架空线路过电压保护器专业技术说明

合集下载

10kV架空配电线路防雷措施

10kV架空配电线路防雷措施

10kV架空配电线路防雷措施摘要:针对10KV架空配电线路常发生雷击断线事故,从而进行防范措施探讨,以求提高10KV 配电网安全运行水平。

目前10KV架空配电线路上,现在都已广泛地应用了绝缘导线。

可以说,配电网架空导线的绝缘化,已是一项成熟的技术。

但是,绝缘导线在应用过程中,也出现了一些新的问题。

其中,最为突出的问题,是遭受雷击时,容易发生断线事故。

据有关资料的统计,南昌经开区2008至2009年两年内,一个30平方公里的供电区域内,雷击断线事故与雷击跳闸事故约为35次,直接损失电量约为30万千瓦时,严重降低了供电可靠性,给社会带来了不良的效果。

这两年里雷击断线事故率占76.2%。

以上一些统计资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起我们的广泛注意,并积极开展对等试验研究工作,并找到许多有效的防范措施。

一、雷击断线与跳闸机理1电弧放电规律①电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。

②雷电过电压闪络时,瞬间电弧电流很大、但时间很短。

③当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。

2 架空绝缘导线断线当雷击架空绝缘线路产生巨大雷电过电压,当它超过导线绝缘层的耐压水平时(一般大于139KV)就会沿导线寻找电场最薄弱点将导线的绝缘层击穿(通常在绝缘子两端30公分范围内),形成针孔大小的击穿点,然后对绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,工频电弧固定在一点燃烧后熔断导线。

3 架空裸导线的断线率低但跳闸事故频繁当雷击架空裸导线产生巨大雷电过电压时,就会沿导线寻找电场最薄弱点的绝缘子沿面放电形成闪络,最后工频电弧向绝缘子根部的金属发展后形成金属性短路通道,引发线路跳闸事故。

由于接续的工频短路电流电弧在电磁力的作用下沿着导线向背离电源方向移动,一般不会烧断导线。

RDS210系列 微机保护 使用说明书 V1.0

RDS210系列 微机保护 使用说明书 V1.0

微机保护及自动装置使用说明书珠 海 瑞 捷 电 气 有 限 公 司ZHU HAI RADIANCE ELECTRIC CO.LTD2010年10月RDS210系列 V1.0珠 海 瑞 捷 电 气 有 限 公 司ZHU HAI RADIANCE ELECTRIC CO.LTD地址:广东 珠海 唐家湾 哈工大路1号新经济资源开发港 电话:(0756)3628508 3628518 3628528 3628568 传真:(0756)3628598目 录第一章 RDS210系列产品概述.............................................................................. - 1 - 第二章 RDS210FT型微机线路保护装置使用说明................................................. - 4 - 第三章 RDS210FB型微机线路保护装置使用说明 .............................................. - 17 - 第四章 RDS210M1微机电动机保护装置使用说明.............................................. - 33 - 第五章 RDS210M2型微机电动机差动保护装置使用说明 ................................... - 46 - 第六章 RDS210C型微机电容器保护装置使用说明............................................. - 51 - 第七章 RDS210P型微机PT保护装置使用说明.................................................. - 61 - 第八章 RDS210B型微机备用电源自投装置使用说明 ......................................... - 68 - 第九章 RDS210MB型微机备自投保护装置........................................................ - 75 - 第十章 RDS210系列保护装置操作说明 ............................................................. - 85 - 第十一章常见问题解答 ..................................................................................... - 97 -微机保护使用说明书第一章 RDS210系列产品概述一、RDS210系列产品特点RDS210系列微机保护及自动装置是我公司为了适应电力系统各发电厂、变电站、配电站等对继电保护的要求而专门开发的新一代微机型继电保护设备。

10kV线路施工安全及技术交底

10kV线路施工安全及技术交底

XXX2020年第一批固定资产投资项目施工安全及技术交底工程名称:xxx工程2020年7月19日XXX工程施工安全及技术交底由我单位承接设计工作的XXX公司2020年第一批固定资产投资项目XXX工程施工图设计已批复,现进入施工阶段,现我单位对该工程施工单位贵州宏电实业有限责任公司进行设计交底工作,交底内容包括线线路起讫点、线路路径走向、地形地质情况、线路配网自动化配置及安装、线路设计方案、施工安全作业等内容。

一、设计方案交底本工程新建一回10kV线路,起自35kVXXX站10kV间隔,止于35kVXXX站10kV镇南线27号杆。

完善线路网架结构,实现35kVXXX站10kV矿泉水线与35kVXXX站10kV镇南线形成环网。

路径长10.104km。

根据两条线路负荷情况,预计最大电流为97+124=221A,因此主线选择120mm2。

主要工程量:1、新建10kV架空线路,采用导线型号:JKLGYJ-120/20导线,路径长4.304km。

采用导线型号:JL/G1A-120mm2/20mm2导线,路径长4.691km。

分支线路采用导线型号:JKLYJ-10kV-70导线,路径长0.942km。

2、新建10kV电缆线路,站内配电室至JA1杆:利用站内电缆沟路径长100米,敷设电缆长度140m;JA14至JA15杆电缆直埋:电缆路径长67米,敷设电缆长度104m;电缆型号:ZC-YJV22-8.7/15kV 3×240;普通-YJV22-8.7/15kV 3×240。

3、本工程新立12米普通【190mm×12m,l】电杆110根;新立15米普通【190mm×15m×75kn.m】电杆8基;新立15米普通【190mm×18m×90kn.m】电杆1基;新立12米高强度【230mm×12m×100kn·m】电杆8根;新立15米高强度【230mm×15m×125kn.m】电杆2根;新立15米高强度【350mm×15m×250kn.m】电杆3根;新立L1D1铁塔8基。

架空线路过电压保护技术在纯梁配电线路中的应用

架空线路过电压保护技术在纯梁配电线路中的应用
[ 关键 词] 配 电线路 ; 雷击 ; 过 电压 保 护 中图分 类号 : T G3 3 3 . 7 文献 标识 码 : A 文章编 号 : 1 0 0 9 — 9 1 4 X ( 2 0 1 3 ) 1 3 — 0 1 9 0 一O 1
安 全运 行 。 ( 3 ) 安 装方 便 , 不 需更 换绝 缘子 , 也不 需更 改原 ห้องสมุดไป่ตู้ 线路设 计 ;


