电压比较器实验PPT
合集下载
《电压比较器 》课件

电压比较器通常由运算放大器(OpAmp)或差分放大器构成,其工作原 理基于运算放大器的非线性特性。
电压比较器的应用场景
电压比较器在各种电子设备和系 统中广泛应用,如模拟-数字转 换器、自动控制系统、传感器接
口等。
在电源管理中,电压比较器用于 检测电源电压是否正常,从而保 护电路免受过压或欠压的损害。
电压比较器的电源电路设计
电源电压范围
电源电路应能够提供稳定的电源 电压,以满足电压比较器的正常
工作需求。
电源噪声抑制
为了减小电源噪声对比较器性能的 影响,电源电路应具有噪声抑制功 能。
电源效率
为了降低能耗和提高系统稳定性, 电源电路应具有较高的电源效率。
04
电压比较器的应用实例
电压比较器在信号处理中的应用
电压比较器的线性工作范围问题
总结词
线性工作范围是电压比较器的重要性能指标,如果超出其线性范围,电压比较器的输出可 能失真或不稳定。
详细描述
电压比较器的线性工作范围受到其内部电路设计和制造工艺的限制。当输入信号的幅度超 过一定范围时,电压比较器的输出可能不再是理想的阶跃信号,而是出现失真或振荡现象 。
未来电压比较器的发展方向
研究新型的电压比较器结构和设计方 法,以提高性能和降低成本。
加强电压比较器的智能化和自适应控 制研究,以提高其适应性和应用范围 。
探索电压比较器与其他电子器件的集 成和优化,以实现更小尺寸和更高可 靠性的系统。
拓展电压比较器的应用领域,如物联 网、人工智能、新能源等新兴领域, 以满足不断增长的市场需求。
阈值检测
在自动控制系统中,电压比较器用于检测系统参数是否超过预设 阈值,从而触发相应的控制动作。
调节系统
模电电压比较器PPT课件

u
TH
i u u
Rf R2 Rf
U
R
R2 R2 Rf
UZ
ui R1
U TH
Rf R2 Rf
UR
R2 R2 Rf
UZ
第14页/共22页
当ui逐渐增大时,uO从+UZ跳变为-UZ时:
UTH
Rf R2 Rf
UR
R2 R2 Rf
UZ
当ui逐渐减小时,uO从-UZ 跳变为+UZ时:
UTH
Rf R2 Rf
UR
R2 R2 Rf
UZ
UT
U TH
UTH
2R2 R2 Rf
UZ
UTH : 上限门限电压 UTH : 下限门限电压
UT : 门限宽度或回差
与参考电压无关。
uO +UZ
UTH- 0 -UZ
传输特性
第15页/共22页
UTH+ ui
7.1 填空题
( 1 ) 理想集成运放开环电压放大倍数Aud=( ∞ ), 输入电阻Rid=( ∞ ),输出电阻Rid=( 0 ), 共模抑制比KCMR=( ∞ ),开环带宽BW=( ∞ ) 。 ( 2 )集成运放第一级常采用( 差动放大 )电路, 主要是为了减少( 零点漂移 ),提高( KCMR ) 。 ( 3 )理想集成运放在线性工作时,其两输入端的电位 ( 相等 ),电流( 相等且为零 ) 。
7.5.1 电压比较器
一、电压比较器基本概念 电压比较器是集成运放的另一类基本应用电路,作用 是对两个输入电压进行比较,比较的结果及输出只有 两种状态,既高电平和低电平 当ui<uREF uo= uoH → “1 ”
当ui>uREF uo= uoL → “0 ”
电压比较器演示ppt(ppt)

+
UR
uRo 1
R2
传输特性
设初始值: uo U oMU uT1
设ui ,当ui uT1 uo从UoM UoM
+UOM
0
-UOM
uT2
uT1
这时, uo U oMU u T2
ui 设ui ,当ui uT2
uo从UoM UoM
迟滞 比较器
传输特性
当uR 0时,传输特性即为如图曲线;
uo
+Uom
uT1
UR
电压 比较器
uREF为参考电压,根据比 较器在临界状态条件可
uREF
求得电路的阈值电压。 ui
R1 R2
uN -
uo, R
图1:
uP +
uo
u NR 1R 1R 2u iR 1R 2R 2u RE F u P0 图1
uT
