entropy with respect to the canonical measure.2.Description of the model.Before describing the model,wefirst re-view some preliminary results concerning L´e vy processes.For a more detailed treatment,the reader is referred to Protter(1990),Jacod and Shiryaev(1987) and Liptser and Shiryayev(1989).A L´e vy process Y t is simply a process with stationary and independent increments:in other words,Y s+t−Y s is independent of Y u u≤s and has the same distribution as Y t−Y0.All L´e vy processes are semimartingales and throughout this paper we adopt the convention that all L´e vy processes are right continuous with left limits(cadlag).Since Y has stationary independent increments,its characteristic function must take the formE exp −iθY t =exp −tψ θfor some functionψ,called the L´e vy exponent of Y.The L´e vy–Khintchine formula says that2 1 ψ θ =c22θ2+iαθ+ x <1 1−e−iθx−iθx ν dx + x ≥1 1−e−iθx ν dxforα,c∈R and for someσ-finite measureνon R\ 0 satisfying2 2 min 1 x2 ν dx <∞The measureνis called the L´e vy measure of Y.The L´e vy–Khintchine formula(2.1)is intimately connected to the structure of the process Y itself,in particular to the L´e vy decomposition of Y,which we describe below.From the L´e vy–Khintchine formula we can deduce that Y must be a linear combination of a Brownian motion and a quadratic pure jump process X which is independent of the Brownian motion.[A process is506T.CHANsaid to be quadratic pure jump if the continuous part of its quadratic variation X c≡0,in which case its quadratic variation becomes simplyX t= 0<s≤t X s 2where X s=X s−X s−is the jump size at time s.]It will be convenient to explicitly separate out the Brownian component from the quadratic pure jump component X and we therefore write2 3 Y t=cB t+X twhere B is a standard Brownian motion on R and X is quadratic pure jump. We now proceed to describe the L´e vy decomposition of X[the full L´e vy de-composition of Y is then obtained by combining this with(2.3)].Let Q dt dx be a Poisson measure on R+×R\ 0 with expectation(or intensity)measure dt×ν whereνis the L´e vy measure introduced earlier and dt denotes Lebesgue measure.The measureν(or more precisely dt×ν)is also sometimes called the compensator of Q.The L´e vy decomposition of X says that2 4 X t= x <1 x Q 0 t dx −tν dx + x ≥1 x Q 0 t dx +t E X1− x ≥1 xν dx= x <1 x Q 0 t dx −tν dx + x ≥1 x Q 0 t dx +αtwhere we have putα=E X1− x ≥1 xν dxThe parameterαis called the drift of the L´e vy process X.For the purposes of our model,we require the process Y to satisfy certain additional conditions.The key assumption we require of Y is that2 5 E exp −hY1 <∞for all h∈ −h1 h2 ,where0<h1,h2≤∞.This implies that Y t hasfinite moments of all orders, and in particular,E X1 <∞.In terms of the L´e vy measureνof X we havex ≥1 e−hxν dx <∞(2.6a)x ≥1 xγe−hxν dx <∞∀γ>0(2.6b)x ≥1 xν dx <∞(2.6c)OPTION PRICING WITH L´EVY PROCESSES507 for all h∈ −h1 h2 .[Note that as(2.6a)holds for all h in an open interval, (2.6b)and(2.6c)follow from(2.6a).]With these assumptions in mind,(2.4)can be rewritten as2 7 X t= R x Q 0 t dx −tν dx +t E X1 =M t+atwhere M t= R x Q 0 t dx −tν dx is a martingale and a=E X1 .Ob-serve that(2.7)gives the Doob decomposition of X as the sum of a martingale and a previsible process offinite variation.Even though a is not the drift of X in the sense in which the term is usually understood(αis the drift in the technical sense),we shall see later that a plays the role of a drift contribution from the jump component of Y.We refer to a(or more correctly,the process t→at)as the previsible part of X.In addition,(2.5)implies that instead of the characteristic function,one could consider the Laplace transform of Y t instead.By a slight