透射电子显微技术及分析方法
高分辨透射电子显微分析技术
(a)反映了晶体中 重原子或轻原子 列沿电子束方向 的势分布;(b) 是电子显微像上 强度的分 布,可 知 ( x, y) 具有比1小得多的 值。 由于重原子列具 有较大的势((a) 中心峰高),像 强度弱(负峰)。 可见(a)(b) 反映了由试样中 轻重原子的差异 所带来的像上衬 度的差异。
左上插图是结构原子 位置模型示意图。照 片上相应于重原子Tl 和Ba的位置出现大黑 点,而环绕它们的周 围则呈现亮的衬度。 插图中从最上一个Ba 原子到最下一个Ba原 子之间的4个Cu原子 和3个Ca原子和它们 的周围通道也呈亮衬 度。
Tl 系超导氧化物的高分辨电子显微像 TlBa2Ca3Cu4O11粉碎法制备,400kV电 子显微镜,沿[010]入射
7高分辨电子显微学
主要内容
7.1引言 7.2高分辨电子显微成像原理 7.3高分辨电子显微观察和拍摄图形的程序 7.4高分辨电子显微方法的实践和应用
7.1引言
概念:高分辨电子显微术是运用相位衬度成像 的一种直接观测晶体结构和缺陷的技术。 历史:1956年门特用分辨率为0.8nm的透射电 子显微镜直接观察到酞箐铜晶体的相位衬度像 这是高分辨电子显微学的萌芽;在20世纪70年 代,解释高分辨像成像理论和分析技术的研究 取得了重要进展;实验技术的进一步完善,以 及以J.M.Cowley的多片层计算分析方法为标志 的理论进展,宣布了高分辨电子显微学的成熟.
像模拟方法:此法先假设一种原子排列模型, 然后根据电子波成像的物理过程进行模拟计算, 以获得模拟的高分辨像。如果模拟像与实验像 相匹配,便得到了正确的原子排列结构像。
7.2高分辨电子显微成像原理
下面介绍几个基本概念 衬度传递函数T(H):是一个反映透射电子显微 像成像过程中物镜所起作用的函数,它是一个 与物镜球差、色差、离焦量和入射电子束发散 度有关的函数。一般来说,它是一个随着空间 频率的变化在+1与-1间来回震荡的函数。 相位体(phase object):电子波与物体作用后 如果只改变波的相位而波振幅不变,这种物体 成为相位体,反之称振幅体。
透射电子显微分析
透射电⼦显微分析第六章透射电⼦显微分析顾辉6.1 引⾔——电⼦显微学发展简介电⼦显微学是在电⼦的波动性的发现和光学显微镜的实践上开始的。
过去的世纪的前四分之⼀是科学历史上最激动⼈⼼的阶段,量⼦⼒学和相对论⼀个⼜⼀个⾰命性新概念的提出不断的改变⼈类对世界的认识。
这其中在1925年法国⼈德布罗意提出的电⼦象光⼀样具有波动性的概念是其中最具有⾰命性的概念。
1927年的第⼀次电⼦衍射实验不但证实了电⼦的波动性并且给理论家和实验家各⾃带来了诺贝尔奖,也为利⽤波动性的电⼦像光波⼀样来观察物体的变化提供了可能。
1932年Ruska第⼀次设计出了电⼦显微镜并于五⼗多年后得到了他⾃⼰的诺贝尔奖。
第⼀台真实的电镜是1936年在英国造出的,1939年德国西门⼦造出第⼀台成功的商业电镜,使电镜分辨率达到10埃(1纳⽶),远远超过光学显微镜(103-104埃)和X射线显微镜(102埃)。
这⾸先归功于作为波的电⼦具有⽐可见光和X射线短得多的波长。
电⼦的波长与其移动速度有关(与速度倒数的平⽅根成正⽐)。
因此电镜的设计离不开⽐较⾼的加速电压。
早期的电镜加速电压在100千伏,后来⾼压性能的提⾼使⼀般电镜⼤多在200-400千伏之间,⽽(超)⾼压电镜则在⼀百⾄三百万伏。
⽬前的电镜⼤都以200和300千伏为主。
电镜应⽤的第⼀个⾼潮是在20世纪60年代。
⾦属中的位错⾸次在1956年被英国剑桥⼤学Hirsch组成功的⽤电镜观察,这开创了⾦属学和材料学的⼀个新纪元。
位错成了理解⾦属材料微结构与性能关系的主要研究热点。
Hirsch的学⽣Howie和Whelen随后提出了观察和解析位错等晶体缺陷的“衍射衬度”理论,这使电⼦显微学第⼀次成为⼀个独⽴的从理论到实践均有建树的学科。
整个70年代以⽐利时安特卫普Amelinks为代表的科学家在⼤量电镜⼯作的基础上发展出有完整理论和模型的晶体缺陷学科,为固体物理和⾦属学的进步作出了极⼤的贡献。
70年代后期和整个80年代是电⼦显微学的⼜⼀成功发展阶段。
透射电子显微镜实验报告
透射电子显微镜(TEM)实验报告学院:班级:姓名:学号:2016年6月21日实验报告一、实验目的与任务1.熟悉透射电子显微镜的基本构造2.初步了解透射电镜操作过程。
3.初步掌握样品的制样方法。
4.学会分析典型组织图像。