ui
R2 R1
uREF
当 u RE F 0 , u iu T , u N0 时 u o ,, U OHu o u Z
当ui > UR时 , uo = +Uom 当ui < UR时 , uo = -Uom
uo
+Uom
0
-Uom
UR ui
电压 比较器
若ui从反相端输入 (反相电压比较器)
UR ui
+
当ui < UR时 , uo = +Uom
+ uo 当ui > UR时 , uo = -Uom
uo
+Uom
0
-Uom
ui
uo iP iN 0 U Uui
根据叠加原理,有 :
UR1R 1R2uoR1R 2R2uRuT
电压比较器课件

详细描述
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,利用双极晶体管的高电流传输特性和CMOS晶体管的高开关速度,实现高速度、低功耗、高精度的电压比较功能。这种设计广泛应用于高速比较器、模数转换器等电子系统中。
05
CHAPTER
电压比较器的测试与验证
为保证测试结果的准确性,测试环境应保持安静、无干扰,且温度、湿度等参数应满足测试要求。
VS
功耗是电压比较器在工作过程中消耗的能量。
详细描述
功耗是指电压比较器在工作过程中所消耗的能量,通常以毫瓦(mW)或瓦(W)为单位表示。功耗的大小反映了比较器的效率和工作稳定性。在选择电压比较器时,应考虑功耗与性能之间的平衡。
总结词
04
CHAPTER
电压比较器的设计与实现
基于运放的电压比较器设计通常采用运算放大器作为核心元件,通过负反馈和正反馈电路实现电压比较功能。
基于运放的电压比较器设计利用运算放大器的电压放大和电流放大特性,通过负反馈和正反馈电路调整输入和输出电压,实现电压比较功能。这种设计具有高精度、低噪声、低失真等优点,广泛应用于模拟电路和数字电路中。
总结词
详细描述
总结词
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,具有高速度、低功耗、高精度等特性。
总结词
电压比较器由差分放大器构成,当两个输入电压之间存在一定电压差时,差分放大器会输出相应的电压信号。当输入电压满足一定条件时,输出信号会通过反相器等逻辑门电路转换为相应的逻辑信号。
详细描述
02
CHAPTER
电压比较器的应用
在数字电路中,电压比较器用于比较两个电压的大小,并根据比较结果输出相应的逻辑状态(高电平或低电平)。
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,利用双极晶体管的高电流传输特性和CMOS晶体管的高开关速度,实现高速度、低功耗、高精度的电压比较功能。这种设计广泛应用于高速比较器、模数转换器等电子系统中。
05
CHAPTER
电压比较器的测试与验证
为保证测试结果的准确性,测试环境应保持安静、无干扰,且温度、湿度等参数应满足测试要求。
VS
功耗是电压比较器在工作过程中消耗的能量。
详细描述
功耗是指电压比较器在工作过程中所消耗的能量,通常以毫瓦(mW)或瓦(W)为单位表示。功耗的大小反映了比较器的效率和工作稳定性。在选择电压比较器时,应考虑功耗与性能之间的平衡。
总结词
04
CHAPTER
电压比较器的设计与实现
基于运放的电压比较器设计通常采用运算放大器作为核心元件,通过负反馈和正反馈电路实现电压比较功能。
基于运放的电压比较器设计利用运算放大器的电压放大和电流放大特性,通过负反馈和正反馈电路调整输入和输出电压,实现电压比较功能。这种设计具有高精度、低噪声、低失真等优点,广泛应用于模拟电路和数字电路中。
总结词
详细描述
总结词
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,具有高速度、低功耗、高精度等特性。
总结词
电压比较器由差分放大器构成,当两个输入电压之间存在一定电压差时,差分放大器会输出相应的电压信号。当输入电压满足一定条件时,输出信号会通过反相器等逻辑门电路转换为相应的逻辑信号。
详细描述
02
CHAPTER
电压比较器的应用
在数字电路中,电压比较器用于比较两个电压的大小,并根据比较结果输出相应的逻辑状态(高电平或低电平)。
电压比较器(过零比较器)

实验十二
一、实验目的
1、掌握电压比较器的分析及其计算 2、学习测试比较器的方法
电压比较器
二、实验仪器
1、双踪示波器 2、信号发生器 3、数字万用表 4、直流电源。
三、实验原理及测量方法
电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将一 个信号电压 Ui 和另一个参考电压 Ur 进行比较,在 Ui>Ur 和 Ui<Ur 两种不同情 况下,电压比较器输出两个不同的电平,即高电平和低电平。常用的电压比较器 有简单电压比较器、滞回电压比较器和窗口电压比较器。 1、过零比较器 过零比较器是将信号电压 Ui 与参考电压零进行比较。如图 1(a)所示,电路由 集成运放构成。对于高质量的集成运放而言,其开环电压放大倍数很大,输入偏 置电流、失调电压都很小。若按理想情况(Aod=无穷大, I IB =0,Uio=0)考虑时, 则集成运放开环工作时 当 Ui>0 时,Uo 为低电平 Ui<0 时,Uo 为高电平 集成运放输出的高低电平值一般为最大输出正负电压值 Uom
四实验内容1过零比较器1连接图1a实验电路检查无误后接通12v2测量当ui悬空时uo的值3调节信号源使输出频率为100hz有效值为1v的正弦波信号并输入至ui端用示波器观察比较器的输入ui与输出uo波形并记录4改变信号发生器的输出电压ui幅值用示波器观察uo变化测出电压传?直流电源3输特性曲线2反向滞回比较器1连接图2a所示实验电路接通直流电源测出uo由高电平变为低电平时的阈值2同上测出uo由低电平变为高电平时的阈值3将信号发生器接入ui并使之输出频率为500hz电压有效值为1v的正弦波信号用示波器观察比较器的输入ui与输出uo波形并记录3同向滞回比较器1连接图3所示实验电路参照反向滞回比较器的测试方法自拟实验步骤及方法2将实验结果与反向滞回比较器的理论分析结果进行比较分析误差产生原因u17413247651r110kr2r451kd11z62d21z62vcc12vvcc112vxfg1xsc1abexttrig10kr3100k450032vccvcc1106图3同向滞回比较器五实验结果及分析1过零比较器1连接图1a实验电路检查无误后接通12v2当ui悬空时测量uo的值实验结果
一、实验目的
1、掌握电压比较器的分析及其计算 2、学习测试比较器的方法
电压比较器
二、实验仪器
1、双踪示波器 2、信号发生器 3、数字万用表 4、直流电源。
三、实验原理及测量方法
电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将一 个信号电压 Ui 和另一个参考电压 Ur 进行比较,在 Ui>Ur 和 Ui<Ur 两种不同情 况下,电压比较器输出两个不同的电平,即高电平和低电平。常用的电压比较器 有简单电压比较器、滞回电压比较器和窗口电压比较器。 1、过零比较器 过零比较器是将信号电压 Ui 与参考电压零进行比较。如图 1(a)所示,电路由 集成运放构成。对于高质量的集成运放而言,其开环电压放大倍数很大,输入偏 置电流、失调电压都很小。若按理想情况(Aod=无穷大, I IB =0,Uio=0)考虑时, 则集成运放开环工作时 当 Ui>0 时,Uo 为低电平 Ui<0 时,Uo 为高电平 集成运放输出的高低电平值一般为最大输出正负电压值 Uom