abuse of nota-tion,we also useψto denote the“L´e vy exponent”and write E exp −θY t = exp −tψ θ .Bearing in mind the simplified decomposition(2.7)for processes satisfying(2.5),the L´e vy–Khintchine formula(2.1)now becomes2 8 ψ θ =−c2θ22+aθ+ R 1−e−θx−θx ν dxA very similar analysis can be carried out for more general semimartingales with jumps and in particular for processes with independent but not neces-sarily stationary increments.Jacod and Shiryaev(1987)have a full treat-ment.A random measure Q dt dx is also associated with such a process, but it is not necessarily a Poisson measure.As in the case of L´e vy processes, the measure Q describes the mechanism by which jumps of the process oc-cur.The compensator of Q is the unique previsible measureν dt dx such that Q 0 t −ν 0 t is a martingale for any Borel set ⊂R\ 0 .If the process in question has independent increments,the measureνis neces-sarily deterministic,so Q is an inhomogeneous Poisson measure.[For L´e vy processes,the stationarity of increments implies thatν dt dx =dtν dx .] The compensator can also be characterized as the unique previsible measure such that2 9 E 0 t × H s x Q ds dx =E 0 t × H s x ν ds dxfor any Borel set and any previsible process H.We also have an analogue of the L´e vy–Khintchine formula:E exp −θX t =exp −ψX t θ where 2 10 ψX t θ =a tθ+ R 1−exp −θx −θx ν 0 t dxwhere a t=E X t is the previsible part of X.Together with the quadratic variation of the continuous part of X(which is zero if X is quadratic pure jump as in our case),the compensator measure and previsible part form the508T.CHANthree components of the characteristics of a semimartingale.The following result is also worth noting:for any measurable function f t x ,2 11 0<s≤t f s X s = t0 R f s x Q ds dxNext,we recall Itˆo’s formula for cadlag semimartingales.If X1 X2 X n are cadlag semimartingales and f a C2function,thenf X1t···X n t −f X10···X n0= t0f i X1s−···X n s− dX i s+12 t0f i j X1s−···X n s− d X i X j c s+ 0<s≤t f X1s···X n s −f X1s−···X n s− −f i X1s−···X n s− X i swhere X i X j c is the continuous part of the mutual variation of X i and X j, f i=∂f/∂x i,f i j=∂2f/∂x i∂x j and we have used index summation convention. This will often be abbreviated tod f X1t X2t···X n t=f i X1t−···X n t− dX i t+12f i j X1t−···X n t− d X i X j c t+f X1t···X n t −f X1t−···X n t− −f i X1t−···X n t− X i t Turning now to a description of the model,on a probability space t P ,let Y t=cB t+X t=cB t+M t+at be a L´e vy process of the form described earlier,satisfying the condition(2.5).We assume that thefiltration t is the minimal one generated by Y.The stock price S t is the solution of the stochastic differential equation2 12 dS t=σt S t−dY t+b t S t−dt=σt S t− c dB t+dM t + aσt+b t S t−dtwhere the coefficientsσt and b t are deterministic continuous functions.Equa-tion(2.12)has an explicit solution[see Protter(1991)]given by2 13 S t=S0exp t0σs dY s+ t0 b s−c2σ2s2 ds× 0<s≤t 1+σs Y s exp −σs Y s=S0exp t0cσs dB s+ t0σs dM s+ t0 aσs+b s−c2σ2s2 ds × 0<s≤t 1+σs M s exp −σs M sFrom this we see thatσ S u u≤t = t and so a contingent claim T expiring at time T may be regarded as a nonnegative T-measurable random variable.OPTION PRICING WITH L´EVY PROCESSES509 The Doob decomposition of Y suggests that b t+aσt rather than b t should be regarded as the drift in(2.12).Although in practice,a and b cannot be estimated separately and consequently there is no need to add a drift to X separately from b in(2.12),we have chosen to consider the parameters a and b separately for convenience,because the value of a is often implicit in the specification of a particular process as X and so cannot be chosen indepen-dently(e.g.,if we specify that