二、透射电镜的结构与原理透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。
提高加速电压,可缩短入射电子的波长。
一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。
就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下:加速电压:80~3000kV分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm最高放大倍数:30~100万倍尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。
此外,还包括一些附加的仪器和部件、软件等。
有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。
以下仅对透射电镜的基本结构作简单介绍。
1.电子光学系统电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。
整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。
通常又把电子光学系统分为照明、成像和观察记录部分。
2.真空系统为保证电镜正常工作,要求电子光学系统应处于真空状态下。
材料分析测试第八章透射电子显微分析
1
更高的分辨率
持续改进电子光源和探测系统,提高
更高的速度
2
透射电子显微镜的分辨率。
加快数据采集速度,提高透射电子显
微分析的效率。
3
更多的功能
开发新的功能,如原位观察和化学成 分图像。
使用溅射技术在样品表面形成一层非常薄的金属涂层,以提高样品的导电性。
3 离心沉淀
使用离心机将材料溶液离心,以沉淀所需的样品。
透射电子显微分析的主要应用领域
材料科学
研究材料的微观结构和成分, 帮助开发新的材料。
纳米技术
观察和研究纳米尺度的材料 和器件。
生命科学
对生物样品进行观察和分析, 了解生物组织和细胞的结构。
材料分析测试第八章透射 电子显微分析
透射电子显微分析是一种强大的材料分析方法,通过使用透射电子显微镜来 观察和分析材料的微观结构和成分。
透射电子显微分析的定义与原理
定义
透射电子显微分析是一种利用透射电子显微镜观察材料的微观结构和成分的分析方法。
原理
利用电子束的透射性质以及被材料组分散射的电子的性质,来推断材料的化学成分和结构。
透射电子显微分析与其他材料分析方法 的比较
透射电子显微分析 分辨率高 透射电子束
扫描电子显微分析 分辨率较高 扫描电子束
原子力显微镜 分辨率较低 原子力探针
透射电子显微分析的优缺点分析
1 优点
2 缺点
高分辨率、能够观察细节、可以同时进行 化学成分分析。
样品制备复杂、昂贵的设备、需要专业知 识。
透射电子显微分析未来的发展趋势
透射电子显微镜的结构和操作
结构
透射电子显微镜包括电子光源、透射电子束生成 系统、样品台、投射系统和探测系统。
纳米材料的透射电子显微镜分析
纳米材料的透射电子显微镜分析一.实验原理在透射电子显微镜电子光学系统中,薄样品对电子束的散射和衍射作用可形成电子显微像衬度或电子衍射花样。
通过观察和研究像衬度及电子衍射花样,可分析样品的微观形貌、尺寸大小和晶体结构。
电子显微图像衬度主要有3种:质厚衬度、衍射衬度和相位衬度。
(1)质厚衬度:由于试样各处组成物质的原子种类和厚度不同,使得对电子散射能力不同,而造成的一种像衬度。
(2)衍射衬度:晶体试样在进行透射电镜观察时,由于各处晶体取向和结构不同,满足布拉格衍射条件的程度不同,使得对试样下表面处有不同的衍射效果,从而在下表面形成随位置而异的衍射振幅分布,由此而形成的一种像衬度。
(3)相位衬度:由透射束与衍射束发生相互干涉,形成一种反映晶体点阵周期性的条纹和结构像,这种像衬度是因透射束与衍射束相位相干而形成的,故称相位衬度。
因此,采用不同的实验条件可以得到不同的衬度像。
另外,透射电镜配置X-Ray能谱仪后,可获得试样微区(nm-µm)元素成分信息。
X-Ray能谱仪是将透射电镜中高能电子入射试样后使原子内壳层电子被激发电离后原子在恢复基态的过程中产生的X射线信号进行收集、放大处理,并按能量展开成谱,利用谱峰的特征能量值确定元素种类,根据谱的强度分析计算各元素含量。