四实验内容1过零比较器1连接图1a实验电路检查无误后接通12v2测量当ui悬空时uo的值3调节信号源使输出频率为100hz有效值为1v的正弦波信号并输入至ui端用示波器观察比较器的输入ui与输出uo波形并记录4改变信号发生器的输出电压ui幅值用示波器观察uo变化测出电压传?直流电源3输特性曲线2反向滞回比较器1连接图2a所示实验电路接通直流电源测出uo由高电平变为低电平时的阈值2同上测出uo由低电平变为高电平时的阈值3将信号发生器接入ui并使之输出频率为500hz电压有效值为1v的正弦波信号用示波器观察比较器的输入ui与输出uo波形并记录3同向滞回比较器1连接图3所示实验电路参照反向滞回比较器的测试方法自拟实验步骤及方法2将实验结果与反向滞回比较器的理论分析结果进行比较分析误差产生原因u17413247651r110kr2r451kd11z62d21z62vcc12vvcc112vxfg1xsc1abexttrig10kr3100k450032vccvcc1106图3同向滞回比较器五实验结果及分析1过零比较器1连接图1a实验电路检查无误后接通12v2当ui悬空时测量uo的值实验结果
电压比较器ppt课件

按照结构分
由集成运放构成 集成电压比较器 有通用型、高速型、低功耗 型、低电压型和高精度型等。 自学
工作速度慢、带宽 窄且输出与其它电 路的兼容性差。
8.2.1 单限电压比较器
1. 过零电压比较器
输出只有高电平和低电平两种值。 比较器的输出电平发生跳变所对应的输入电压值称为门限电压。
输入信号从反相端加入,当输入从小增大过门限电压时,输出 从高电平跃变为低电平,称之为反相输入单限比较器。
R2 20 令uN = 0,可得 U T U REF 2 V 4 V R1 10
由于信号从反相端输入,故 当 uI < 4V 时, uO =UOH=6V 当uI > 4V 时, uO =UOL= 6V 因此可作出电压传输特性如图所示
8.2.2 迟滞比较器
也称施密特触发器。抗干扰能力强
由于是反相输入迟滞比较器, 因此可画出电压传输特性和 相应输出波形如图所示。
例8.2.2
图中,UREF =3V, UZ =6V, R1 =40k, R2 =10k, R =8k,试画出电压传输特性和输出电压波形。
解: 由图可得
UTH U TL 40 3 V 10 6 V 3.6V 40 10 40 10
按照功能特点分单限电压比较器迟滞电压比较器窗口电压比较器按照结构分由集成运放构成集成电压比较器有通用型高速型低功耗型低电压型和高精度自学工作速度慢带宽窄且输出与其它电路的兼容性电压比较器概述821输出只有高电平和低电平两种值
8.2 电压比较器
概述 8.2.1 单限电压比较器
8.2.2 迟滞比较器 *8.2.3 窗口比较器 *8.2.4 集成电压比较器
U TH
U REF R1 U Z R2 UP R1 R2 R1 R2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验步骤:
R=R1=R2=10K
① 输入ui为200Hz、12VPP三角波信号,置UREF=0; ② 用示波器观察并绘制输入、输出波形;
③ 用李莎茹图形法测量电压传输特性曲线,CH1接ui; ④ 置UREF =+5V;重复②、③; ⑤ 置UREF =-5V;重复②、③;
17
波形图举例:
18
电压传输特性曲线举例:
5
四.集成运算放大器
1. 理想运放的主要性能指标 ① 开环电压放大倍数Aud→∞; ② 输入电阻rid→∞; ③ 输出电阻rod→0。 2. 集成运放的电压传输特性
6
3. 集成运算放大器的两个工作区 ① 线性工作区
—运放引入深度负反馈 • “虚短”:u+ = u- • “虚断”:i+=i- ≈ 0
23
五.思考题
1. 将实验中一般单限比较器的同相端接信号,反相端接 参考电压。画出原理电路图和电压传输特性曲线。 2. 已知窗口比较器的电压传输特性,设计电路并分析。
24
TL082引脚图
25
• 跃变方向:
• ui<0,uo =+Uom • ui>0,uo =-Uom
11
② 一般单限比较器
反相单限比较器
• 输出电平:uo =±Uom; • 门限电压:UT=UREF;
• 跃变方向: • ui <UREF,uo =+Uom; • ui >UREF,uo =-Uom;
12
2. 滞回比较器:具有滞回特性;抗干扰能力强。
3
三.实验原理
1.电压比较器的基本功能—比较电压的大小 ① 输入电压是模拟信号; ② 比较结果由输出端的高、低电平表示; ③ 使输出电平产生跃变的输入电压值称为门
限(阈值)电压。
4
2.比较器的描述方法: 电压传输特性uo=f (ui)
传输特性的三个要素: ① 输出高、低电平(值) ② 门限(阈值)电压; ③ 跃变的方向。
• 设ui>UT1,则u-> u+,uo=-Uom。 此时u+= UT2,减小 ui,直至UT2,再减 小,uo从-Uom跃变为+Uom。
14
3.滞回比较器应用—方波发生器
R=R1=R2=Rf =RF=10K,
C=0.01μF ,UZ=±6V。
15
4.窗口比较器 — 两个门限电平,且URH>URL
压传输特性曲线;
R=R1=R2=Rf =10K
④ UREF=+5V,重复步骤③; ⑤ UREF=-5V,重复步骤③。
21
4.滞回比较器应用—方波发生器
R1=R2=10K, Rf =RF=10K,C=0.01μF
实验步骤:
VCC=±15V;记录如下波形图。
uc
0
t
uo
0
t
22
5. 选做题
已知窗口比较器的电压传输特性,设计电路并实现。
• 当ui>URH时,uo1=-uo2= Uom,D1导通, D2截止;uo= Uom。
• 当URL<ui< URH时,uo1= uo2= -Uom, D1、D2均截止;uo= 0。
• 当ui<URL时,uo2=-uo1= Uom,D2导通, D1截止;uo=Uom 。
16
四.实验内容
1.单限比较器
19
2.窗口比较器
实验步骤:
① VCC=±15V;
② 门限电压URH=-URL=5V;
③ 输入信号ui=12VPP;
④ 测量并绘制输入、输出波形和
R=10K
D1、D2为普通整流二极管
电压传输特性曲线。
20
3.滞回比较器
实验步骤:
① VCC=±15V; ② UREF=0,输入信号ui=12VPP; ③ 测量并绘制输入、输出波形和电
• 输 出 电 平 :uo=±Uom • 门限电压:
UT1
Rf Rf
R2
U REF
R2 Rf R2
U Om
UT 2
Rf Rf
R2
U REF- Rf
R2 R2
U Om
13
• 跃变方向
UT1
Rf
Rf
R2
U
REF
Rf
R2
R2
U Om
UT 2
R
f
Rf
R2
U
REF-
R
f
R2
R2
U Om
• 设ui<UT2,则u-<u+,uo=+Uom。此 时u+= UT1,增大ui,直至UT1,再增大, uo从+Uom跃变为 -Uom。
② 求门限电压UT 令u+=u―,求出ui即为UT。
③ 确定输出电压的跃变方向 ui变化时,根据u+与u―大小决定uo的正负。
9
五.常见电压比较器
• 单限比较器; • 滞回比较器; • 窗口比较器。
10
1. 单限比较器—只有一个门限电压。
① 过零比较器
• 输出电平:uo =±Uom • 门限电压:UT=0
7
四.集成运算放大器
② 非线性工作区—运放开环或引入正反馈
• 当u+>u- 时,输出正饱和电压, 即uo=+Uom。 • 当u+<u- 时,输出负饱和电压, 即uo=-Uom。
③比较器是运放的非线性应用,即工作于非线性区。
8
4.运放非线性时分析步骤:
① 确定输出高、低电平值 由输出端外电路决定输出高、低电平值。
电压比较器及其应用 实验
1
一、实验目的
1.了解电压比较器与运算放大器的性能区别; 2.掌握电压比较器的结构及特点; 3.掌握电压比较器电压传输特性的测试方法; 4.掌握比较器在电路设计中的应用。
2
二.实验仪器、设备
1. GPD-3303D直流稳压电压 2. SDG5112信号源 3. DSO-X2014A数字存储示波器 4. THD-1型数字电路实验箱 5. TL082集成运放一个 6. 2DW231双向稳压二极管一个 7. 电阻、电容、开关二极管等若干