X be a Poisson process of rateλ,this forces a=λ).In order to ensure that S t≥0for all t almost surely,we needσt M t≥−1 for all t.This in turn implies that the jumps of X must be bounded on at least one side,that is,either bounded from below or bounded from above. Suppose that X t= M t∈ −c1 c2 which is equivalent to saying that the L´e vy measureνis supported on −c1 c2 where c1,c2≥0and one(but not both)of c1,c2may be infinite.This implies that at least one of h1,h2in(2.5) must be infinite.In order to ensure that S t≥0we need2 14 −1c2≤σt≤1c1for all t.As far as the Brownian component of Y is concerned,the sign of the volatilityσis inconsequential,but if one were to keep to the usual convention thatσ>0, then(2.14)shows that the jumps of X should be bounded from below(i.e., c1<∞).The conditions(2.5)and(2.14)will of course rule out any processes with“fat-tailed”distributions such as stable processes.However,the allowable L´e vy processes here include all the processes considered in Gerber and Shiu (1994):for example the gamma,the inverse Gaussian,the Poisson and the difference of two independent Poisson processes.The riskless rate of interest is given by a deterministic continuous function r t and the value P t of a bond or bank account paying this rate of interest evolves according to the ODE˙P t=r t P tAs withσand b,we could also allow r to be adapted to t ,although this is a less useful generalization in practice.For notational convenience,we denote byˆS t the discounted stock price defined by2 15 ˆS t=exp − t0r s ds S tIt will be seen in the next section that,in this model,there are many mea-sures,equivalent to the underlying canonical measure P,which makesˆS t a martingale.We conclude this section by briefly mentioning some other similar models which have been considered by various authors.Bardhan and Chao(1993)con-sidered a similar model where the noise consists of several Brownian motions and several point processes whose jumps are all of size1but whose intensities510T.CHANmay not be time-homogeneous and may be random.However,the contingent claims they considered are on more than one stock,where the number of stocks exactly equals the total number of noise terms(Brownian motions and point processes).This,together with the fact that the jump sizes arefixed,ensure that their model is complete.Aase(1988)is essentially an attempt at a more general model than that of Bardhan and Chao,where the point process may have random jump sizes but still afinite number of jumps in anyfinite time interval.Unfortunately,Aase(1988)claims that the model is also complete even though there are more than one equivalent martingale measure;this is false because it contradicts a well-known theorem of Harrison and Pliska (1981,1983)to the effect that completeness of the market is equivalent to uniqueness of the equivalent martingale measure.Indeed,Aase(1988)claims that every martingale can be represented as an integral with respect toˆS t,in the form2 16 t0θs dˆS swhereθt is a previsible process.(The existence of such a representation is equivalent to completeness.)This is false,as the martingale representation theorem[see,e.g.,Jacod and Shiryaev(1987)]for the jump processes consid-ered in Aase(1988)(which includes certain classes of L´e vy processes)says that every martingale has the representationt0H s x ˜Q ds dx −˜ν ds dxwhere˜Q ds dx is a random jump measure whose compensator is˜ν—analogous,respectively to the Poisson and L´e vy measures associated with a L´e vy process—and where H s x is a previsible Borel function(see the next section for a precise definition).We shall see in the next section that, under any equivalent martingale measure,the jump part ofˆS