( 4 ) 它的灭弧原理是通过限流元件快速切断工频续流, 有效限制雷电过电 压, 不需断路器跳闸灭弧, 不会造成供电中断或影响供 电质量 ; ( 5 ) N  ̄NN于绝缘线路, 而且不需破开导线绝缘层, 无需 解决导线密封防水 问题 , 不会影 响导 线机械拉伸性 能和使用寿命 其缺点是 : 它仅 能防护雷 电过 电压 。 五. 纯 梁 配电线 路 t区特 点 及 使 用过 电压 保护器 前 后效 果对 比 纯梁配电线路主要负责给油井供 电, 由于油井分布点多面广、 比较分散 , 使 得配电线路处在田野空旷的地带, 且周围环境较为恶劣, 夏季雷电比较频繁 , 受 到的雷 击 危害 比较严 重 , 造成 的跳 闸次 数也 比较频 繁 。 雷击 已成 为 影响配 电线
过 电压 也 可达 几万 伏 , 对供 电系统 危 害极大 。 1、 雷 击 I 起配 电线 路跳 闸 原理 纯 梁油 区配 电线路雷害 事故主 要 由感 应雷 电过 电压 引起 , 当雷击 架空裸 导 线产 生巨大 雷 电过 电压 时, 就 会沿导 线寻 找电场最 薄弱 点的绝 缘子沿 面放 电形 成 闪络 , 最后 工频 电弧 向绝 缘子 根部 的金属 发展 后形 成 金属性 短路 通道 , 引发 线路 跳闸事 故 。 6 一l 0 k Ⅷ 电线路 绝缘 水平直 接影 响了配 电线路 的耐 雷水 平 , 现 有 的6 -1 0 k V配 电线路 的 中性 点运 行 方式 无 法有 效地 解决 线 路雷 击建 弧 率 问 题, 配 电设备 防雷保 护措施 不完善 , 上 述 问题 造成 了6 — 1 0 k V配 电线 路较 为严 峻 的防雷 形势 , 从 而 造成 跳 闸事故 的频 繁 发生 。 2 、 雷 击对 架 空绝 缘 导 线 的危 害 当绝缘 导线遭受雷击时 , 情 况就完全不 同, 雷 电过 电压引起 绝缘子闪络 , 并击 穿 导线的绝缘层 。 而击穿点 附近的绝缘物 , 阻碍了 电弧沿着导线表面 向两侧移动 。 因而, 电弧只能在击穿点燃烧。 高达数千安培的工频电弧电流集中在绝缘击穿点 上, 并 在断路器 跳 闸之前很快 就把导 线熔 断, 发 生断线这样 的重 大事故 发生 。

10kv架空线路绝缘保护措施

10kv架空线路绝缘保护措施

10kv架空线路绝缘保护措施10kv架空线路绝缘保护措施本文将详细介绍10kv架空线路绝缘保护措施,包括以下几个方面:1. 绝缘子的选用和绝缘检测•选择合适的绝缘子材料,如陶瓷或复合绝缘子,以保证其良好的绝缘性能。

•定期进行绝缘子的检测,包括绝缘电阻和泄漏电流测试,以提前发现并更换损坏或老化的绝缘子。

2. 绝缘子串上的保护•在绝缘子串上设置防鸟罩,防止鸟类或小动物触碰绝缘子,防止因此导致的短路故障。

•定期清理绝缘子串上的污垢和灰尘,以确保绝缘子表面的良好绝缘性能。

3. 塔杆绝缘子串的保护•定期检查塔杆绝缘子串的安装情况,确保绝缘子的稳固性,防止因绝缘子摇动而导致的破裂或击穿。

•在塔杆绝缘子串周围设置避雷线,在雷电天气中引导雷电流到地,降低塔杆绝缘子串受雷击的风险。

4. 路由导线的保护•使用高绝缘强度的导线,以提高线路的绝缘能力。

•定期巡视线路,检查导线是否有明显磨损或挂接外物,及时修复或清除。

5. 架空线路绝缘保护装置•在架空线路上安装避雷器和过电压保护器,以抵御雷电和过电压的冲击,保护线路的绝缘不受破坏。

•定期检测绝缘保护装置的工作状态,确保其正常运行。

6. 局部绝缘故障的处理•采用无损检测技术,如红外热像仪、超声波检测仪等,检测线路中存在的局部绝缘故障,并及时修复或更换存在问题的部件。

7. 保护用地和保护门隔绝•对电力设备周围的保护用地和保护门进行隔离,防止外界因素对线路绝缘的破坏。

以上是10kv架空线路绝缘保护措施的主要内容,只有有效的绝缘保护措施才能确保电力线路的安全稳定运行。

8. 定期绝缘阻抗测试•对架空线路进行定期的绝缘阻抗测试,以评估线路的绝缘性能。

•根据测试结果,及时采取修复措施,以保证线路的可靠绝缘。

9. 绝缘距离的保证•在架空线路的设计和施工过程中,要合理确定绝缘子的安装位置和数量,以及导线的悬挂高度,确保足够的绝缘距离。

•定期检查和维护绝缘子的安装位置、导线的高度和张力,避免因外力作用导致绝缘距离减小。

10kV架空线路柱上隔离开关、真空断路器技术规范

10kV架空线路柱上隔离开关、真空断路器技术规范

一、柱上隔离开关(1)额定频率:50Hz。

(2)额定电压:12kV。

(3)额定电流:630A。

(4)绝缘水平:见下表。

柱上隔离开关额定绝缘水平 kV二、柱上真空断路器(一)技术参数1.主要技术参数(见下表)柱上真空断路器主要技术参数2.技术规范(1)环境条件1)海拔高度:≤3000m。

2)最大风速:30m/s。

3)环境相对湿度:日平均值95%;月平均值90%。

4)地震烈度:8度。

5)污秽等级:3级。

(2)使用条件1)系统电压:10kV;系统最高电压:12kV;系统额定频率:50Hz;系统中性点接地方式:非有效。

2)安装地点:户外。

3)安装方式:柱上垂直。

(3)技术性能要求1)断路器应在规定的各种工作情况下达到开断性能的要求而不发生拒动或误动。

2)噪声:户外不大于55dB。

3)操动机构。

形式:弹簧机构或永磁电动机构;操作方式:手动操作或电动操作。

4)辅助回路。

辅助回路应能长期承载10A电流,温升不超过GB/T 11022—1999《高压开关设备和控制设备标准的共用技术要求》规定值。

辅助触点10对,其中5对动合触点,5对动断触点,并能按需要改换。

采用阻燃端子,留有15%备用端子排。

5)一次端子。

断路器提供连接导线的板式端子,端子受力:水平750N;垂直500N;横向400N。

断路器端子型式和尺寸应满足GB/T 5273—1985《高压器、高压电器和套管的接线端子》标准中有关规定。

6)断路器瓷套的爬电距离不小于31mm/kV(42kV以下)。

7)接地。

每台断路器应装设满足接地热稳定电流要求的接地极板,并配有与接地线连接用的接地螺栓,螺栓的直径不小于12mm。

8)寿命。

机械寿命(连续操作不调整):10000次;电气寿命:开断100%额定开断短路电流30次。

9)每台断路器配有位置指示器。

合闸为红色;分闸为绿色。

10)所有支架按工程需要要进行热镀锌的防腐处理。

11)有符合国标的铭牌,铭牌用耐腐蚀的材料制成,字样、符号应清晰耐久,铭牌在正常运行时安装位置应明显可见。

10kV架空线路标准设计技术文件说明

10kV架空线路标准设计技术文件说明

广东电网有限责任公司配网标准设计10kV架空线路技术文件说明广东电网公司基建部二O一九年六月前言为进一步开展基建配网工程标准建设深化工作,规范配网工程建设,根据公司基建部工作安排,开展基建配网工程标准建设(设计部分)的梳理完善工作。

本规范执行国家和行业有关法律、法规、规程和规范,基于网、省公司标准设计进行整合,优化;结合网、省公司基建管理规定、技术导则、施工作业指导书、验评规范等编制而成,适用于本地区基建配网工程10kV架空线路标准建设。

本规范由清远电力规划设计院有限公司统筹, 江门市大光明电力设计有限公司、茂名天成电力设计咨询有限公司、广东天能电力设计有限公司参与完成、惠州电力勘察设计院有限公司。

目录前言 (II)1、设计依据 (3)2、主要内容 (4)3、气象条件 (5)4、架空线路 (6)4.1导线截面及安全系数 (6)4.2线路的档距 (6)4.3线间距离 (7)4.4 金具、绝缘子、防雷及接地 (7)4.5杆塔 (9)4.6拉线 (10)4.7基础 (11)4.8 10kV柱上设备及电缆头 (11)附件1-1:10kV架空线路应用复合电杆技术措施标准附件1-2:复合电杆杆型组装应用表附件2:10kV架空线路标准设计图纸编码说明附件3:铁塔基础跟开、地脚螺栓一览表附件4:各种风速条件下10kV电杆强度与基础配置表1、设计依据1.1 广东电网公司关于10kV配网工程标准设计的指导原则和修编意见。

《南方电网公司10kV和35kV标准设计V1.0》《广东省沿海地区设计基本风速分布图》《广东电网公司沿海地区配电网遭受台风受损原因调研报告》1.2 国家、电力行业有关10kV配网设计的标准、规程及规范:《66kV及以下架空电力线路设计规范》GB50061-97《圆线同心绞架空导线》GB1179-1999《额定电压10kV、35kV架空绝缘导线》GB14049-1993《混凝土结构设计规范》GB50010-2002《环型混凝土电杆》GB/T 4623-2006《交流电气装置的接地设计规范》GB/T 50065-2011《10kV及以下架空配电线路设计技术规程》DL/T5220-2005《架空绝缘配电线路设计技术规程》DL/T601-1996《架空送电线路杆塔结构设计技术规定》DL/T5154-2002《架空送电线路基础设计技术规定》DL/T5219-2005《城市中低压配电网改造技术导则》DL/T 599-2005 《中国南方电网城市配电网装备技术导则》Q/CSG 10012-2005《110kV及以下配电网装备技术导则》Q/CSG 10703-2009《10kV及以下复合电杆标准技术标书》《南方电网公司反事故措施》(2019版)《广东电网有限责任公司低压配电网技术导则》2、主要内容本设计为基建配网工程标准建设10kV架空线路设计部分,主要内容涉及10kV单回路、双回路、四回路架空线路的小档距和大档距设计,共包含五个部分,即:杆塔部分、基础部分、机电部分、部件加工图、安健环部分;杆塔部分:根据不同的材质、气象、导线截面、回路数等条件的组合,确定常用杆塔型式,包含单、双回路电杆,单、双回路铁塔,四回路铁塔以及二、四回路大跨越铁塔。

10kV配电架空线路的综合治理重点_2

10kV配电架空线路的综合治理重点_2

10kV配电架空线路的综合治理重点发布时间:2021-12-06T02:28:48.656Z 来源:《当代电力文化》2021年7月第19期作者:王竞成[导读] 近年来,我国电力行业大力发展,输电线路作为电力系统中输送及分配电能的重要设备王竞成广东电网有限责任公司清远清新供电局,广东清远,511800摘要:近年来,我国电力行业大力发展,输电线路作为电力系统中输送及分配电能的重要设备,也得到了大规模的建设。

由于输电线路具有输送长度较长及周围环境较差等特点,这就给输电线路的施工带来了一定的困难。

基于此,以下对10kV配电架空线路的综合治理重点进行了探讨,以供参考。

关键词:10kV配电;架空线路;综合治理重点引言雷绕击或反击导线时,通过防雷绝缘子或线路过电压保护器将雷电流就地引入大地,并减少线路断路器雷击跳闸概率。

通过此两道防护,减少10kV线路雷击断线或雷击跳闸概率,提升电网安全稳定水平。

1配网架空线路问题分析第一,地面配电设备受历史因素影响,整体设备寿命较长,旧设备较为严重,故障频繁;雨季,一些县经常发生雷击。

架空线路的绝缘率总体较低。

除了城市地区架空线路的绝缘之外,偏远郊区架空线路裸露的导体占很大比例。

风雨无阻,如强风和降雪,很容易引起配电网故障,因为异物悬挂在线路上,树木撞击。

第二,设备的本体故障占较高比例,更多的故障是由于设备数量减少的隐藏缺陷造成的。

避雷器、绝缘子等设备故障率高,这类设备寿命长。

传统检查手段很难发现缺陷,因此需要加紧努力,彻底消除这类设备的隐患。

210kV配电架空线路的综合治理重点2.1建立配电架空线路综合治理保障体系为了提高配电网设备的运行维护水平,有效降低配电网的故障率,电力公司全面开展了配电网线路综合处理的专项工作。

在供电企业一级,生产部副总经理兼副总工程师牵头成立了领导小组和工作组,以建立全面的处理组织体系。

组织编制架空配电线路综合处理的实施方案及技术、管理和工作要求,并以文件形式分发给各责任单位,建立综合处理技术体系;确定治理目标、分工、实施人事问责制和建立全面治理评价体系;开展由企业统一组织、由各单位和团队组织的三级培训,并在各级和各级开展培训工作;建立每月检查机制,确保治疗工作的有效性。

20kV架空绝缘线路过电压保护器说明书

20kV架空绝缘线路过电压保护器说明书

武汉雷泰电力科技发展有限公司WUHAN LEITAI ELECTRICAL TECHNOLOGY CO., LTD.20kV架空绝缘线路过电压保护器说明书因雷击架空绝缘线路引起的直击雷电过电压或感应过电压极易导致绝缘子闪络或击穿,工频电弧集中在绝缘层的击穿点造成导线熔化断线。

为了防止这一事故,我公司研究开发了架空绝缘线路过电压保护器,其作用是在雷击架空绝缘线路时,将雷电流引向保护器,并截断工频续流,避免绝缘子闪络或击穿,保护架空绝缘线路避免发生断线事故。

1产品特点·产品通过了电力部电气设备质量检测中心型式试验和技术论证,各项技术指标均符合国家标准和行业标准;·优异的保护特性:通过保护器引流环与导线之间形成的串联间隙和限流元件的协同作用,能在瞬间有效地截断工频续流,避免导线发生雷击断线事故;·工频耐受能力强、陡波特性好、通流容量大、保护曲线平坦,可有效减少因雷击造成的线路开关跳闸;·独有界面偶联技术和硅橡胶外套整体一次成型工艺,确保产品可靠密封、安全防爆;·硅橡胶外套耐气候老化,耐电蚀损、耐污秽;·运行安全可靠、免维护。

即使因异常情况保护器损坏,因有串联间隙的隔离作用,亦不会影响线路绝缘配合水平,确保电力系统的运行安全。

2型号说明XHQ5-25.4/72X-表示架空绝缘线路; HQ-表示保护器; 5-表示标称放电电流为5kA;25.4/72-分子表示额定电压;分母表示保护器在标称放电电流下的残压。