二.实验仪器1.透射电子显微镜:JEM-2010 (HR)2.X-Ray能谱仪:Oxford INCA3.制样设备:超声波发生器,双喷减薄仪,离子减薄仪三.样品制备方法1.粉末分散法取少量粉末样品置于洁净的小烧杯中,加入适量与试样不发生反应的溶剂(例如:无水乙醇、丙酮、蒸馏水等),将烧杯置于超声波发生器水浴槽中进行超声振荡,使粉末样品充分分散,形成悬浮液。
把碳增强的微栅网放在滤纸上,再将此悬浮液滴在微栅网上面,等溶剂挥发干燥后,才可将微栅网装入样品台。
2.电解减薄法用于金属和合金薄膜试样的制备。
3.离子减薄法用于陶瓷、半导体以及多层薄膜截面等材料的薄膜试样制备。
TEM透射电镜中的电子衍射及分析
TEM透射电镜中的电子衍射及分析TEM透射电镜(Transmission Electron Microscopy)是一种高分辨率的显微镜,它利用电子束穿透样品,并通过电子衍射和显微成像技术来观察样品的内部结构和晶格信息。
本文将通过一个实例来介绍TEM透射电镜中的电子衍射及分析过程。
实例:研究纳米材料的晶格结构研究目标:使用TEM透射电镜研究一种纳米材料的晶格结构,确定其晶格常数和晶体结构。
实验步骤:1.样品制备:首先,需要制备纳米材料的TEM样品。
常见的制备方法包括溅射,化学气相沉积和溶液法等。
在本实验中,我们将使用溶液法制备纳米颗粒样品,并将其沉积在碳膜上。
2.装载样品:将TEM样品加载到TEM透射电镜的样品台上,并进行适当的调整,以使样品位于电子束的路径中。
3.调整TEM参数:调整透射电镜的参数,如电子束的亮度,聚焦和对比度等。
这些参数的调整对于获得良好的电子衍射图像至关重要。
4. 获得电子衍射图:通过调整TEM中的衍射镜,观察和记录电子衍射图。
可以使用选区衍射(Selected Area Diffraction,SAD)模式,在样品上选择一个小区域进行衍射。
电子束通过纳米颗粒样品时,会与晶体的原子排列相互作用,并在相应的探测器上形成衍射斑图。
5.解析电子衍射图:利用电子衍射图分析软件,对获得的电子衍射图进行解析。
通过测量衍射斑的位置和相对强度,可以推断出样品的晶格常数和晶体结构。
6.确定晶格常数:根据衍射斑的位置,使用布拉格方程计算晶格常数。
布拉格方程为:nλ = 2dsin(θ)其中,n是衍射阶数,λ是电子波长,d是晶体平面的间距,θ是入射角。
通过测量不同衍射斑的位置和计算,可以得到晶格常数及其误差范围。
7.确定晶体结构:根据衍射斑的相对强度以及已知的晶格常数,可以利用衍射斑的几何关系推断样品的晶体结构。
常见的晶体结构包括立方晶系、六方晶系等。
8.结果分析:根据实验获得的数据,进行晶格常数和晶体结构的分析和比较。
透射电子显微镜(TEM)-TEM 材料研究方法与实验
碳膜复型又有 碳膜一次复型 和塑料-碳膜二 级复型两种方 法。
电子衍射
在电子成像系统中: 使中间镜物平面与物镜像平面重合(成像操作),
在观察屏上得到的是反映样品组织形态的形貌图像; 而使中间镜的物平面与物镜背焦面重合(衍射操
作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。
电子衍射的原理和X射线衍射相似,是以满足布拉格方程作为 产生衍射的必要条件。衍射花样:
• 日本岗山大学H. Hashimoto日本电镜研 究的代表人。
• 瑞典斯德哥尔摩大学Osamu Terasaki,多 孔材料分析“世界第一人”。
• 中国:钱临照、郭可信、李方华、叶恒 强、朱静。
• 国内电镜做得好的有:北京电镜室(物 理所)、沈阳金属所、清华大学、上海 硅酸盐所。
为什么要用TEM?
照片示例(TEM与HRTEM图片)
TiO2的TEM(左)和HRTEM(右)图片
图片示例(ZnO的TEM和HRTEM图片)
涂层、薄膜照片 SiO2/ZrO2 multilayers (bar=50nm)
SiO2 ZrO2
(a)
(b)
(c)
TEM images of spinel film on SiO2 amorphous layer obtained in bright field (a), in dark field (b) and electron
High resolution transmission electron microscopy for a destabilized cadmium sulfide (CdS) sol of 4-5 nm particle size. Collapsed particles are clearly observed. It can also be been that the particles are highly crystalline.
透射电子显微分析
透射电子显微分析
3.复型样品的制备
复型制样方法是用对电子束透明的薄膜把 材料表面或断口的形貌复制下来,常称为复型。 复型方法中用得较普遍的是碳一级复型、塑 料—碳二级复型和萃取复型。对已经充分暴露 其组织结构和形貌的试块表面或断口,除在必 要时进行清洁外,不需作任何处理即可进行复 型,当需观察被基体包埋的第二相时,则需要 选用适当侵蚀剂和侵蚀条件侵蚀试块表面,使 第二相粒子凸出,形成浮雕,然后再进行复型。
透射电子显微分析
2.薄膜样品的制备
块状材料是通过减薄的方法(需要先进行机械或 化学方法的预减薄)制备成对电子束透明的薄膜样品。 减薄的方法有超薄切片、电解抛光、化学抛光和离子 轰击等。
超薄切片方法适用于生物试样。
电解抛光减薄方法适用于金属材料。
化学抛光减薄方法适用于在化学试剂中能均匀减 薄的材料,如半导体、单晶体、氧化物等。
透射电子显微分析
二、透射电子显微像
使用透射电镜观察材料的组织、结构,需具备以 下两个前提:
▪ 制备适合TEM观察的试样,厚度100~200nm,甚 至更薄; ▪ 建立阐明各种电子图象的衬度理论。
对于材料研究用的TEM试样大致有三种类型: 经悬浮分散的超细粉末颗粒。 用一定方法减薄的材料薄膜。 用复型方法将材料表面或断口形貌复制下来的复 型膜。
第三节 透射电子显微分析
一、透射电子显微镜 1.透射电镜的结构 透射电镜主要由光学成像系统、真空系统和电 气系统三部分组成。 (1) 光学成像系统 ❖照明部分 是产生具有一定能量、足够亮度和适当小 孔径角的稳定电子束的装置,包括: 电子枪 聚光镜
透射电子显微分析
透射电子显微分析
透射电子显微分析
(2)成像放大系统 –物镜 –中间镜 –投影镜
高分辨透射电子显微术优秀课件.ppt
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。
扫描透射电子显微分析技术
第五章扫描透射电子显微分析技术(STEM)本章主要内容5.1 STEM概述及发展史51STEM5.2 STEM构造及工作原理5.3 STEM主要功能及应用5.4 STEM最新进展及发展趋势参考书:R.J.Keyse et al,Introduction to Scanning Transmission Electron Microscopy, 参考书:R J Keyse et al Introduction to Scanning Transmission Electron Microscopy BIOS Scientific Publishers Limited,1998。
51STEM STEM是指透射电子显微镜中有扫描附件者,尤其是指采发射电枪作成的扫描透射电镜扫描透射5.1 STEM概述采用场发射电子枪作成的扫描透射电子显微镜。
扫描透射电子显微分析是综合了扫描和普通透射电子分析的原理和特点而出现的一种新型分析方式STEM能够获得TEM所特点而出现的一种新型分析方式。
STEM能够获得TEM所不能获得的一些关于样品的特殊信息。
STEM技术要求较高,要非常高的真空度,并且电子学系统比TEM和SEM都要复要非常高真度,并子学系和都要复杂。
扫描透射电子显微镜是透射电子显微镜的一种发展。
扫描透射电子显微镜是透射电子显微镜的种发展扫描线圈迫使电子探针在薄膜试样上扫描,与扫描电子显微镜不同之处在于探测器置于试样下方,探测器接受透射束散射束放在荧光电子束流或弹性散射电子束流,经放大后,在荧光屏上显示与常规透射电子显微镜相对应的扫描透射电子显微镜的明场像和暗场像明场像和暗场像。
51STEM为什么发展和使用STEM技术?5.1 STEM概述TEM STEM电子束平行束、会聚束非常小而亮的会聚束(电子探针)105A)(<1nm,>0.5nA)成像所有成像信号同时记录,图像放大有投影镜控制成像信号逐点记录,图像放大不需要投影镜衍射模式利用平行束利用会聚束结构几何需要投影镜不需要投影镜,有足够的空间配置各种检测器STEM优点:1利用STEM可以观察较厚的试样和低衬度的试样1. 利用STEM可以观察较厚的试样和低衬度的试样。
材料电子显微分析技术及应用
材料电子显微分析技术及应用微软用户[选取日期][在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
]一、透射电子显微镜(TEM)成像原理:入射电子束的强度为I0,在A晶粒下表面的透射束强度近似等于入射束强度I0;而B晶粒的透射束强度为(I0-Ihkl)。
透射束和衍射束经物镜聚焦,分别在背焦面上形成透射斑点(000)和衍射斑点(hkl)。
若用物镜光阑挡掉B晶粒的衍射束,只允许透射束通过光阑成像,像平面上A、B晶粒成像电子束强度分别为IA、IB:则有成像电子束强度即为图像亮度,所以A晶粒亮,B晶粒较暗,见图1。
若以A晶粒亮度为背景强度的B晶粒衬度为因图像衬度与不同区域的衍射强度有关,故称衍射衬度。
图1:成像方式:让透镜束通过物镜光阑而把衍射束挡掉得到图像衬度的方法成为明场成像,所得到的像为明场像;把物镜光阑的位置移动一下,使其光阑孔套住hkl斑点,而把透射束挡掉可以得到暗场像;若只有B晶粒的hkl衍射束正好通过光阑孔,而透射束被挡掉,此方法成为中心暗场成像法。
暗场像的衬度明显高于明场像,是暗场成像的特点之一。
应用举例:钢中典型组织的观察。
1、珠光体奥氏体在C曲线“鼻子”上部分区域分解的产物为珠光体型组织,包括珠光体、索氏体和屈氏体,都是铁素体与渗碳体的机械混合物,区别只是层片间距不同而已。
珠光体组织内层片的粗细和冷却速度、转变温度有关,冷速愈快,转变温度愈低,所形成的珠光体则越细。
由于珠光体在晶界形核,然后向晶内长大直至相遇,所以在一个奥氏体晶粒内有若干不同位向的珠光体领域。
AI I≈B hklI I I≈-2、贝氏体奥氏体在中间温度(低于珠光体转变温度,高于马氏体转变温度)的转变产物为贝氏体,贝氏体也是铁素体和渗碳体的两相组织,但其相变机制和组织形态与珠光体不同。
随着钢的成分及转变温度的不同,贝氏体形态有很大差别,大致可分为三类:上贝氏体、下贝氏体和粒状贝氏体。
透射电子衍射及显微分析
上,取下IP,放入专用的照相处理机上。马上印出相 片,像的质量比普通胶片好。
3.2真空部分
需要真空的原因: 高速电子与气体分子相互作用导致电子散射,引起炫光
和减低像衬度;
电子枪会发生电离和放电,使电子束不稳定;
透射电子显微分析(TEM)
1. 历史回顾 2. 透射电镜的结构 3. TEM工作原理 4. 电子衍射物相分析 5. 电子显微衬度像 6. 样品制备
TEM发展简史
TEM是量子力学研究的产品
黑体辐射:可以把金属看成近似的黑体,给它加热,先呈暗红,而
黄而白,发出耀眼的光线,能量随温度的升高而增加。问题的焦点是 求出能量、温度与波长之间的关系式。
性是不是可以推广到电子这类的粒子呢?-- “物 质波”的新概念 物质波的波长公式λ=h/P
路易• 德布罗意 (1892-1989) 法国物理学家
例:质量 m= 50Kg的人,以 v=15 m/s 的速度运动,试 求人的德布罗意波波长。
h h 6.631034 8.81037 m
普朗克:辐射的能量不是连续的,像机关枪里不断射出的子弹。这
一份一份就取名为“量子”。能量子相加趋近于总能量。
能量子与什么有关?
能量子=h×频率
光电效应:又一有力证据
爱因斯坦,1921年的诺贝尔奖金。
1923年:德布罗意提出物质波的假说 光波是粒子,那么粒子是不是波呢?光的波粒二象
2.两种工作模式
在TEM中,改变中间 镜的电流。使中间镜的 物平面从一次像平面移 向物镜的后焦面,可得 到衍射谱,反之,让中 间镜的物面从后焦面向 下移到一次像平面,就 可看到像。 这就是为 什么TEM既能得到衍 射谱又能观察像的原因。
透射显微镜的工作原理
透射显微镜的工作原理
透射电子显微镜(Transmission Electron Microscope, TEM)是
一种利用电子束传递来对样品进行观察和分析的仪器。
它在细胞生物学、材料科学等领域发挥着重要作用。
透射电子显微镜的工作原理可以分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜使用一个电子枪产生高速的电子束。
电子束首先通过专门设计的系统进行聚焦和收束,以保证电子束的直径足够小。
2. 束缚电子(束缚脱电子):电子束通过束流进样品。
所谓束缚电子指的是样品原子中的电子在电子束的作用下被激发到较高能级,这样使得它们遵循一定的路径发射出来,形成散射电子和被束囚电子。
这些束缚电子会以不同的角度散射出电子束。
3. 透射电子的形成:束囚电子的路径会受到样品物质的阻碍而改变方向,其中一部分束囚电子将经过样品而形成透射电子。
透射电子在通过样品时会和样品的原子、分子以及晶体结构发生相互作用。
4. 透射电子的收集和分析:透射电子进入显微镜的透射电子探测器,探测器会将透射电子转化为电荷信号,并将信号传递给显示屏或电子学器件。
然后根据散射模式和信号的强度,可以确定样品的结构、形态和成分。
通过透射电子显微镜,我们可以观察到极小的事物,像原子和分子,因为电子的波长比光的波长小得多。
在透射电子显微镜
中,细致的样品制备、高真空环境以及精密的光学系统都是保证获得高分辨率和清晰图像的关键。
透射电子显微镜实验报告
透射电子显微镜实验报告透射电子显微镜的基本结构及成像原理认知实验一、实验目的1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理。
2.观察透射电子显微镜基本部件的名称,了解其用途;二、实验仪器仪器:JEM-2100UHR 透射电子显微镜(JEOL)透射电子显微镜用高能电子束作为照明源。
利用从样品下表面透出的电子束来成像。
原理及结构与透射式光学显微镜一样。
世界第一台透射电子显微镜是德国人鲁斯卡1936年发明的。
他与发明扫描隧道显微镜的学者一起获得1982年的诺贝尔物理奖。
目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国FEI、德国LEO。
透射电子显微镜的功能:主要应用于材料的形貌、内部组织结构和晶体缺陷的观察;物相鉴定,包括晶胞参数的电子衍射测定;高分辨晶格和结构像观察;纳米微粒和微区的形态、大小及化学成分的点、线和面元素定性定量和分布分析。
样品要求为非磁性的稳定样品。
可观察的试样种类:复型样品,金属薄膜和粉末试样,玻璃薄膜和粉末试样,陶瓷薄膜和粉末试样。
三、实验内容(一)透射电镜成像原理透射电子显微镜电子光学系统的工作原理可以用普通光学成像原理进行描述,也就是:平行光照射到一个光栅或周期物样上时,将产生各级衍射,在透镜的后焦面上出现各级衍射分布,得到与光栅或周期物样结构密切相关的衍射谱;这些衍射又作为次级波源,产生的次级波在高斯像面上发生干涉叠加,得到光栅或周期物样倒立的实像。
图1示意地画出了平行光照射到光栅后,在衍射角为θ的方向发生的衍射以及透射光线的光路图。
如果没有透镜,则这些平行的衍射光和透射光将在无穷远处出现夫琅和费衍射花样,形成衍射斑D和透射斑T。
插入透镜的作用就是把无穷远处的夫琅和费衍射花样前移到透镜的后焦面上。
后焦面上的衍射斑(透射斑视为零级衍射斑)作为光源产生次波干涉,在透镜的像平面上出现一个倒立的实像。
第十二章高分辨透射电子显微术ppt课件
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射 第十一章 晶体薄膜衍衬成像分析 第十二章 高分辨透射电子显微术 第十三章 扫描电子显微镜 第十四章 电子背散射衍射分析技术 第十五章 电子探针显微分析 第十六章 其他显微结构分析方法
1
第十二章 高分辨透射电子显微术
图12-14 Al-Si合金粉末的高分辨像 a)、SEM像 b)和TEM明场像 c) 22
第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟
由图12-15可说明,Si3N4晶界上有一非晶层, NiAl2O4 与NiO相界为稳定界面, Fe2O3表面为其(0001)面
图12-15 几种平面界面的高分辨像 a) Ge的晶界 b) Si3N4的晶界
的实验像a)、b)、c)及模拟高分辨像d)、e)、f)
16
第三节 高分辨电子显微术的应用
材料的微观结构与缺陷结构,对材料的物理、化学和力 学性质有重要影响。利用高分辨电子显微术,可以在原子尺 度对材料微观结构和缺陷进行研究,其应用主要包括 1) 晶体缺陷结构的研究 2) 界面结构的研究 3) 表面结构的研究 4) 各种物质结构的研究 下面给出一些典型的高分辨像,用图示说明高分辨透射电镜 在材料原子尺度显微组织结构、表面与界面以及纳米粉末结 构等分析研究中的应用
电子束倾斜和样品倾斜均会影响高分辨像衬度,电子 束 轻微倾斜,将在衍射束中引入不对称的相位移动
图12-6所示为 Ti2Nb10O29 样品厚度为7.6 nm时的高分辨模 拟 像。图中清楚表明,电子束或样品即使是轻微倾斜,对高 分 辨像衬度也会产生较明显影响
样品倾斜 / mrad
电子束倾斜 / mrad
六、高分辨像的计算机模拟
实验一 透射电子显微镜样品制备
第二篇材料电子显微分析实验一透射电子显微镜样品制备一、实验目的1.掌握塑料—碳二级复型样品的制备方法。
2.掌握材料薄膜样品的制备方法—双喷电解减薄法和离子薄化法。
二、塑料—碳二级复型的制备原理与方法(一) AC纸的制作所谓AC纸就是醋酸纤维素薄膜。
它的制作方法是:首先按重量比配制6%醋酸纤维素丙酮溶液。
为了使AC纸质地柔软、渗透性强并具有蓝色,在配制溶液中再加入2%磷酸三苯脂和几粒甲基紫。
待上述物质全部溶入丙酮中且形成蓝色半透明的液体,再将它调制均匀并等气泡逸尽后,适量地倒在干净、平滑的玻璃板上,倾斜转动玻璃板,使液体大面积展平。
用一个玻璃钟罩扣上,让钟罩下边与玻璃板间留有一定间隙,以便保护AC纸的清洁和控制干燥速度。
醋酸纤维素丙酮溶液蒸发过慢,AC纸易吸水变白,干燥过快AC纸会产生龟裂。
所以,要根据室温、湿度确定钟罩下边和玻璃间的间隙大小。
经过24小时后,把贴在玻璃板上已干透的AC纸边沿用薄刀片划开,小心地揭下AC纸,将它夹在书本中即可备用。
(二) 塑料—碳二级复型的制备方法(1) 在腐蚀好的金相样品表面上滴上一滴丙酮,贴上一张稍大于金相样品表面的AC纸(厚30~80μm),如图1-2(a)所示。
注意不要留有气泡和皱折。
若金相样品表面浮雕大,可在丙酮完全蒸发前适当加压。
静置片刻后,最好在灯泡下烘烤一刻钟左右使之干燥。
(2) 小心地揭下已经干透的AC纸复型(即第一级复型),将复型复制面朝上平整地贴在衬有纸片的胶纸上,如图1-2(b)所示。
(3) 把滴上一滴扩散泵油的白瓷片和贴有复型的载玻片置于镀膜机真空室中。
按镀膜机的操作规程,先以倾斜方向“投影”铬,再以垂直方向喷碳,如图1-2(c)所示。
其膜厚度以无油处白色瓷片变成浅褐色为宜。
(4) 打开真空室,从载玻片上取下复合复型,将要分析的部位小心地剪成2mm×2mm的小方片,置于盛有丙酮的磨口培养皿中,如图1-2(d)所示。
(5) AC纸从碳复型上全部被溶解掉后,第二级复型(即碳复型)将漂浮在丙酮液面上,用铜网布制成的小勺把碳复型捞到清洁的丙酮中洗涤,再移到蒸馏水中,依靠水的表面张力使卷曲的碳复型展平并漂浮在水面上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射电子显微镜 TEM
电子波 ~0.002nm
>100keV
x数百万倍
~0.1nm
薄膜, 直径<3mm 厚度<100nm
比较困难
二维投影形貌,内 部结构,电子衍射, 晶体结构,晶格像, 原子像
EDS, EELS 原位物性研究等
透射电子显微镜(TEM)
电子枪
比阴极负 100~1000V
比阴极负 100~1000V
電圧(kV )
100kV~1000kV
电子枪示意图
•加速电压越高,电子穿透力越强, 可以观察较厚的试样 •加速电压越高,电子波长越短
波長(Å)
衍射,波长与分辨率
d
阿贝分辨率
d=
0.61
λ
n sinq
光波:λ= 400〜700nm
n sinq 1〜1.6 d 150nm
电子波:λ= 0.0037nm (100kV)
n sinq 1〜1.6 d 0.001nm
透射电镜的实际分辨力远没到极限:存在球面像差。
透射电镜的分辨率
光学显微镜 光波 电子波
球面像差
物镜的球面像差系数 高分辨TEM 分析型TEM 电子波长
加速电压增大波长减小
透射电镜样品制备方法
一、粉末样品制备(重点)
灯丝(钨)
灯丝(LaB6) 100kV~1000kV 电子枪示意图
热电子发射式:靠加热使电子电离 -钨丝 -LaB6:功函数低,电流密度大
场发射式:由强电场将电子吸出
普通TEM
电子枪
场发射TEM
透射电镜的主要性能指标
一. 分辨率
• 分辨率是透射电镜的最主要性能指标,它表征电 镜显示亚显微组织、结构细节的能力。两种指标: – 点分辨率—表示电镜所能分辨的两点之间的最 小距离; – 线分辨率—表示电镜所能分辨的两条线之间的 最小距离,通常通过拍摄已知晶体的晶格象来 测定,又称晶格分辨率。
透射电子显微技术 及分析方法
河北工业大学材料科学与工程学院
扫描电子显微像与透射电子显微像
10 µm
试样表面
电子与物质的相互作用
入射电子束
试样表面 1µm
俄歇电子
d 0.5~2nm 50-1500eV
二次电子 5~10nm 0~50eV 背散射电子 5~200nm
特征X射线
荧光X射线
电子与物质的相互作用
• 分散(超声波)
• 适当的浓度 • 适当的表面活性剂 • 适当的介质(乙醇)
降低表面张力
铜网
防止团聚
转移到铜网上:滴 or 捞。 干燥:保护真空。
超声波仪
透射电镜样品制备方法
二、薄晶样品制备:一切二磨三减薄。
研磨板
凹面研磨:钉薄
试样 试样托
〜100μm
20〜30μm
离子减薄装置原理示意图
三、断面样品的制备方是完全一样的,两 种技术所得到的晶体衍射花样在几何特征上也大致相 似,电子衍射与X射线衍射相比的突出特点为: ① 在同一试样上把物相的形貌观察与结构分析结合 起来; ② 物质对电子的散射更强,约为X射线的一百万倍, 且衍射强度大,所需时间短,只需几秒钟。
一、根据衍射花样确定样品是晶体还是非晶。 二、根据衍射斑点确定相应晶面的晶面间距。 三、衍射斑点指标化。
理论分辨力约为波长一半, 实际分辨力远没到极限:存在像差。
透射电镜的主要性能指标
二、放大倍数
• 透射电镜的放大倍数是指电子图象对于所 观察试样区的线性放大率。目前高性能透 射电镜的放大倍数变化范围为100倍到80 万倍。
• 目镜×中间镜×投影镜,if 三个都用了。
根据放大倍数标注尺寸
透射电镜的加速电压
光学显微镜
入射波
入射波能量 倍率 分辨率 样品
光波 ~500nm <10eV x数千倍 ~100nm 尺寸范围广
制样难易 功能
容易 彩色立体形貌
附加分析
扫描电子显微镜 SEM 电子波 ~0.1nm
2~30keV
x数十万倍 ~1nm 尺寸范围广 直径200mm 高度80mm左右 容易
三维立体形貌,几 何形态,形状,尺 寸,表面结构
Sample
Heat
Trapped electrons
Inelastic scattered electrons(EELS)
Elastic scattered electrons(TEM)
Unscattered
electrons(TEM)
扫描电子显微镜(SEM)vs 透射电子显微镜(TEM)
探测器 收集二 次电子 或背散 射电子
单晶
多晶
非晶
L:试样到底板距离 R:斑点到中心距离
(或圆环半径)
2θ d
2dsinθ=λ tg2θ≈sin2θ sin2θ≈ 2sinθ
d · tg2θ=λ
tg2θ= R/L
d · R/L = λ d ·R=L · λ d·K=λ d = λ/ K
电子枪
聚束透镜 会聚光阑 聚束透镜 物镜光阑 扫描线圈
物镜 样品
电子枪
聚束透镜 会聚光阑 样品(薄) 物镜 物镜光阑 投影镜 荧光屏
光学显微镜 vs 电子显微镜
光学显微镜
透射电子显微镜
照相机 投影镜/目镜
物镜 载物台及样品
聚光透镜 照明光源
电子枪 磁聚束透镜 电镜样品 磁物镜 投影镜
荧光屏
光学及电子显微镜比较
透射电镜成像原理
一、质厚衬度原理(重要) 二、衍射衬度原理
衬者,相对也,相对比而存在。
由于试样的质量和厚度不同, 各部分对入射电子发生相互 作用,产生的吸收与散射程 度不同,而使得透射电子束 的强度分布不同,形成反差, 称为质-厚衬度。
衍射衬度主要是由于晶 体试样满足布拉格反射 条件程度差异而形成电 子图象反差。它仅属于 晶体结构物质,对于非 晶体试样是不存在的。
特征X射线
背散射电子 (弹性/非弹性)
入射电子
N M LK
N M LK
N M LK 自由电子
俄歇电子
透射电子
非弹性散射电子 弹性散射电子
电子与物质的相互作用
入射电子束
俄歇电子 背散射电子(SEM)
阴极荧光(CL) 特征X射线(EDS)
2次电子(SEM)
试样
热
吸收电子
非弹性散射电子(EELS)
弹性散射电子(TEM)
透射电子(TEM)
Electron-Specimen Interactions
Incident electrons
Auger electrons Backscattered electrons(SEM)
Cathodeluminescence(CL)
Secondary electrons(SEM)
X-ray(EDS)