t has the representationt0γs d˜M s= t0 Rγs x ˜Q ds dx −˜ν ds dxHence,in order that the representation(2.16)holds,we need H s x =θsγs x, which of course is not true in general.Finally,Gerber and Shiu(1994)con-sider the case where the stock price is modelled by a process of the form exp σY t+bt ,whereσand b are constants and Y is a L´e vy process satisfying (2.5).This has many similarities with our present model and both are obvious generalizations of the geometric Brownian model.The program carried out in the next section can be equally well carried out for the Gerber–Shiu model, often with only fairly minor modifications.Each model has its own advantages and disadvantages.The main advantage of the Gerber–Shiu model is that the jumps of X can be of any size and do not have to be bounded from one side. The present model based on(2.12)describes the price dynamics in a mannerOPTION PRICING WITH L´EVY PROCESSES511 which is intuitively more natural and is also more appealing in other mathe-matical respects.This is because the starting point of the classical geometric Brownian model is(2.12);that the price S t also has the form exp σ Y t+b t isa direct consequence of the stochastic calculus involved,in particular,Itˆo’s for-mula.For discontinuous L´e vy processes,Itˆo’s formula is rather different and so a model which takes as its starting point a differential equation like(2.12) and then takes account of the differences in the underlying stochastic calculus in the subsequent computations is more likely to lead to simpler calculations and more attractive results.This point is illustrated in Section3.3in relation to the Esscher transform and minimum relative entropy measure.Gerber and Shiu(1994)deal only with pricing contingent claims by Esscher transforms, without explaining why the Esscher transform is a particularly appropriate martingale measure to use.[However,in their response to the discussions that follow their paper,they give a justification of the Esscher transform in terms of utility;see page175of Gerber and Shiu(1994).]We shall show that it is the martingale measure which has minimum relative entropy with respect to the canonical measure.3.Equivalent martingale measures and pricing formulas.We be-gin by characterizing all equivalent martingale measures Q under which the discounted price processˆS defined at(2.15)is a t -martingale.To this end, wefirst need to characterize all the measures which are absolutely continuous with respect to P.We continue to use the notation established in the previous section.In particular,Y t=cB t+X t is a L´e vy process satisfying(2.5)and X t is a quadratic pure jump L´e vy process with L´e vy measureνsupported on a subset of −c1 c2 ,where at least one of c1,c2isfinite.The Doob–Meyer decompo-sition of X is given by X t=M t+at,where M is a quadratic pure jump martingale with M0=0and a=E X1 .If Q dt dx is the Poisson measure associated with X,let M dt dx =Q dt dx −dtν dx denote the compen-sated measure.Thus,for example,the martingale part of X can be written as M t= t0 R x M ds dx .Further,expectations under the canonical measure P will be denoted by E · while expectations with respect to any other measure Q will be denoted by Q · .Let denote the previsibleσ-algebra on ×R+associated with thefiltra-tion t and let˜ = × ,where is the Borelσ-algebra on R.A function H ω t x which is˜ -measurable will be called Borel previsible.Thus,sup-pressing the explicit dependence onω,a Borel previsible function or process H t x is one such that the process t→H t x is previsible forfixed x and the function x→H t x is Borel-measurable forfixed t.Lemma3.1.Let G t and H t x be previsible and Borel previsible processes