3产品及安装示意图4主要技术指标表1 20kV架空线路过电压保护器主要技术性能5验收、预试验收:型号、数量与订货合同一致,外观无破损,合格证、生产日期、产品编号、U1mA数据齐全;预试:建议试验限流元件的U1mA和0.75U1mA下的泄漏电流值(U1mA≥36kV、0.75U1mA下的泄漏电流值I≤30μA),限流元件本体禁止交流工频放电电压试验。

电源线路中的过压保护技术

电源线路中的过压保护技术

电源线路中的过压保护技术
过压保护技术是电源线路中非常重要的一项技术,它可以有效地保护电器设备免受过电压的危害。

过压是指电压超过了设备正常工作范围的情况,如果设备长时间暴露在过压环境下,很容易造成设备损坏甚至起火等严重后果。

因此,电源线路中的过压保护技术显得尤为重要。

过压保护技术的原理是通过在电源线路中增加过压保护单元来监测电压的波动情况,一旦检测到电压超过设定的安全阈值,过压保护单元就会迅速切断电源,从而有效地保护设备不受过压的损害。

同时,过压保护技术还可以通过信号灯或声音提示等方式提醒用户电源出现问题,及时采取措施进行处理。

在实际应用中,过压保护技术可以应用在各种电子设备中,如电脑、冰箱、空调等家用电器,以及工业设备、医疗设备等专业设备中。

无论是家庭生活还是工业生产领域,都离不开过压保护技术的应用,这不仅提高了设备的安全性和可靠性,也保护了用户的生命财产安全。

除了过压保护技术,电源线路中还有一些其他保护技术,如过流保护技术、短路保护技术等。

这些保护技术结合起来,可以组成一套完善的电源保护系统,为电器设备提供全方位的保护。

因此,在设计电源线路时,一定要考虑到各种保护技术的应用,以确保设备的安全运行。

总的来说,电源线路中的过压保护技术是一项非常重要的技术,它可以有效地保护电器设备免受过压的危害,提高设备的可靠性和安全性。

在今后的电源线路设计中,我们需要重视过压保护技术的应用,从而确保设备的正常运行和人身财产的安全。

浅谈10kV架空绝缘线路安装过电压保护器及其应用效果

浅谈10kV架空绝缘线路安装过电压保护器及其应用效果

浅谈10kV架空绝缘线路安装过电压保护器及其应用效果作者:卢剑锋来源:《探索科学》2015年第12期摘要:10kV架空绝缘线路的过电压保护器的应用直接关系着电网改造的安全性、技术性与经济性,电网改造中大量使用过电压保护器对整个架空绝缘配电网的防雷有着很大的作用,直接对电网系统长期运行的经济性和安全性产生影响。

关键词:10kV配电网;绝缘线路;电压保护;防雷技术由于经济的高速发展及人们生活的需求,我国电力行业也进入了一个全新的发展阶段,10kV配电网供电质量与日益严峻的市场需求矛盾逐渐呈现,解决10kV配电网系统存在的问题,提高用电的高效性和安全性成为当下电力行业的一大重点任务。

其中,配电网的架空绝缘线路防雷技术是电力行业得到迅猛发展的重要支撑,同时也是促进电力系统日臻完善的重要方面。

架空配电线路绝缘化对解决线树矛盾、降低瞬时性故障概率,优点十分明显。

目前,随着10kV配电线路改造的深入,采用绝缘导线成为架空配电线路设备的首选方式。

这有效地解决了裸导线难以解决的走廊和安全问题,与地下电缆相比具有投资省、建设快的优点,但同时也带来了一些新的技术问题,其中之一就是绝缘导线在运行中的雷击断线问题。

因此,降低配网故障率,提高配电供电可靠性,必须妥善解决雷击断线和避雷器雷击击穿问题,才能保证架空绝缘配电网的安全运行。

一、架空绝缘导线雷击断线的机理据资料统计,配电线路感应雷占80%,感应雷的放电电流通常小于1kA,感应过电压的幅值约可达200~300kV。

如此高的过电压幅值对10kV线路来说是难以承受的。

因此,雷击感应过电压是引起线路绝缘闪络乃至绝缘导线断线的主要原因。

雷击绝缘导线和雷击裸导线时的电弧发展过程明显不同,当直击雷或感应雷过电压作用于裸导线引起绝缘子闪络时,由于电动力关系,连续的工频短路电流在电磁力的作用下沿导线向着背离电源的方向快速移动,直至保护动作,切断电弧。

电弧的弧根固定在导线上运动,弧腹在随同弧根向前运动的同时,受热应力的作用不断向空中飘浮,根据电弧的温度分布特征,弧根的温度最高,对导体的烧损最严重,弧腹则温度较低,一般不会烧损导体。

浅谈架空电力线路的过电压保护

浅谈架空电力线路的过电压保护

浅谈架空电力线路的过电压保护发表时间:2016-12-06T14:40:58.783Z 来源:《基层建设》2015年第35期作者:薛广达崔继婷赵瑞玲[导读] 摘要:在电力系统中,由于内部或外部的原因,使电压突然升高,超过或远远超过电气设备的运行额定电压,即称为过电压。

国网山东郓城县供电公司山东郓城 274700摘要:在电力系统中,由于内部或外部的原因,使电压突然升高,超过或远远超过电气设备的运行额定电压,即称为过电压。

本文首先说明了架空电力线路过电压的分类,然后阐述了可控放电线路型过电压保护器的应用,最后探讨了限制架空线路过电压的措施。

关键词:架空电力线路;过电压;保护;直击雷一、架空电力线路过电压的分类(一)内部过电压1、工频过电压在三相中性点不接地系统中,发生单相接地时,非故障相对地电压升高倍。

此时,不需要采取特殊措施进行防护。

2、操作过电压电力系统因操作而使运行方式发生变动,致系统内部电磁能量的振荡,相互转换和重新分布产生过电压。

一般发生在投入或退出空载变压器、空载线路、并联电容器的情况下产生。

3、间隙接地过电压在中性点不接地系统中,发生单相弧光接地时产生的间隙性的电弧,会在线路上引起高频振荡过电压,其过电压值一般不超过3.5倍相电压。

4、谐振过电压在交流电路中,当电感元件与电容元件串联且感抗等于容抗时,会发生谐振过电压,此时电容元件上会出现很高的过电压。

谐振过电压的幅值一般不超过2.5倍相电压。

(二)外部过电压1、直击雷过电压高出地面几米至数十米的电力线路,导线对大地来讲,完全成为尖端,所以雷往往直击到线路等电气设备上,造成电气设备或线路上绝缘击穿而损坏。

2、感应雷过电压雷云在先导放电的过程中,由于静电感应原因在电力线路的导线上积聚了大量与雷云极性相反的电荷。

当雷云从先导放电发展到主放阶段而对地放电时,线路上被束缚的电荷被释放,形成了向线路两端以光速流动的自由电荷,从而产生很高的感应过电压。

10kV架空线路过电压保护器技术规范书

10kV架空线路过电压保护器技术规范书

10kV 架空绝缘线路过电压保护器技术规范书1、总则本技术范围书适用于电力公司10kV架空绝缘线路过电压保护器的招标通用订货,是相关设备通用订货合同的技术条款。

2、采用标准2.1.1 GB 191 包装储运图示标志2.1.2 GB 311.1 高压输变电设备的绝缘配合2.1.3 GB 775.3 绝缘子试验方法第3部分:机械试验方法2.1.4 GB/T 2900.19 电工各词术语高压试验技术和绝缘配合2.1.5 GB/T 16927.1 高电压试验技术第一部分:一般试验要求2.1.6 GB 11032 交流无间隙金属氧化物避雷器2.1.7 DL/T 815 交流输电线路用复合外套金属氧化物避雷器2.1.8 JB/T 8952 35kV及以下交流系统用复合外套无间隙金属氧化物避雷器3、技术参数和要求3.1 设备名称:10kV架空绝缘线路过电压保护器3.2 设备规格:XHQ5-12.7/363.3 主要技术要求3.3.1 环境条件3.3.1.1 海拔高度≤1000m3.3.1.2 环境温度-25℃~+40℃最高年平均气温20℃3.3.1.3 日照强度0.1W/cm²(风速:0.5m/s)3.3.1.4 最大日温差25K3.3.1.5 最大风速35m/s3.3.1.6 履冰厚度≤10mm3.3.1.7 抗震能力地震烈度为7度及以下地区3.3.1.8 安装位置户外3.3.2 性能参数3.3.2.14、试验4.1 型式试验除非卖方能提供证据证明已按下述要求进行过设计试验(型式试验),否则按合同供应的全部组装的保护器(或部件)都必须进行下列设计试验,这些试验应能证明按合同供应的保护器在各方面都符合技术规范的要求。

4.1.1 外观检查;4.1.2 直流1mA参考电压试验;4.1.3 0.75倍直流1mA参考电压下泄漏电流试验;4.1.4 工频参考电压试验;4.1.5 局部放电试验;4.1.6 复合外套绝缘耐受试验;4.1.7 机械性能试验;4.1.8 爬电比距检查;4.1.9 残压试验;4.1.10 方波和大电流冲击耐受试验;4.1.11 动作负载试验;4.1.12 间隙距离测量;4.1.13 放电电压试验;4.1.14 雷电冲击伏秒特性试验;4.1.15密封试验;4.1.16 热机试验和沸水煮试验;4.1.17 复合外套起痕和电蚀损试验。

架空线路过电压保护器技术说明.概要

架空线路过电压保护器技术说明.概要

绝缘线防雷装置的应用研究技术报告南昌供电局武汉雷泰电力技术有限公司摘要本文总结国内外防止配电线路架空绝缘导线雷击断线的技术措施和装置,比较其可靠性和经济性,经试验研究、性能价格比优选和实际运行验证,提出一种适合中国国情、防止配电线路架空绝缘导线雷击断线和减少雷击跳闸概率的新技术和装置,可有效地防止架空绝缘导线雷击断线、绝缘子损坏等事故。

该装置结构简单、安装方便,技术先进、国内首创。

关键词:过电压保护架空绝缘线路key words: Over-voltage Protection Insulated overhead line1提出问题配电网由于其绝缘水平相对较低,往往容易发生雷害事故,造成绝缘子击穿和导线烧断。

运行经验表明:配电网雷害事故约占整个电力系统雷害事故的 70—80% 。

特别是近年来,城市配电网线路多采用架空绝缘电缆,雷害造成的断线事故数量相对增加,必须引起人们的高度重视。

试验研究和实际事故原因分析证实:配电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。

对于架空绝缘线路,雷电过电压闪络时,瞬间电弧电流很大但时间很短,仅在架空绝缘导线绝缘层上形成击穿孔,不会烧断导线。

但是,当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。

此时,由于架空绝缘导线绝缘层阻碍电弧在其表面滑移,高温弧根被固定在绝缘层的击穿点而在断路器动作之前烧断导线。

对于裸导线,电弧在电磁力的作用下,高温弧根沿导线表面滑移,并在工频续流烧断导线或损坏绝缘子之前引起断路器动作,切断电弧。

因此,裸导线的断线故障率明显低于架空绝缘导线。

在不切断电源的情况下有两种较为简单的灭弧方法,一是使电弧拉长,二是使电弧冷却,通常是将两种方法结合起来使用。

本研究项目根据试验研究结果,利用交流电弧电流周期性过零的特点截断电弧,提出一种用于配电网中架空绝缘线路过电压保护的实用装置。

0.4kv架空配电线路设计说明

0.4kv架空配电线路设计说明
沿墙敷设
6m
2.5
6.0
(7)接户线、进户线有关装设要求:
1)沿墙敷设的接户线以及进户线两支持点间的距离,不应大于6m。
2)接户线和室外进户线最小线间距离一般不小于下列数值:自电杆引下时
为150mm;沿墙敷设时为100m。
3)按户线两端均应绑扎在绝缘子上,绝缘子和接户线支架按下列规定
选用:
a)电线截面在16 mm2及以下时,可采用针式绝缘子,支架宜采用不小于
(5)按户线与低压线如系铜线与铝线连接,应采取加装铜铝过渡接头的措施。
(6)按户线和室外进户线应采用耐气候型线缘电线,电线截面按允许载流量选择,其最小截面应符合表11的规定。
表11接户线和室外进户线最小允许截面
架设方式
挡距
铜线(mm2)
铝线(mm2)
自电杆引下
10m及以下
10~25m
2.5
4
6.0
10.0
2)农户计量表后应装设有明显断开点的控制电器、过流保护装置,每户应装设末级剩余电流动作保护器。
3)应按农村居民用电负荷合理选择电能表。一般按用电负荷不小于24 kW/户进行配置。
(4)接户线的相线和中性线或保护中性线应从同一基电杆引下,其档距不应大于25m,超过25m时应加装接户杆,但接户线的总长度(包括沿墙敷设部分)不宜超过50m。
表8电杆埋设深度
2.6架空绝缘集束导线
(1)架空绝缘集束线路所采用的导线应符合规定。
(2)绝缘导线及悬挂绝缘导线的钢绞线的设计安全系数均不应小于3。
(3)绝缘导线截面的确定应符合下列要求。
1)应结合地区配电网发展规划选定导线截面,无配电网规划城镇地区的经缘导线设计最小截面见表9。
表9无配电网规划城镇地区绝缘导线设计最小截面单位mm2

110kV~220kV干式电流互感器技术规范

110kV~220kV干式电流互感器技术规范
GB 311.1—1997 高压输变电设备的绝缘配合(IEC 60071-1-1993 ) GB 1208—2006 电流互感器(IEC 60044-1-2003,MOD) GB/T 7354—2003 局部放电测量 DL/T 864-2004 标称电压高于1000V 交流架空线路用复合绝缘子使用导则 生产输电[2003]29号 国家电网公司关于加强电力生产技术监督工作意见 国家电网生[2004]461号 国家电网公司预防110(66)kV~500kV互感器事故措施 国家电网生[2004]634号 110(66)kV~500kV电流互感器技术标准 苏电生[2002]320号 江苏省电力设备交接和预防性试验规程
4.1.10 温升限值 互感器绕组的绝缘耐热等级应符合 GB1208-2006 表 2 中 E 级绝缘的规定,其温升限制为 75K,此时
电流互感器的一次电流等于额定连续热电流且带有相当于额定输出的负荷(阻抗值),其功率因数为 0.8(滞后) ~1。 4.1.11 电晕及无线电干扰水平
在 1.1 Um 电压下,电流互感器与电网连接的外部零件表面在晴天的夜间不应有可见电晕,其无线 3
额定容量:≤30VA(对应 1A);≤40VA(对应 5A) ;cosφ=0.8。 仪表保安系数(FS)≤5。 4.1.8.2 保护用 P 级 准确限值系数:20、25、30、40。 110kV 电流互感器额定容量:≤30VA(对应 1A);≤40VA(对应 5A),cosφ=0.8。 220kV 电流互感器额定容量:≤40VA(对应 1A);≤50VA(对应 5A),cosφ=0.8。 4.1.8.3 暂态保护用 TPY 级 电阻性负荷:7.5、10、15Ω。 保证误差限值的一般条件: 一次时间常数 TP:100ms。 对称短路电流倍数 KSSC:20、25、30、40。 短路电流直流分量:100%(即全偏移)。

10kv线路过电压保护器

10kv线路过电压保护器

1 1 0kV 架空配电线路的优缺点 与用裸导线架设的线路相比, 配电网架空绝缘导线线路主要有以 下优点: 1) 提高供电的安全可靠性。有利于改善和提高配电系统的安全可 靠性, 大大减少人身触电伤亡危险, 绝缘导可以防止外物引起的相间短 路, 减少合杆线路作业时的停电次数, 减少维护工作量, 提高了线路的 供电利用率; 2) 利于城镇绿化。由于导线采用了外绝缘, 它可以减少 线路沿线树木的修剪量和工作量, 有利于城镇建设和绿化; 3) 简ቤተ መጻሕፍቲ ባይዱ杆 塔结构。可以简化线路杆塔结构, 甚至可沿墙敷设, 既节约了线路材 料, 又美化了城市街道; 4) 便于高压深入城市负荷中心。由于采用绝 缘导线, 使 1 0 kV导线可以方便进入城市负荷中心, 这样, 既可以提高 电压质量, 还可以减少电能损耗; 5) 节约线路走廊。采用裸导线架设 方式, 必须要考虑足够的安全距离, 这样, 占用的线路走廊就比较大。 采用架空绝缘导线, 可以减小线路所占用的空间, 便于架空线路在狭小 通道内穿越, 缩小了线路走廊, 与架空裸线相比较, 线路走廊可缩小为 原来的一半; 6) 降低电压损失, 提高电能质量。由于架空绝缘导线的 线路电抗仅为普通裸导线线路电抗的三分之一, 它可以明显减少线路的 供电压降, 提高供电质量; 7) 便于线路检修, 减少检修工作量。由于 线路绝缘状况的提高, 从而减少了因检修而停电的时间。绝缘导线不需 要每年做高压实验, 便于运行和维护。 与用裸导线架设的线路相比, 配电网架空绝缘导线的缺点是载流 量小、造价高于裸导线等。 2 架空绝缘导线的雷击断线问题 2.1 雷击断线情况 为了减少架空配电线路故障, 提高供电可靠性, 国外发达国家从 20 世纪 60 年代后期已逐渐采用架空绝缘导线, 在日本, 架空配电线路 已基本实现绝缘化。我国从 8 0 年代也开始对城市架空配电网实施绝缘 化改造试点, 从 90 年 代起加快了步伐, 如北 京 5 个城近郊区 供电局 10 kV 架空线路总长约 3 45 8 km, 到 1 9 98 年底已实施绝缘的线路长约 24 3 6k m, 绝缘化率达 7 0.4% 。绝缘导线确实解决了裸导线所解决不了 的走廊和安全问题。实际上, 近年来绝缘线路发生雷击断线和绝缘子击 穿事故的统计数量呈不断上升趋势, 并随着绝缘导线线路长度增加而急 剧上升, 已成为严重威胁配电网线路安全运行的主要根源。随着近年来 我国大规模城乡电网改造, 全国越来越多的城市配电网络大量采用架空 绝缘导线线路。因此, 如何妥善解决雷击断线问题, 以确保架空绝缘配 电网的安全运行已成为全国配电网系统中一个迫切需要解决的问题。 2.2 架空绝缘导线断线机理 在直击雷或感应雷过电压作用于裸导线引起绝缘子闪络时, 接续 的工频短路电流电弧在电动力的作用下沿着导线滑动, 不会严重烧伤导 线。而绝缘导线则不同, 雷电过电压引起绝缘子闪络并击穿导线绝缘层 时, 被击穿的绝缘层呈一针孔状, 接续的工频短路电流电弧受周围绝缘 的阻隔, 弧根只能在针孔处燃烧, 这样在极短的时间内导线就会被整齐 地烧断。而对于裸导线, 电弧在电磁力的作用下, 高温弧根沿导线表面 不断滑移, 不会集中在某一点烧灼, 因此不会严重烧伤导线。这样, 通 常在工频续流烧断导线或损坏绝缘子之前就会引起断路器动作, 切断电 弧。因此, 裸导线的断线故障率明显低于架空绝缘电缆。 2.3 绝缘导线雷击断线的防范和技术措施 根据绝缘导线雷击断线的机理, 总体上来讲, 相应的防范措施主

电力系统过电压及保护基础知识讲解

电力系统过电压及保护基础知识讲解

示,连接点为A。现将线路z1合闸于直流电源U 0 ,合闸后沿
线路 z1有一与电源电压相同的前行波电压 u1q自电源向结点A
传播,到达结点A遇到波阻抗z 2的线路,根据前节所述,在
结点A前后都必须保持单位长度导线的电场能与磁场能相等
的规律,由于线路z1与z 2的单位长度电感与对地电容都不相
同,因此当u1q 到达A点时要发生电压、电流的变化。也就是
z2 z1 ) z1 z2

在线路z2 中的折射电压 u2q 随时间按指数规律增长如图7
-3-19(b)所示,当时,t=0;u2q 0 当t→∞时 u2q au1q
,这说明无限长直角波通过电感后改变为一指数波头的行波
,串联电感起了降低来波上升速率的作用。 从式(7-3-2)中可得出折射波u2q 的陡度为
z1
z2
u1q
(a)
(b)
图7 - 3 -1 行波通过串联电感
(a)线路示意及等值电路;(b)折射波与反射波
图7-3-1为一无限长直角波 u1q 投射到具有串联电感L的线 路上的情况,L前后两线路的波阻抗分别为z1 及z2 ,当z 2中的
反行波尚未到达两线连接点时,其等值电路如图7-3-1(a)
所示,由此可得
z1 z2 z1 z2
i1q
2 z1 z1 z2
ai
称为电流折射系数;
z2 z1 z1 z2
u
z1 z2 z1 z2
i
称为电压反射系数, 称为电流反射系数。
折射系数的值永远是正的,这说明折射电压波总是和入射 电压波同极性的。
二、 几种特殊情况下的波过程
(一)线路末端开路: 线路末端开路相当于Z2=∞的情况。 此时α=2, β=1;

探讨过电压保护器在10kV架空绝缘线中的应用

探讨过电压保护器在10kV架空绝缘线中的应用

探讨过电压保护器在10kV架空绝缘线中的应用摘要:10kV过电压保护器的功能主要是通过吸收雷电的放电能量和限制感应过电压来保护配电线路免受雷击伤害。

通过对10kV架空绝缘线安装过电压保护器,可以有效加强10kV架空绝缘线的防雷能力和减少雷击断线事故的发生。

关键词:10kV过电压保护器;10kV架空绝缘线1引言无论国内或国外,在配电线路上都已大量地使用10kV架空绝缘线。

配电线路的绝缘化已是一项成熟的技术。

但是,10kV架空绝缘线在使用过程中,也出现了一些影响运行安全的问题。

其中,最为普遍的问题,是被雷击后经常发生断线的事故。

10kV架空绝缘线雷击断线事故频频发生,严重危害了配电网的供电可靠性和安全性,影响人民群众的生产、生活用电。

因此,根据10kV架空绝缘线的维护运行与雷击断线发生情况,研究10kV架空绝缘线的防雷保护措施具有相当实际的意义。

本文通过对过电压保护器在10kV架空绝缘线中应用的探究,根据实际运行情况,比较和研究过电压保护器在预防雷击的实施效果,对作业经验作出总结,为预防10kV架空绝缘线雷击断线事故提供解决方案。

2 10kV架空绝缘线及10kV过电压保护器2.1 10kV架空绝缘线的特点2.1.1 绝缘性能优异。

10kV架空绝缘线由于外包有一层绝缘层,具有比10kV架空裸导线更优异的绝缘性能,可以缩短线路之间距离,降低对配电线路绝缘性要求。

2.1.2 抗腐蚀能力好。

与裸导线相比,由于10kV架空绝缘线与空气接触的面积小,受氧化腐蚀的程度也较小,具有很强的抗腐蚀能力,能够延长配电线路的使用寿命。

2.1.3 抵抗外力破坏。

10kV架空绝缘线可以减少受飞飘金属物、尘土和树枝等外在因素的影响,减少接地及相间短路事故的发生。

2.2 10kV过电压保护器的结构图1 10kV过电压保护器的构成图10kV过电压保护器由限流元件和串联不锈钢引流环组成,其结构如上图1所示。

图中:1-10kV架空绝缘线;2-绝缘子;3-横担;4-连接金具;5-不锈钢引流环;6-限流元件的上电极;7-氧化锌阀片;8-硅橡胶绝缘外套;9-限流元件的下电极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

架空线路过电压保护器技术说明————————————————————————————————作者:————————————————————————————————日期:绝缘线防雷装置的应用研究技术报告南昌供电局武汉雷泰电力技术有限公司摘要本文总结国内外防止配电线路架空绝缘导线雷击断线的技术措施和装置,比较其可靠性和经济性,经试验研究、性能价格比优选和实际运行验证,提出一种适合中国国情、防止配电线路架空绝缘导线雷击断线和减少雷击跳闸概率的新技术和装置,可有效地防止架空绝缘导线雷击断线、绝缘子损坏等事故。

该装置结构简单、安装方便,技术先进、国内首创。

关键词:过电压保护架空绝缘线路key words: Over-voltage Protection Insulated overhead line1.提出问题配电网由于其绝缘水平相对较低,往往容易发生雷害事故,造成绝缘子击穿和导线烧断。

运行经验表明:配电网雷害事故约占整个电力系统雷害事故的70—80% 。

特别是近年来,城市配电网线路多采用架空绝缘电缆,雷害造成的断线事故数量相对增加,必须引起人们的高度重视。

试验研究和实际事故原因分析证实:配电网雷电过电压闪络,亦即大气压或高于大气压中大电流放电,为电弧放电形式。

对于架空绝缘线路,雷电过电压闪络时,瞬间电弧电流很大但时间很短,仅在架空绝缘导线绝缘层上形成击穿孔,不会烧断导线。

但是,当雷电过电压闪络,特别是在两相或三相(不一定是在同一电杆上)之间闪络而形成金属性短路通道,引起数千安培工频续流,电弧能量将骤增。

此时,由于架空绝缘导线绝缘层阻碍电弧在其表面滑移,高温弧根被固定在绝缘层的击穿点而在断路器动作之前烧断导线。

对于裸导线,电弧在电磁力的作用下,高温弧根沿导线表面滑移,并在工频续流烧断导线或损坏绝缘子之前引起断路器动作,切断电弧。

因此,裸导线的断线故障率明显低于架空绝缘导线。

在不切断电源的情况下有两种较为简单的灭弧方法,一是使电弧拉长,二是使电弧冷却,通常是将两种方法结合起来使用。

本研究项目根据试验研究结果,利用交流电弧电流周期性过零的特点截断电弧,提出一种用于配电网中架空绝缘线路过电压保护的实用装置。

2. 过电压保护措施借助城市中的建筑物遮蔽作用,配电线路遭受直接雷击或绕击的概率很小,约占雷害事故的10%。

配电线路上90%以上的雷电过电压闪络故障是源自于线路附近发生雷云对地放电,即感应过电压。

为了防止雷电过电压引起线路断线或绝缘子损坏,通常采用加装保护间隙或避雷器等过电压保护措施 ,本项目综合分析国内外现有的技术措施的利弊,设计出由限流元件串联放电间隙组成的线路过电压保护器。

3. 保护间隙保护间隙将电弧拉长,使电网电压不能维持电弧燃烧,是一种最简单的灭弧装置。

但是,保护间隙存在两方面缺陷:一方面,在中性点不直接接地系统中,一相保护间隙动作时,被切断的电流为电容电流,其值较小,在电弧电流过零时,间隙介质恢复绝缘强度,间隙恢复电压低于介质恢复强度,电弧熄灭,故间隙能够自行灭弧;而两相或三相发生闪络,或中性点接地情况下,流过保护间隙的工频续流为短路电流,其值很大,间隙恢复电压大于介质恢复强度,电弧重燃,故间隙不能切断雷电流之后的工频短路电流。

此时必须借助于自动重合闸配合来切断电弧,否则间隙电弧不能够自行熄灭而引起断路器动作,如图1所示。

另一方面,间隙电压扰动将影响电能质量,特别是间隙放电时,引起很陡的截波,严重威胁如变压器类有绕组的电气设备,如图2所示。

因此,保护间隙的方法逐步被淘汰。

(a) 电弧熄灭 (b) 电弧重燃(A 为重燃点)1—间隙介质恢复强度; 2—间隙恢复电压 12u t 1u tA2图1 电弧电流过零后间隙灭弧机理4.氧化锌避雷器随着氧化锌阀片的技术性能提高,氧化锌避雷器优良的保护性能已被人们接受,近年来广泛地应用于电气设备过电压保护。

避雷器的残压决定了避雷器在过电压情况下的绝缘保护水平,氧化锌避雷器5kA雷电冲击电流时的残压不大于45kV,操作冲击电流时的残压不大于30kV,陡波冲击电流时的残压不大于52kV。

相对来说,架空绝缘电缆以及配电系统中其它电气设备就更安全。

根据电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》中第4.2.9条、第5.3.4 a) 条规定,配电系统中采用无间隙氧化锌避雷器限制各类操作过电压、雷电过电压时,避雷器的持续运行电压和额定电压应不低于表1所列值。

表1. 无间隙氧化锌避雷器的持续运行电压和额定电压系统接地方式持续运行电压(kV)额定电压(kV)不接地3kV-20kV 1.1 Um 1.38 Um 35kV Um 1.25 Um 消弧线圈Um 1.25 Um小电阻0.8 Um Um高电阻1.1 Um 1.38 Um氧化锌避雷器的持续运行电压为:43.2kV(35kV级)、12.7kV (10kV级) ;额定电压值为:54 kV (35kV级)、17 kV (10kV级),符合标准DT/T 620-1997规定。

上海市电力公司近几年在全市大量采用氧化锌避雷器,以抑制雷电过电压,并在《架空绝缘配电线路设计技术规范》中规定“……每隔三档(约100至150米)装设保护间隙或氧化锌避雷器……”。

上海、北京、广州、福州等大中城市市区和城郊基本上是以氧化锌避雷器为主要防止雷电过电压措施。

重要区域采用硅橡胶复合横担和氧化锌避雷器作为防止雷电过电压措施。

事实上,氧化锌避雷器保护范围较小,只能够保护附近的电气设备免受雷害,故我国架空绝缘线路雷击断线事故率依然快速增长。

5.线路过电压保护器结合保护间隙结构简单、低成本和氧化锌避雷器保护特性好的优点,本研究项目提出一种用于城市配电网中架空绝缘线路过电压保护的线路保护器,它是由非线性电阻限流元件(氧化锌阀片)串联放电间隙组成,安装在线路绝缘子上,如图3所示。

其设计指导思想是基于:(1) 工频放电电压足够高,避免在不需保护的操作过电压下动作,延长使用寿命;(2) 冲击放电电压低,伏-秒特性平坦,具有良好的保护性能;(3) 成本低、易于安装和免维护。

其主要技术特点是当雷电过电压或其它故障原因引发绝缘导线3击穿间隙4对地闪络形成金属性电弧放电短路时,特殊设计的不锈钢引流环2将kA级工频续流直接引向氧化锌电阻非线性限流元件1,并借助于氧化锌电阻的非线性特性将正弦波形的工频续流转变成为尖顶波。

尖顶波电流在过零前有相当长的时间内电流幅值较小,同时,限流元件1的残压削减放电电压,使电弧瞬间熄灭而达到迅速截断工频续流,达到有效防止架空绝缘导线因工频续流高温而熔断(雷击断线)的目的(如图6b所示)。

3a3b图3 线路过电压保护器雷电过电压闪络后引起的工频续流流过线路保护器时,非线性电阻限流元件(氧化锌阀片,下同)利用其电压高时阻值小,电压低时阻值大的特性,将正弦波形的工频续流转变成为尖顶波,如图4所示。

尖顶波电流在过零前有相当长的时间电流幅值较小,同时,限流元件的残压削减放电电压,使电弧瞬间熄灭。

此时,串联间隙起隔离作用,保护限流元件耐受较高的过电压而不损坏。

流过线路保护器的电流可由经验公式I= (2U50– Ur) / Z计算, 式中:U50 ---线路绝缘子的50%冲击放电电压;Ur---额定雷电流下的限流元件的残压;Z-----线路波阻抗。

运行经验表明,95%以上的感应雷的放电电流小于1000安培,I >5 kA 的概率非常小,故限流元件标称放电电流值选取为5 kA能够满足保护需要。

非线性电阻限流元件的伏安特性可由公式I = k Uα描述,式中:I--- 限流元件中电流;k---与阀片的面积、高度有关的常数;U---限流元件两端的电压;α—非线性系数。

取氧化锌阀片的荷电率η=80% , 直流1mA 电压U1mA= 2800V ,压比K= 1.6, 若限流元件由N=6片阀片组成,则限流元件标称冲击电流下的残压可由公式 U5kA =K N U1mA计算得到 U5kA=27 kV, 限流元件最大允许长期工作电压可由公式Ubz=ηN U1mA计算得到Ubz=13.44kV。

根据上述理论计算结果,再附加40-125mm串联间隙的隔离效果可知:由非线性电阻限流元件串联放电间隙组成的线路保护器的性能参数满足架空绝缘电缆过电压保护要求。

3 线路过电压保护器的设计原则和技术参数选取架空绝缘线路过电压保护器安装示意图如图5所示。

安装产品排列图图5 线路过电压保护器安装示意图3.1限流元件的额定电压限流元件用于截断工频续流,因而必须认真考虑在工频过电压下流过限流元件的电流。

对于10kV 系统,工频过电压一般不超过1.1√3p.u.。

我们把10kV 系统用的保护器额定电压定为12.7kV ,限流元件直流1mA 参考电压应大于18kV 。

这样在13.2kV 工频过电压作用下,如果忽略串联间隙对于工频续流的影响,理论上流过避雷器的工频续流为0.1A ,计算结果表明限流元件完全能够很好地切断工频续流。

3.2 限流元件通流能力估算府侧引流环横 担绝缘子绝缘导线 限流元件连接件按照DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》推荐,我国一般地区雷电流幅值超过I的概率为P=10(-I/88)。

雷电流可能达到的幅值与地域、时间跨度相关。

从产品的雷击损坏事故来看,地域范围并不重要,可以忽略不计;至于时间跨度,应该考虑产品预期寿命周期,20年是一个大家可以接受的时间。

按DL/T 620-1997的推荐,对于雷暴日T d=40的地区,每100km、每年的雷击次数N L=0.28×4h(h为架空线的平均高度,m,10kV 线路h=10m),则雷电流幅值超过I的雷击次数N1=1.12h×10(-I/88),时间跨度20年、每100km的雷击次数为N2=224×10(-I/88),以基杆间距为50m计算,则每基杆、20年的时间跨度,雷电过电压超过U的次数为N=0.112×10(-I/88)。

由此可以计算,10000基杆、20年的时间内,雷电流超过200kA的次数为6次,考虑到配电线路一般位于市区,周围有高大的建筑物和树木的屏蔽作用,可能的雷击次数一定大大小于6次,但从严考虑仍以6次计。

虽然感应雷电流幅值为200kA,但流过保护器的雷电流极少,按规程选择接地电阻30Ω,使用EMTP暂态计算程序,模拟计算结果为流过保护器的雷电流幅值不超过16kA。

我们选用D3阀片,它能承受2次65kA的大电流冲击,若设计目标仅考虑200kA及以下的安全性,那么每基杆都安装保护器、20年内,保护器的雷击损坏率约为6/10000,其安全裕度是很大的。

若每间隔一基杆安装一组保护器,则保护器的雷击损坏率为1.2‰。

相关文档
最新文档