respectively.Suppose thatE t0G2s ds <∞512T.CHANand H≥0,H t 0 =1for all t≥0.Let h t x be another Borel previsible process such that3 1 R H t x −1−h t x ν dx <∞Define a process Z t by3 2 Z t=exp t0G s dB s−12 t0G2s ds+ t0 R h s x M ds dx− 0 t ×R H s x −1−h s x ν dx ds × 0<s≤t H s X s exp −h s X sThen Z is a nonnegative local martingale with Z0=1and Z is positive if and only if H>0.Remark.The process h referred to in Lemma3.1is,of course,not unique. However,given H,it is essentially unique in the following sense:suppose that h t x and f t x are two Borel previsible processes such that(3.1)holds;then because R f t x −h t x ν dx <∞,it is an easy exercise to check that the process Z is unchanged if h is replaced by f in(3.2):simply write f= h+ f−h .[However,note that it is crucial that R f t x −h t x ν dx <∞: the terms involving h in(3.2)do not cancel precisely because R h t x ν dx may diverge.]Thus,once H isfixed,Z does not depend on the choice of the process h satisfying(3.1).Of course,the easiest and most obvious choice of h is h≡H−1 However,in the present context,particularly in connection with the Esscher transform discussed below,it is useful to allow more general choices of h.In the case where x→H t x is twice-differentiable,the natural choice of h t x ish t x =x ∂H∂x t 0 =h t x say,for then H t x ∼1+h t x+O x2 as x→0and because of(2.6c)we simply have to choose H so thatx ≥1H t x ν dx <∞We shall henceforth assume that h t x =h t x is related to H t x in this way.Proof of Lemma3.1.It is clear that Z is nonnegative(resp.,positive)if and only if H≥0(resp.,H>0).That Z is a local martingale is a simpleOPTION PRICING WITH L´EVY PROCESSES513consequence of Itˆo’s formula;indeed,noting that Z t−Z t−=Z t− H t X t −1 ,Itˆo’s formula givesZ t=1+ t0G s Z s−dB s+ t0 R h s x Z s−M ds dx− t0 R Z s− H s x −1−h s x ν dx ds+ 0<s≤t Z s− H t X t −1−h s X s=1+ t0G s Z s−dB s+ t0 R h s x Z s−M ds dx+ t0 R Z s− H s x −1−h s x M ds dx=1+ t0G s Z s−dB s+ t0 R Z s− H s x −1 M ds dxThis last expression is a local martingale.2The processes G,H and h can be chosen so that E Z t =1for all t,in which case Z is a martingale.The next result is essentially a summary of Theorems3.24and5.19in Chapter III of Jacod and Shiryaev(1987)as they apply to the present setting.Theorem3.2.Let˜P be a measure which is absolutely continuous with re-spect to P on T.Thend˜Pd P T=Z Twhere Z is as in Lemma3.1,for some G,H and h for which E Z T =1. Moreover,under˜P,the process3 3 ˜B t=B t− t0G s dsis a Brownian motion and the process X is a quadratic pure jump process with compensator measure given by˜ν dt dx =dt˜νt dx ,where3 4 ˜νt dx =H t x ν dxand previsible part given by3 5 ˜a t=˜P X t =at+ t0 R x H s x −1 ν dx dsRemark.Jacod and Shiryaev(1987)treat only the case that h≡H−1 for the process Z in Lemma3.1.Also,in their treatment of characteristics of general semimartingales,Jacod and Shiryaev(1987)introduce truncation functions,and the corresponding results in Theorem3.24of that book depend514T.CHANin part on the choice of truncation function.In the present situation,assump-tion(2.6c)renders the introduction of truncation functions unnecessary.Turning now to the problem of pricing a contingent claim T,we wish to find an equivalent measure Q under which the discounted price processˆS t as defined in(2.15)is a martingale;the price of T is then Q exp − T0r s ds T . By Theorem3.2,under Q,X has Doob–Meyer decomposition3 6 X t=˜M t+at+ t0 R x H s x −1 ν dx dswhere˜M is a Q-martingale.In fact,˜M t=M t− t0 R x H s x −1 ν dx dswhere M is the P-martingale in the Doob–Meyer decomposition of X under P. Note that ˜M t= M t.Therefore,writing the discounted share priceˆS t in terms of the Q-martingale˜M and Q-Brownian motion˜B,we haveˆS t=S0exp t0cσs dB s+ t0σs dM s+ t0 aσs+b s−r s−c2σ2s2 ds × 0<s≤t 1+σs M s exp −σs M s=S0exp t0cσs d˜B s+ t0σs d˜M s+ t0 aσs+cσs G s+b s−r s−c2σ2s2 ds+ t0σs R x H s x −1 ν dx ds × 0<s≤t 1+σs ˜M s e−σs ˜M sSinceexp t0cσs d˜B s+ t0σs d˜M s− t0c2σ2s2ds 0<s≤t 1+σs ˜M s exp −σs ˜M sis a Q-martingale,a necessary and sufficient condition forˆS to be a martingale under Q is the existence of G and H for which the process Z in Lemma3.1isa positive martingale and such that3 7 cσs G s+aσs+b s−r s+ Rσs x H s x −1 ν dx =0for all s,almost surely.Note that h does not appear in(3.7),which is another reflection of the fact that h is essentially unique,given H,in the sense of the remark following Lemma3.1.It will turn out that G and H are in fact deterministic functions in all the cases considered in the sequel;in this case, (2.5)ensures that Z in Lemma3.1is a positive martingale and the key con-dition for an equivalent martingale measure is then(3.7).Moreover,B andOPTION PRICING WITH L´EVY PROCESSES515 X are still independent and have independent increments under Q in this connection,note that˜νis a deterministic measure.Of course,(3.7)does not specify G and H,and hence the equivalent martin-gale measure Q,uniquely.Below,we examine various approaches to choosingG and H based on other criteria,additional to(3.7).3.1.The F¨o llmer–Schweizer minimal measure.Recall that when the noise Y in(2.12)is just a standard Brownian motion,the unique equivalent mar-tingale measure Q is obtained by3 8 d Q d P T=Z Twhere Z satisfiesdZ t=γt Z t dB tand the processγis chosen so as to makeˆS a martingale under Q.In the present setting,a natural analogue of this would be to use the martingale measure Q defined by(3.8),where the Radon–Nikodym derivative Z is now given bydZ t=γt Z t− c dB t+dM tor equivalently3 9 Z t=1+ t0γs Z s− c dB s+dM sIn other words,the Brownian motion in the classical Black–Scholes setting has been replaced by the martingale part of the noise process Y.We saw in the proof of Lemma3.1that,in general,Z t=1+ t0G s Z s−dB s+ t0 R Z s− H s x −1 M ds dx Comparing this last expression with(3.9),we see that we require3 10 H s x −1=c−1G s x=h s xso thatγs=c−1G s.[When c=0,this just boils down to G≡0 H s x −1=γs x.]To obtain a martingale measure,we now use the martingale condition (3.7)together with(3.10).Puttingv= R x2ν dxit is easily verified that the solution to(3.7)and(3.10)is3 11G s=c r s−b s−aσsσs c2+v H s x −1= r s−b s−aσsσs c2+vx516T.CHANIn(3.9),we therefore have3 12 γs=r s−b s−aσsσs c2+vFinally,we need some conditions to ensure that H s X s >0;otherwise, the measure we have obtained will not be a probability measure but only a signed measure.Since we are assuming throughout this paper that the jump size X∈ −c1 c2 ,we require the right-hand side of(3.11)of be greater than −1for all x∈ −c1 c2 ,which is equivalent to the condition that3 13 −1c2< r s−b s−aσsσs c2+v<1c1So far,we have done nothing more than show that one can obtain an equiv-alent martingale measure by drawing an obvious analogy with the classical Black–Scholes setting.It turns out,however,that the martingale measure given by(3.8),(3.9)and(3.12)is precisely the F¨o llmer–Schweizer minimal measure introduced in F¨o llmer and Schweizer(1991),which we shall proceed to show.The minimal measure is closely connected to a hedging portfolio,which minimizes the risk involved in trying to duplicate a contingent claim T(pro-vided such a portfolio exists).We briefly sketch the main ideas below,following closely the treatment in F¨o llmer and Schweizer(1991)but omitting some of the technical assumptions not essential to the exposition.We adopt the notational convention that for any quantity f t,the discounted quantity will be denoted byˆf t=exp − t0r s ds f t.The value V t of any hedg-ing portfolio can be written as V t=ξt S t+ηt exp t0r s ds and hence the discounted value isˆV t=ξtˆS t+ηtwhereξandηare,respectively,the number of units of stock and bond.Only strategies for which V T= T P-a.s.are admissible.Define the cumulative cost at time t byC t=ˆV t− t0ξs dˆS sand the remaining risk byE C T−C t 2 t(In complete markets,C t is constant and hence the risk is zero.)The idea is to look for strategies ξ η which minimizes the remaining risk in a local sense: the risk is minimal under all“infinitesimal perturbations”of the strategy at time t.This is equivalent to the following precise technical definition.Definition3.1.An admissible strategy ξ η is called optimal if the asso-ciated cost C is a square-integrable martingale orthogonal to the martingale part(in the Doob decomposition)ofˆS under P.。
期权定价理论及方法探析
权 定价 方法 。随 后 , 名 的 B—S期 权 定 价 法 应 运 著
前就 诞生 于古 希腊 市 场 。在 20 90年 前 , 《 穆 拉 从 汉 比法 典》 也 发 现 它 思 想 萌 芽 的 足 迹 , 大 家 公 认 中 但
以标利 率 、 债券 、 权证 、 掉期 等证 券 , 知不觉 已成 为 不
一
种 金融 工程 师们 最为信 赖也 最为 喜好 的金融衍 生
工具 。
12 期权 定价 理论 发展 的历史 轨迹 . 据记 载 , 有期权 性质 的橄榄 油 交易在 3 0 具 3 0年
2 期 权 定 价 方 法
价格 息息相关 , 受制 于并反作 用 于标 的物 的价格 ; 其
三是 用来 防范其 它金 融 衍 生工 具 风 险 的期权 “ 有 或
性 ” 这使得 期权 估值 和 定 价变 得 异常 复 杂 ; , 四是 期 权 的风 险反 映在 标 的物 的价格 及 其 运 动 中 , 的物 标
的价 格在 一定程 度上 预测 了未来 市场 。
第3 1卷
第 2期
21 0 2年 6月
延安大学学报 ( 自然科 学 版 ) Junl f aa nvrt N tr cec dtn ora o Y nnU i sy( a a Si eE io ) ei ul n i
v l 1 N o_ . 3 Jn 2 1 u .0 2
的 回报 ; 是期权 的回报 与路径 息息 相关 ; 二 三是期 权 的 回报 依赖 于 多个标 的变量 选 取 。此 时蒙 特卡 洛方 法 模拟 运算 时 间几乎 以线 形 增 长 , 有 十足 的竞 争 具 力 。在 随机 过程 和终 值 计 算 都 比较 复杂 时 , 特 卡 蒙
定价理论-第5章--期权定价理论
第5章期权定价理论期权定价理论是继资产组合理论、资本资产定价模型之后金融领域又一个获得诺贝尔经济学奖的重要理论.1973年,Black和Scholes发表了《期权和公司债务的定价》(The pricing of options and corporate liabilities)一文,提出了著名的期权定价理论.同年,Merton给出了以支付连续红利率股票为标的资产的期权定价公式,并把Black-Scholes期权定价公式推广到无风险利率和标的资产价格的变异性不是常数的重要情况.在本章,我们将以B1ack-Scholes期权定价公式为主线介绍与期权相关的一些知识、股票价格的行为模型、Black-Scholes偏微分方程、Black-Scholes期权定价公式、B1ack-Schotes期权定价公式的拓展模型(支付已知红利的股票欧式期权定价和美式看涨期权定价)等.§5.1 期权概述5.1.1 期权的概念期权是赋予了其拥有者在未来的某时间以事先预定好的价格买卖某种金融资产的权利的合约.从广义上讲,期权也可以指金融资产中含有的任何选择权.一般称期权中规定的金融资产为期权的标的资产,并称对标的资产的商定价格为行权价格.根据交易的买卖类型,可以将期权分为看涨期权和看跃期权.看涨期权是指在指定日期以行权价格买入一定量的金融资产的合约.看跌期权是指可以在指定日期以行权价格卖出一定量的金融资产的合约.期权中指定的日期称为到期日.当投资者认为某种金融资产的价格将要上涨时,就可以购买这种金融资产的看涨期权,或者出售这种金融资产的看跌期权.相反,如果认为某种金融资产的价格将要下跌,则可以采取相反的操作.按期权允许的行权时间划分,期权可分为欧式期权和美式期权.欧式期权是指期权的行权日期是事先指定的期权;美式期权是指可以在到期日之前的任何日期行权的朗权.在交易所交易的大部分期权是美式期权.但是,欧式期权通常比美式期权更容易分析,并且美式期权的一些性质总是可以从欧式期权的性质推导出来.根据行权价格与标的资产市场价格的关系,可将期权分为实值期权、虚值期权和平价期权三种类型.对看涨期权而言,若标的资产价格高于行权价格,期权的买方执行期权特有利可图,此时为实值期权.若标的资产价格低于行权价格,期权的买方格放弃执行期权,此时为虚值期权.对看跌期权而言,标的资产价格低于行权价格为实值期权;标的资产价格高于行权价格为虚值期权.若标的资产价格等于行权价格,则看涨期权和看跃期权均为平价期权.从理论上说,实值期权的内在价值为正,虚值期权的内在价值为负,平价期权的内在价值为零.但实际上,无论是看涨期权还是看跌期权,也无论期权标的资产的市场价格处于什么水平,期权的内在价值都必然大于零或等于零,而不可能为一负值.这是因为期权赋予买方执行期权与否的选择权,而没有规定相应的义务,当期权的内在价值为负时,买方可以选择放弃期权.期权的内在价值定义为期权本身所具有的价值,也就是期权的买方如果立即执行该期权所能获得的收益.一种期权有无内在价值以及内在价值的大小,取决于该期权的行权价格与标的资产市场价格之间的关系.期权的时间价值是指期权的买方购买期权而实际支付的价格超过该期权内在价值的那部分,一般以期权的实际价格减去内在价值求得.在现实的期权交易中,各种期权通常是以高于内在价值的价格买卖的,即使是平价期权或虚值期权,也会以大于零的价格成交.期权的买方之所以愿意支付额外的费用,是因为希望随着时间的推移和标的资产市场价格的变动,该期权的内在价值得以增加,使虚值期权或平价期权变为实值期权,或使实值期权的内在价值进一步提高.买卖期权一般情况下有两种动机:一种是出于投机赚取最大利润的想法,因为期权价格的波动将导致获得更大收益的机会.当然,同时也面临产生更大损失的风险.另一种情况是出于对冲风险的考虑.因为期权的行使不是必须的(期权赋予了其投资者做某事的权利,但持有者不一定必须行使该权利.这一特点使得朋权不同于远期、期货等金融资产.投资者签署远期和期货合约时的成本为零,但投资者购买一张期权合约必须支付期权费),所以期权作为投资策略的一个部分,在对冲风险方面有更大的选择余地.期权定价就是对这种选择权本身进行定价.如果这种选择权是可以独立交易的,那么这个价格是非常有现实意义的.如果这种选择权不是单独交易的(可能是含在产品中的,如可转换债券中的转换权力),通过定价也可以对这部分的价值有一定的了解,以便更好地掌握金融资产价值变化的情况.最早的场内期权是股票期权.芝加哥期货交易所于1973年设立了一个新的交易所期权交易所,从而拉开了期权交易的序幕.随着国际金融市场的迅速发展,期权标的资产逐渐拓展到股票指数、利率和外汇等领域.目前,股票期权和股票指数期权在期权市场中所占的比例最大.但是,并不是所有的期权都是在交易所中交易的,在金融机构与大公司之间直接进行的期权交易也非常普遍,这种期权交易称为场外期权交易.场外期权交易的主要特点是金融机构可以根据客户的需要订立期权合约.5.1.2 影响期权价格的因素期权价格由内在价值和时间价值构成,因而凡是影响内在价值和时间价值的因素,就是影响期权价格的因素.大致包括以下几种:(1)行权价格与标的资产价格.行权价格与标的资产价格是影响期权价格的最主要因素.这两种价格的关系不仅决定了期权有无内在价值及内在价值的大小,而且还决定了有无时间价值和时间价值的大小.一般而言,行权价格与标的资产价格之间的差距越大,时间价值越小;反之,则时间价值越大.这是因为时间价值是市场参与者因预期标的资产价格变动引起其内在价值变动而愿意付出的代价.当一种期权处于极度实值或极度虚值时,市场价格变动的空间已很小.只有在行权价格与标的资产价格非常接近或为平价期权时,市场价格的变动才有可能增加期权的内在价值,从们使时间价值随之增大.(2)权利期间.权利期间是指期权剩余的有效时间,即期权成交日至期权到期日的时间.在其他条件不变的情况下,权力期间越长,期权价格越高;反之,期权价格越低.这主要是因为权利期间越长,期权的时间价值越大;随着权利期间缩短,时间价值也逐渐减少;在期权的到期日,权利期间为零,时间价值也为零.通常权利期间与时间价值存在同方向但非线性的关系。
等价鞅测度和鞅定价方法导数
调整至
以规避对风险溢酬的估计,简化期望值的计算。显然我们并不知道期望的风险溢酬究竟是多 少,因此无法采用这一方法。
改变概率测度,改变期望值,但不改变方差。
在概率测度 下,随机变量 的分布为
则我们有
1 3 10
1 3 3
1 3 1
2
98
3
为了将其期望值调整为 ,我们采用概率测度 。显然,概率测度 应满足以下三个条件:
当概率测度 与 关于 中哪些集合具有零概率是一致的时候,我们称它们为等价测
度。 注 :对于等价测度来说,当我们称一个事件几乎必然发生时,不必指明是在哪一个测
度下成立。 注 :在一个测度下构造的无风险组合,在其等价测度下必然也是无风险组合,因为两
个等价测度对于具有概率 的事件是一致的。
几乎必然非负。
1
|
定理
定理(一维情形)
设 ,0 是概率空间, , 上的布朗运动。 ,0 是关于该布
朗运动的域流。设 ,0 是一个适应过程。定义
exp
1 2
0
2
0
在 条件下,我们有
0
0
2
2
1
并且,在概率测度 下,过程 ,0 是一个布朗运动。
证明:
1
证明:
当
几乎必然严格为正时,
证明:
在概率空间, , 上,如果 是几乎必然非负的随机变量,且满足 1,
则对于 定义的
是一个概率测度。 证明:
由
可证其正则性。
1
为 证 其 可 数 可 加 性 , 设 1, 2,... 是 中 一 列 互 不 相 交 的 集 合 , 并 定 义
证明: 首先,由于遵循广义几何布朗运动的随机过程
期权定价理论及其应用
第二,期权的时间价值。
– 即使在到期日以前的任何时间,欧式期权均 有价值,因为它提供了将来执行权利的可能 性。
– 例如,以GM公司股票为标的物的一种期权,其执 行价格为40美元,到期日为三个月。假设GM公股 票现在的价格为37美元。显然,在接下来的三个月 中,该股票的价格有可能上涨而超过40美元,从而 有执行该期权而获得利润的可能。从这儿可以看出, 即使现在期权是虚值的,它也具有价值。
• 以股票为标的物的期权,每份期权通常包括100份特定的股票。 例如,持有一份以IBM公司股票为标的物的看涨期权,是一份可 以买100份IBM公司股票的权利。
– 2)执行价格(exercise price, 或者strike price)。
• 这个价格是执行期权合约时,可以以此价格购买标的物的价格。 对于以IBM公司股票为标的物的看涨期权,如果执行价格为150 美元,则在执行这种期权时,按每份股票150美元购买。
the money option)
所有合约都是由看涨期权、看跌期权、股票和 债券四种基本证券构成地。
Exotic option:
– Asian option – Barrier option – Lookback option – Currency-translated option – Binary option
• 从(1)和(2)式可以看出,一种看涨期权,其执行价格越小, 股票价格超过的可能性就越大,这种看涨期权也就越有价 值。对于看跌期权,结果正好相反。
– 2)标的股票价格的方差
• 在投资的过程中,投资者偏好以方差较大的股票为标的物 的期权。方差越大,股票价格超过执行价格的概率越大, 这种期权对投资者也就越有价值。
期权定价理论与方法综述
期权定价理论与方法综述期权定价理论是现代金融学基础之一。
在对金融衍生品研究中,期权定价的模型与方法是最重要、应用最广泛、难度最大的一种。
1973年,被誉为“华尔街第二次革命”B-S-M期权定价模型正式提出,随之成为现代期权定价研究的基石。
这与现代期权在1973年的上市一起,标志着金融衍生品发展的关键转折。
现代期权定价的理论和方法在国外经过三十多年的发展已经日趋成熟。
随着沪深300股指期权的积极推进,国内金融市场或将迎来期权这一全新金融工具。
因此,国内期权定价的研究会更具发展前景和现实意义。
期权最重要的用途之一是管理风险,要对风险进行有效的管理,就必须对期权进行正确的估价。
期权定价理论和方法的产生和完善对于推动期权市场的发展起到了巨大的作用。
期权定价研究得出的基本原理和方法被广泛应用于宏观、微观的经济和管理问题的分析和决策,其中在财务方面的应用最为集中,以及在投资决策等方面都有广泛的应用。
本文主要是对期权定价的综述,内容包括两个方面:1期权定价理论模型1.1B-S-M模型之前的期权定价理论1.2B-S-M模型1.3B-S-M模型之后的期权定价理论2期权定价数值方法2.1树形方法2.2蒙特卡洛模拟2.3有限差分方法2.4新兴方法:神经网络2.5非完全市场下的期权定价方法1.期权定价理论模型的发展1.1.B-S-M模型之前的期权定价理论历史上的期权交易可以追溯到古希腊时期,并于17世纪荷兰“郁金香投机泡沫”和18世纪美国农产品交易中相继出现。
期权定价的理论模型的历史却比较短。
期权定价理论的研究始于1900年,由法国数学家巴舍利耶(L.Bachelier)在博士论文《投机理论》中提出。
他首次引入了对布朗运动的数学描述,并认为股票价格变化过程就是一个无漂移的标准算术布朗运动。
这一发现沉寂了五十年后才被金融界所接受,被称为“随机游走”或“酒鬼乱步”。
巴舍利耶在此基础上,通过高斯概率密度函数将布朗运动和热传导方程联系起来,得出到期日看涨期权的期望值公式:V S N K N n=-+g g其中S是股票价格,K是期权执行价格,σ是股票价格遵循的布朗运动的方差,T是期权期限,()N⋅与()n⋅是标准正态分布的分布函数和密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
即: dPR =T dPQ,或
dPR = T dPQ
此时,两测度下的随机因子转换关系为: dzQ =dzR +t dt
• 二、风险中性下的资产价格随机过程 • 1、在B-S模型中,资产价格服从Ito过程,即: dS dt dz P S
P dz • 此处, 代表在概率测度P下的布朗运动,P是
风险环境下的概率测度。 • 2、该过程可以转换为风险中性下的随机过程: • 令 dz P dz Q u r dt , 代入可得:
dS dt S rdt dz Q Q ur dz dt
• 显然,由于转换后的漂移项从风险u转换 成了无风险r,则 Q是风险中性下的概率测 Q dz 度, 则是风险中性下的布朗运动 • 3 风险中性下概率测度的转换 • 可以从2中风险中性下的Q测度转换成风 险中性下的另一概率测度。
第七章 期权定价的鞅方法
第一节 鞅理论概述
• 一、鞅(martingale)与等价鞅测度 • 鞅是随机过程的一种,它的显著特点是未来的 期望等于现在。一个随机过程一般伴随着一个 测度。等价鞅测度即是把不是鞅的随机过程转 化成鞅的测度。这一测度和原来随机过程伴随 的测度等价。转化成鞅后,可是直接采用求数 学期望的方法来获得金融衍生产品的价格,如 期权,而不用解偏微分方程了。
令:dz Q dz R dt , 代入可得: dS R rdt dz dt S (r+ 2 )dt dz R
• 4 小结 • a、每个随机过程都对应着一个概率测度 b、在概率测度转换过程时,各概率测度约束 下的随机变量期望值都相等。 • 三、Girsanov 定理 T 1 T 2 1 T 2 Q exp dz dt , 且 E exp( dt ) , t • 若 t t 0 0 2 2 0 • 则新测度R与原测度Q之间的对应关系为: