2020年福州市九年级质量检测数学试题含答案
2020年福州市九年级质量检测数学试题答案
∴AF⊥GB.
由垂线段最短可得AF≤AM,
当且仅当点F,M重合时等号成立,
此时AF垂直平分GB,即AG=AB.
∵AC<AB,∴ 上存在点F使得F为GB中点,
∴AF≤ GB,∴ ≤ ,即 的最大值为 .
24.(本小题满分12分)
(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 67.5°.
不妨设P( , ),Q( , ),
∴直线OP的解析式为 .
设A(m,n).
∵QA⊥x轴交直线OP于点A,
∴ ,
∴ .
又方程 的解为 ,
∴ ,
∴ ,
即点A的纵坐标为 ,
∴点A在直线 上.
(3)∵切线l不过抛物线C的顶点,
∴设切线l的解析式为 (a 0).
将 代入 ,得 ,
依题意得 ,
即 ,
∴ ,
∴切线l的解析式为 .
∴∠BED 45°,∠EAC ∠ECA 45°,
∴∠AEC ∠BEC 135°.
∵∠BAC 90°,
∴∠BAE ∠EAC 90°,
∴∠ABE ∠EAC.
∵∠ABC 45°,
∴∠ABE ∠EBC 45°,
∴∠ECA ∠EBC,
∴△BEC∽△CEA,
∴ .
在Rt△ABC中, ,
∴ ,
∴ , .
在Rt△ABE中,tan∠ABE .
∴m应在16≤x<20内.而14.72<16,
∴用14.72作为标准m不合理.
23.(本小题满分10分)
(1)证明:连接OD,AD.
∵AB为⊙O直径,点D在⊙O上,
∴∠ADB 90°,∴∠ADC 90°.
∵E是AC的中点,∴DE=AE,
福州市2019-2020年九年级上期末质量检测数学试卷及答案
福州市2019-2020年九年级上期末质量检测数学试卷及答案—学年度第一学期九年级期末质量检测数 学 试 卷(满分150分;考试时间120分钟)一、选择题(共10小题,每小题4分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列根式中,不是最简二次根式的是 A .10 B .8 C . 6 D . 22.下列图形依次是圆、正方形、平行四边形、正三角形,其中不是中心对称图形的是3.如图,△ABC 内接于⊙O ,∠A =50°,则∠BOC 的度数是 A .100° B .80° C .50° D .40° 4.下列事件中,为必然事件的是A .购买一张彩票,一定中奖B .打开电视,正在播放广告C .一个袋中只有装有5个黑球,从中摸出一个球是黑球D .抛掷一枚硬币,正面向上5.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A .0.2B .0.3C .0.4D .0.5 6.方程x 2=x 的解是A .x =1B .x =0C .x 1=1,x 2=0D .x 1=-1,x 2=07.在平面直角坐标系中,将抛物线y =x 2先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式是A .y =(x -2)2+2B .y =(x ―2)2―2C .y =(x +2)2+2D .y =(x +2)2-2 8.若n (n ≠0)是关于x 的方程x 2+mx +3n =0的一个根,则m +n 的值是 A .-3 B .-1 C .1 D .39.已知⊙O 1和⊙O 2的半径分别是方程x 2-6x +5=0的两根,且两圆的圆心距等于4,则⊙O 1与⊙O 2的位置关系是A .外离B .外切C .相交D .内切10.二次函数y =ax 2+bx +c 的图象如图所示,则点A (4a +2b +c ,abc )在 A .第一象限 B .第二象限C.第三象限D .第四象限A BCD 第3题图第5题图 第10题图 ABC D O 第14题图二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置) 11.使x -1有意义的x 的取值范围是_______________.12.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字为6的概率是______________.13.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个相等的实数根,则k =_________.14.如图,一条公路的转弯处是一段圆弧(图中的⌒AB ),点O 是这段弧的圆心,C 是⌒AB 上一点,OC ⊥AB ,垂足为D ,AB =160m ,CD =40m ,则这段弯路的半径是___________m .15.已知二次函数y =―x 2―4x +3,则y 的最大值是____________;x +y 的最大值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.计算:(每小题7分,共14分)(1) 8×12×18÷27; (2) 9x +6 x 4-2x 1x.17.(本题15分)如图,△ABC 的顶点坐标分别为A (-3,1),B (0,1),C (0,3),将△ABC 绕原点O 顺时针旋转90°,得到△A 1B 1C 1.(1) 画出△A 1B 1C 1;(2) 直接写出△A 1B 1C 1各顶点坐标;(3) 若二次函数y =ax 2+bx +c 的图象经过点C 、B 1、C 1,求二次函数的解析式;(4) 请在右边的平面直角坐标系中画出(3)的二次函数y =ax 2+bx +c18.(本题12分)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出球的标号为y .小明和小强在此基础上共同协商一个游戏规则:当x 与y 的积为偶数时,小明获胜;否则小强获胜.(1) 若小明摸出的球不放回,求小明获胜的概率;(2) 若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由. 19.(本题10分)据媒体报道,某年旅游纯收入约2000万元,年旅游纯收入约2880万元,若年、年旅游纯收入逐年递增,请解答下列问题:(1) 求这两年该旅游纯收入的年平均增长率;(2) 如果今后两年仍保持相同的年平均增长率,请你预测到年该旅游纯收入约多少万元?20.(本题12分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,且∠A =∠PCB .(1) 求证:PC 是⊙O 的切线; (2) 若CA =CP ,PB =1,求⌒BC 的弧长.第20题图21.(本题13分)在△ABC 中,AC =BC =2,∠C =90°.将一块三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交边AC 、CB 于点D 、E .(1) 如图①,当PD ⊥AC 时,则DC +CE 的值是____________.(2) 如图②,当PD 与AC 不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3) 如图③,在∠DPE 内作∠MPN =45°,使得PM 、PN 分别交DC 、CE 于点M 、N ,连接MN .那么△CMN 的周长是否为定值?若是,求出定值;若不是,请说明理由.22.(本题14分)如图,抛物线y =x 2-4x +1与x 轴交于A 、B 两点,与y 轴交于点C .(1) 求点A 、B 的坐标及线段AB 的长; (2) 求△ABC 的外接圆⊙D 的半径;(3) 若(2)中的⊙D 交抛物线的对称轴于M 、N 两点(点M 在点N 的上方),在对称轴右边的抛物线上有一动点P ,连接PM 、PN 、PC ,线段PC 交弦MN 于点G .若PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,当这两部分面积之差等于4时,求出点P 的坐标.A C DEP 第21题图① 第21题图② A B C DE P 第21题图③ A C D E MPN 第22题图①第22题图②福州市—学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D 二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分(2) 9x +6x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分 (答案用一般式或顶点式表示,否则扣2分)18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种.…………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 12. (6)分(2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有7种. ……………………………………………………………………………10分∴小明获胜的概率P (x 与y 的积为偶数)=7 16 < 12, (11)1 2 3 51 2 3 5 1 2 3 5 1 2 3 5 小明 小强 小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5分(或证明7 16 ≠916也可) ∴游戏规则不公平. ……………………………………………………………………12分19.解:(1) 设这两年该旅游纯收入的年平均增长率为x .根据题意得: ………………1分2000(1+x )2=2880. (4)分解得:x 1=0.2=20%,x 2=-2.2 (不合题意,舍去). ………………………6分答:这两年该旅游纯收入的年平均增长率为20%. (7)分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该旅游纯收入为 2880(1+0.2)2=4147.2(万元). ………………………9分答:预测2015年该旅游纯收入约4147.2万元. ………………………10分 20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径, ∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分 ∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分 ∴∠COB =60°. ………………………………11分∴l ⌒BC = 1×60π 180= 13π. ……………………………12分 21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分 ∵△ABC 是等腰直角三角形,P 是AB 的中点,∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分A B C OA DP∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF . ∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN =45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分 (由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分 由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 12·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);A CD E MP N F或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k = n -1 m b =1, ∴直线PC 的解析式为y = n -1mx +1. …………………11分当x =2时,c = 2(n -1)m+1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为: =S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG ) =2S △GCD +S △PGN -S △PMG=2×1 2 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2) =[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分。
2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析
2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。
2020年福州市九年级质量检测数学试题(含答案)
准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.A F D EB C数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分 ∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF , 即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE,,, ∴△ABF ≌△DCE , ······························································································· 6分 ∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-519.(本小题满分8分)解:原式221(1)(1)(1)x x x x······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC 12OA ,∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇,故4(60)2003v 乙,解得90v 乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分20010603a . ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有 40100180280600 (户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分 23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°, ∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°,∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°, 即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°.∵∠BAC 90°, ∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°, ∴sin ∠DBF FD DB ················································································ 5分∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG , ∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,FB AC DE。
2023-2024学年第二学期福建省福州市九年级质量抽测数学试卷参考答案
2023-2024学年第二学期福州市九年级质量抽测数学答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果学生的解法与本解答不同,可根据习题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当学生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示学生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(本题共10小题,每小题4分,共40分) 1.A 2.B 3.A 4.A 5.C 6.D 7.B 8.B 9.C 10.B二、填空题(本题共6小题,每小题4分,共24分) 11.60−米 12.抽样调查 13.70° 14.23x > 15.396元16.DE三、解答题(本题共9小题,共86分)17.(本小题满分8分)解:原式π312=−++ ······································································································ 6分π=. ··············································································································· 8分18.(本小题满分8分)证明:∵BE CF =,∴BE EF CF EF +=+,∴BF CE =. ········································································································· 3分在△ABF 和△DCE 中AB DC =,············································································································ 4分 B C ∠=∠,············································································································ 5分 BF CE =, ∴△ABF ≌△DCE , ································································································ 6分 ∴A D ∠=∠. ········································································································ 8分19.(本小题满分8分)解法一:∵3a b=,∴3a b =, ········································································································· 1分∴原式222(3)233(2)3(3)b b b b b b b b −×⋅=−÷−− ······································································· 2分 222239(2)296b bb b b b −=−⋅− ··················································································· 4分 2238(2)23b b=−⋅ ····························································································· 6分 8123=× ······································································································ 7分 43=. ······································································································· 8分 B C DA E F ⎧⎪⎨⎪⎩解法二:原式22222()2a b a ab a b a b a ab−−=−⋅−−− ············································································· 2分 ()()2(2)a b a b a b a b a a b +−−=⋅−− ···················································································· 5分 a b a+=. ····································································································· 6分 ∵3a b=, ∴3a b =, ········································································································· 7分 ∴原式33b b b+=43=. ······································································································· 8分 20.(本小题满分8分)解:(1)400; ·············································································································· 2分72°; ··············································································································· 4分 (2)记两名男生为M ,N ,两名女生为P ,Q .6分由表(图)可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等. ········· 7分 其中抽取的两名同学刚好为两位女同学的结果有2种.∴抽取的两名同学刚好为两位女同学是21126=. ······················································· 8分21.(本小题满分8分) 证明:连接OC ,CD. ····································································································· 1分∵CA CB =,∴A B ∠=∠.········································································································· 2分 ∵BD 是直径,∴90BCD ∠=°.分 ∵D 是OA 的中点, ∴AD OD =.分又OB OD =,∴AO BD =.分 ∵△AOC ≌△BDC , ································································································ 6分 ∴90ACO BCD ∠=∠=°, ························································································· 7分 ∴OC ⊥AC .∵点C 为半径OC 的外端点,∴AC 是⊙O 的切线. ······························································································ 8分22.(本小题满分10分) (1)····························································· 3分如图,O 为所求作的点. ··························································································· 4分(2)证明:∵D 是BC 的中点,∴12BD BC =. ······························································································ 5分∵△ABC 绕点O 旋转得到△DEF ,D ,E 分别是点A ,B 的对应点,∴OB OE =,90BOE AOD ∠=∠=°,△ABC ≌△DEF , ·········································· 6分∴90BOD ∠=°,BC EF =,ABC DEF ∠=∠.分 在△ODB 与△OGE 中 ABC DEF OB OE BOD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ODB ≌△OGE , ·分 ∴BD EG =,分∴12EG EF =,即EG FG =,∴G 是EF 中点. ··························································································· 10分 23.(本小题满分10分)解:(1)①a ; ················································································································ 1分②b ;················································································································· 2分 ③tan b α⋅; ········································································································ 3分 ④(tan )b a α⋅+; ································································································· 4分(2)先在该建筑物(MN )的附近较空旷的平地上选择一点A , 点B 为测量人员竖直站立时眼睛的位置,用自制测角仪获取最高处(M )的仰角MBC α∠=,然后由点A 朝点N 方向前进至点D 处,此时点E 为测量人员竖直站立时眼睛的位置,再用自制测角仪获取最高处(M )的仰角MEC β∠=; ················································ 5分 再用皮尺测得测量人员眼睛到地面的距离m AB a =,以及前进的距离m AD b =, ············· 6分 由实际背景可知四边形ABED ,四边形ABCN 为矩形, 故m NC DE AB a ===,m BE AD b ==.在Rt △BCM 和Rt △ECM 中,90BCM ∠=°,∴tan MC BC α=, ··································································································· 7分tan MC EC β=, ··································································································· 8分∴tan tan MC MC BE BC EC αβ=−=−,············································································ 9分即tan tan MC MC b αβ=−,∴tan tan tan tan b MC αββα⋅⋅=−,∴tan tan ()m tan tan b MN MC CN a αββα⋅⋅=+=+−. ······························································10分 24.(本小题满分12分)解:(1)①将A (2−,0),B (6,4)代入22y ax bx =+−,得422036624a b a b −−=⎧⎨+−=⎩,, ·························································································· 2分解得1412a b ⎧=⎪⎨⎪=−⎩,, ∴抛物线的解析式为211242y x x =−−. ······························································· 4分A BCMN α ABC D EMN②将0y =代入211242y x x =−−,得2112042x x −−=, 解得14x =,22x =−, ∵A (2−,0), ∴C (4,0). ································································································ 5分 根据题意,得8AD =,2CD =,6AC =,4BD =,90ADB ∠=°, ∴1tan tan 2BAD CBD ∠=∠=, ∴BAD CBD ∠=∠.分 ∵EAC ABC ∠=∠, ∴EAB EBA ∠=∠,∴EB EA =.分∵B (6,4), ∴设E (6,t ),∴4AE BE t ==−,DE t =−. ∵222AD DE AE +=,∴2228()(4)t t +−=−,∴6t =−,∴E (6,6−). ····························································································· 8分(2)5a <−或56a >. ······························································································· 12分25.(本小题满分14分)(1)证明:∵BE ⊥AD , ∴90AEB ∠=°. ······························································································ 1分 ∵90ACB ∠=°,ADC BDE ∠=∠, ∴CAE CBE ∠=∠. ························································································· 2分∵四边形AEFC 是平行四边形,∴CAE F ∠=∠, ····························································································· 3分 ∴CBE F ∠=∠. ····························································································· 4分(2)解:12S S =. ·········································································································· 5分理由如下:延长BE ,AC 交于点P ,过点E 作EQ ⊥AP 于点Q .∵AD 平分∠BAC ,∴BAD CAD ∠=∠. ············································································ 6分 ∵90AEP AEB ∠=∠=°, ∴APB ABP ∠=∠,∴AB AP =, ····················································································· 7分∴EB EP =,即12PE PB =.∵EQ ⊥AP , ∴90PQE PCB ∠=°=∠, ∴EQ ∥BC ,∴△PQE ∽△PCB , ············································································ 8分 ∴EQ PE BC PB=, ∴12EQ BC =, ·················································································· 8分∴2112S AC EQ AC BC S =⋅=⋅=.(3)证明:延长BE 交CF 于点T .∵四边形AEFC 是平行四边形, ∴AC ∥FG ,AE ∥CF ,AC EF =∴90BTC BED ∠=∠=°,90BHG BCA ∠=∠=°. ∴BT ⊥CF .A BCFE D A B CF E D P Q。
2020年福州市九年级质量检测数学试题答案及评分参考(0526)
2020 年福州市九年级质量检测数学试题答案及评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考 查内容比照评分参考制定相应的评分细则. 2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答.11.112. 1 413.1514.415.1816. 9 4三、解答题:共 9 小题,满分 86 分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3. ······························································································3 分 解不等式②,得 x> 1.····························································································5 分 ∴原不等式组的解集是 1<x≤3,···············································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5·······························································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.·········································································································3 分在△ABF 和△DCE 中,AD AB DC,B C,BF CE,BEFC∴△ABF≌△DCE, ·······························································································6 分∴∠A ∠D.·······································································································8 分九年级数学试题答案及评分参考第1页(共 6 页)19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1)(x1)······················································································· 3分 x2 1 (x 1)(x 1) ··························································································4 分x 1x 1 x2 1 x2 1 ··································································································5 分 x 1 x 1x2 1. ··········································································································· 6分当 x 3 1时,原式 2 ·················································································7 分 3 112 323 3. ·····················································································8分20.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN·······························································4 分如图,点 C,D 分别为(1),(2)所求作的点.························································5 分(2)证明如下:由(1)得 BC∥OA,BC 1 OA, 2∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO, ············································································7 分∴DC DOBC AO1 2,∴OD 2CD.·····················································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min.································································2 分由图2可知,当x4 3时,甲,乙两人相遇,故(60v乙 )4 3200,解得 v乙 90 m/min.····························································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,······························································································· 6分a200 6010 3. ································································································ 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分) 解:(1)依题意得 a 100 .······························································································2 分 这 1000 户家庭月均用水量的平均数为:九年级数学试题答案及评分参考第2页(共 6 页)x24061001018014280 18 1000220221002660302014.72,········· 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ···············································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户),····························································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·············································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理.·······························································10 分解法二:不合理.理由如下: ···············································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ··························································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.··········································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理.·······························································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ····························································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,F OD∴DE=AE,∴∠EAD ∠EDA.····················································A········E·······C··········G···········2 分 ∵OA OD,∴∠OAD ∠ODA. ·······················································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ····························································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·····················································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFO D∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.·························································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA, ····················································································7 分∴AF GBFH BA.··························································································· 8分由垂线段最短可得 FH≤OF, ········································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ B»D 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,············································································10分九年级数学试题答案及评分参考第3页(共 6 页)即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.···························································································6分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOMD∴∠AFG 90°,∴AF⊥GB. ···························································A········E········C·········G··········7 分 由垂线段最短可得 AF≤AM, ········································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ B»D 上存在点 F 使得 F 为 GB 中点,∴AF≤1 2GB,··························································································· 9分∴AF GB≤1 2,····························································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分)(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°. ·······································································1 分 2∵AB AC,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°,·························································2 分 ∴∠DCB 22.5°,即∠DCA ∠DCB,∴CD 平分∠ACB. ·····················································································3 分②解:过点 D 作 DF⊥BC 于点 F,A∴∠DFB 90°.∵∠BAC 90°,D∴DA⊥CA.E又 ∴ACDD平FD分,∠·A··C··B·,····················································B········F······················C·········4 分∴ AD FD . DB DB在 Rt△BFD 中,∠ABC 45°,∴sin∠DBF FD DB2 2, ················································································5分∴ AD DB2 2.······························································································· 6分(2)证法一:过点 A 作 AG⊥AE 交 CD 的延长线于点 G,连接 BG,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE,∠AGE 45°,∠AEC 135°,··············································7 分∴∠AGE ∠AEG,∴AG AE.·······························································································8 分∵AB AC,∴△AGB≌△AEC, ····················································································9 分∴∠AGB ∠AEC 135°,CE BG,∴∠BGE 90°. ························································································10 分∵AE⊥BE,九年级数学试题答案及评分参考第4页(共 6 页)。
2020年福建省福州市六校联考中考数学质检试卷(5月份)(附答案详解)
2020年福建省福州市六校联考中考数学质检试卷(5月份)一、选择题(本大题共10小题,共40.0分)1.计算|−2|+20的结果是()A. −2B. −1C. 0D. 32.月球与地球的距离约为384000km,可将384000用科学记数法表示为()A. 3.84×105B. 384×103C. 3.84×103D. 0.384×1063.下列几何体中,俯视图为三角形的是()A. B. C. D.4.以下调查中,适宜全面调查的是()A. 调查某批次汽车的抗撞击能力B. 调查某班学生的身高情况C. 调查春节联欢晚会的收视率D. 调查济宁市居民日平均用水量5.下列选项中的图形,不属于中心对称图形的是()A. 等边三角形B. 正方形C. 正六边形D. 圆6.下列运算中正确的是()A. a6÷a2=a3B. a⋅a2=a3C. 2a2−a2=2D. (−3a 2)2=6a47.一个多边形的内角和是720°,这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形8.实数a,b,c在数轴上的对应点的位置如图所示,若|c|=|b|,则下列结论中正确的是()A. a+b>0B. b+c>0C. a+c<0D. ac>09.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安。
同几何日相逢?译文:甲从长安出发,5日到齐国。
乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发。
问甲经过多少日与乙相逢?设甲经过x日与乙相逢,可列方程。
()A. 7x+2+5x=1 B. 7x+2−5x=1 C. x+27=x5D. x+27+x5=110.已知一次函数y=2x+b(m≤x≤n)的图象经过点P(p,q),下列结论中正确的是()A. q−b≥2mB. q−b≤2mC. q−b≥2nD. q+b≥2m二、填空题(本大题共6小题,共24.0分)11.如图,直线a、b被直线c所截,a//b,若∠1=70°,则∠2的大小为______度.12.分解因式:a3−ab2=______.13.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35678人数13222则这些队员投中次数的众数为______.14.如图,AB为⊙O的直径,C、D是⊙O上两点,AC=BC,AD与CB交于点E.∠DAB=25°,则∠E=______.15.如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影部分的面积为______.16.如图,等边三角形ABC的顶点A,B分别在反比例函数y=kx(k>0)图象的两个分支上,点C在反比例函数y=−4√2x的图象上,BC//x轴.当△ABC的面积最小时,k的值为______.三、解答题(本大题共9小题,共86.0分)17.解不等式组:{1−x≤4 x+12<1.18.如图,在菱形ABCD中,点E、F分别在AB、CD上,且AE=CF.求证:∠DAF=∠DCE.19.先化简,再求值:x2x+2÷(x−1+1x+1),其中x=√2.20.如图,△ABC中,D是AB边上一点.(1)在边AC上求作一点E,使得AEAC =ADAB.(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若△ABC的面积是△ADE面积的9倍,且BC=6,求DE的长.21.如图,把正方形ABCD绕点A顺时针旋转45°得到正方形AEFG,EF交CD于点H,连接AH,CF.求证:AH=CF.22.随着5G技术的发展,人们对各类5G产品的使用充满期待.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期中每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?23.某印刷厂每五年需淘汰一批旧打印机并购买同款的新机.购买新机时,若同时配买墨盒,每盒150元,且最多可配买24盒;若非同时配买墨盒,则每盒需220元.根据该厂以往的记录,10台同款打印机正常工作五年消耗的墨盒数量如表:消耗的墨盒数22232425量/盒打印机数量/台1441(1)以这10台打印机五年消耗的墨盒数量为样本,估计“一台该款打印机正常工作五年消耗的墨盒数量不大于24”的概率;(2)如果每台打印机购买新机时配买的墨盒只能供本机使用,试以这10台打印机消耗墨盒所需费用的平均数作为决策依据,说明购买1台该款打印机时,应同时配买23盒还是24盒墨盒.24.如图,已知△ABC,以AC为直径的⊙O交边AB于点E,BC与⊙O相切.(1)若∠ABC=45°,求证:AE=BE;(2)点D是⊙O上一点,且D,E两点在AC的异侧.若∠EAC=2∠ACD,AE=6,CD=4√5,求△ABD的面积.25.抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,已知点A(−1,0).(1)若c=a,求a,b满足的关系式;(2)直线y=2x+m与抛物线交于C,D两点,抛物线的对称轴为直线x=1,且1≤tan∠OBC≤2.①求抛物线的解析式(各项系数用含a的式子表示);②求线段CD长度的取值范围.答案和解析1.【答案】D【解析】解:原式=2+1=3,故选:D.化简绝对值,零指数幂,然后算加法.本题考查绝对值,零指数幂,理解a0=1(a≠0)是解题关键.2.【答案】A【解析】解:384000=3.84×105.故选:A.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】C【解析】【分析】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.观察图象,得到几种图形的俯视图即可解答.【解答】解:根据俯视图的特征,应选C.故选:C.4.【答案】B【解析】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】A【解析】解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【答案】B【解析】解:A、原式=a4,不符合题意;B、原式=a3,符合题意;C、原式=a2,不符合题意;D、原式=9a4,不符合题意.故选:B.各式计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.7.【答案】B【解析】解:设这个多边形的边数为n,由题意,得(n−2)180°=720°,解得:n=6,故这个多边形是六边形.故选:B.利用n边形的内角和可以表示成(n−2)⋅180°,结合方程即可求出答案.本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n−2)⋅180°是解题的关键.8.【答案】C【解析】解:∵|c|=|b|,∴原点在b、c对应的点之间,∴a+b<0,b+c=0,a+c<0,ac<0,故选:C.根据已知确定原点位置,即可得到答案.本题考查数轴上点表示的数,解题的关键是确定原点的位置.9.【答案】D【解析】解:设甲经过x日与乙相逢,则乙已出发(x+2)日,依题意,得:x+27+x5=1。
2020年福建省福州市九年级下学期质量检测二检数学试题
2020年福建省福州市九年级下学期质量检测二检数学试题学校:___________姓名:___________班级:___________考号:___________1.在实数4π,227-,2.02002 )A .4πB .227-C .2.02002D2.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列运算中,结果可以为43-的是( ) A .2633÷ B .6233÷C .2633⨯D .(3)(3)(3)(3)-⨯-⨯-⨯-4.已知一个多边形的内角和是540︒,则这个多边形是( ) A .四边形 B .五边形C .六边形D .七边形5.若1a a <<+,其中a 为整数,则a 的值是( )A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( ) A .911616x yx y+=⎧⎨+=⎩B .911616x yx y -=⎧⎨-=⎩C .911616x yx y +=⎧⎨-=⎩D .911616x yx y -=⎧⎨+=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( )A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:圆锥:13V Sh =,圆柱:V Sh =)是( ) A .321m πB .336m πC .345m πD .363m π9.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作EF ,交CD 于点F ,连接AE ,AF .若6AB =,60B ∠=︒,则阴影部分的面积是( )A .2πB .3πC .3πD .2π10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是( )A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线1y x =-上C .当12x -<<时,y 随x 的增大而增大,则2h <D .该抛物线上有两点()11,A x y ,()22,B x y ,若12x x <,122x x h +>,则12y y >11.计算:12cos 60-+︒=_________.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是_________.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,90B EDF ∠=∠=︒,30A ∠=︒,45F ∠=︒,若EF ∥BC ,则CED ∠等于_________度.14.若(2)3m m -=,则2(1)m -的值是_________. 15.如图,在O 中,C 是弧AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交O 于点E ,过点B 作BF AE ⊥于点F ,若2BAE EBF ∠=∠,则EBF ∠等于_________度.16.如图,在平面直角坐标系xOy 中,ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数ky x=(0x >)的图象上,AD 与y 轴交于点E ,且23AE AD =,若ABE ∆的面积是3,则k 的值是_________.17.解不等式组26312x x x ⎧⎪⎨+>⎪⎩,并把它的解集在数轴上表示出来.18.如图,点E 、F 在BC 上,BE FC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.19.先化简,再求值:22111211+÷-++++x x x x x ,其中1x =.20.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.21.甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度; (2)求a ,b 的值.22.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.23.如图,在Rt ABC ∆中,AC AB <,90BAC ∠=︒,以AB 为直径作O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在BD 上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是O 的切线;(2)连接AF ,求AFBG的最大值. 24.已知ABC ∆,AB AC =,90BAC ∠=︒,D 是AB 边上一点,连接CD ,E 是CD 上一点,且45AED ∠=︒. (1)如图1,若AE DE =,①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE BE ⊥,求tan ABE ∠的值.25.在平面直角坐标系xOy 中,抛物线C :()224y kx k k x =+-的对称轴是y 轴,过点(0,2)F 作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线2y =-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线2y =和直线2y =-于点M ,N ,求22MF NF -的值.参考答案1.A 【解析】 【分析】根据无理数的定义即可求解. 【详解】,∴在实数4π,227-,2.020024π,故选A . 【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义. 2.C 【解析】 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.A 【解析】 【分析】根据同底数幂的乘除法运算法则计算,一一验证选项的结论即可得到答案; 【详解】解:A 、262643333--==÷,故A 选项正确; B 、626243333-==÷,故B 选项错误; C 、228663333+=⨯=,故C 选项错误;D 、44(3)(3)(3)(3)(3)3-⨯-⨯-⨯-=-=,故D 选项错误; 故选:A ; 【点睛】本题主要考查了同底数幂的乘法除法的运算,掌握同底数幂乘除法运算法则是解题的关键; 4.B 【解析】 【分析】 【详解】根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此, 由()n 2180540︒-=︒得n=5.故选B .5.B 【解析】 【分析】先计算二次根式的减法,然后进行无理数的估算,即可得到答案. 【详解】==∴23<<,∴2a =; 故选:B . 【点睛】本题考查了二次根式的加减运算,以及无理数的估算,解题的关键是熟练掌握运算法则. 6.D【解析】 【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案. 【详解】解:设人数为x ,买鸡的钱数为y ,可列方程组为:911616x yx y-=⎧⎨+=⎩ 故选:D 【点睛】考核知识点:二元一次方程组应用.理解题意列出方程是关键. 7.B 【解析】 【分析】根据平均数、中位数的的概念、方差的计算公式判断即可. 【详解】解:∵一名职工的个人年收入数据远远小于世界首富的年收入数据, ∴这100个数据的平均数为a 一定增大,中位数为b 可能不变, 数据的波动一定变大了,方差为c 一定增大, 故选:B . 【点睛】本题考查的是算术平均数、中位数和方差,掌握它们的概念和计算公式是解题的关键. 8.C 【解析】 【分析】根据三视图可知,该几何体上班部分是圆锥,下半部分是圆柱,底面是半径为3的圆,圆柱部分高为4,圆锥的高为7-4=3,再根据圆锥:13V Sh =,圆柱:V Sh =计算即可得到答案; 【详解】解:根据三视图可知,该几何体上班部分是圆锥,下半部分是圆柱,底面是半径为3的圆,圆柱部分高为4,圆锥的高为7-4=3, 又底面积为:22339S r m πππ==⨯⨯=, ∴31194934533V V V Sh Sh m πππ=+=+=⨯+⨯⨯=圆柱圆锥, 故选:C ; 【点睛】本题主要考查了几何体的三视图、圆柱和圆锥的体积计算,能从三视图还原几何体是解题的关键; 9.C 【解析】 【分析】连接AC ,根据菱形的性质求出∠BCD 和BC=AB=6,求出AE 长,再根据三角形的面积和扇形的面积求出即可. 【详解】 连接AC ,∵ 四边形ABCD 是菱形,AB=6, ∴BC=6, ∵∠B=60°,∴△ABC 是等边三角形,∠BCD=120°, ∵ E 是BC 的中点, ∴CE=BE=3,AE ⊥BC , 同理可得CF=3,AF ⊥CD.由勾股定理得,∴S 阴影=S △AEC +S △AFC -S 扇形CEF =132⨯⨯132⨯⨯21203360π⨯=3π 故答案为:C .【点睛】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出ΔAEC 、ΔAFC 和扇形CEF 的面积是解此题的关键.10.D【解析】【分析】根据抛物线的解析式的性质,对每个选项进行分析即可.【详解】A 、由函数表达式的性质可得,抛物线的顶点坐标为(h ,-h+1),抛物线的最大值为-h+1,若h<1,则y>0,故A 项错误;B 、由题可得出抛物线的顶点坐标为(h ,-h+1),当x=h 时,代入y=x-1得=11y h h -≠-,故B 项错误;C 、由题意得,抛物线在x=h 左侧时,y 随x 的增大而增大,∴2h ≥,故C 项错误;D 、∵x 1<x 2,x 1+x 2>2h ,∴x 1在x=h 左侧且更靠近x=h ,∵在2()1y x h h =---+中,x 离x=h 越近,y 值越大,∴y 1>y 2,故D 项正确;故选:D .【点睛】本题考查了二次函数的性质,掌握知识点,灵活运用是解题关键.11.1【解析】【分析】根据负指数幂的计算性质知,1111222;而1cos602︒=;再把两个12相加,即得到本题答案.【详解】解:原式11122=+=. 故填1.【点睛】 本题主要考查负指数幂和特殊锐角三角函数的计算. 据负指数的计算公式是1(0)p p a a a -=≠易得1111222;而熟记30°、45°、60°的特殊锐角的三角函数值,是得出1cos602︒=的根本. 12.14 【解析】【分析】 根据勾股数的概念和概率的计算公式,即可求解.【详解】∵从2,3,4,5中任取3个数,一共有4种等可能的情况,只有3,4,5一种情况是勾股数,∴这3个数能构成一组勾股数的概率是:14. 故答案是:14. 【点睛】本题主要考查勾股数和概率公式,熟练掌握上述知识,是解题的关键.13.15【解析】【分析】根据三角形内角和定理得出∠ACB=60°,∠DEF=45°,再根据两直线平行内错角相等得到∠CEF=∠ACB=60°,根据角的和差求解即可.【详解】解:在△ABC 中,∵90B ∠=︒,30A ∠=︒,∴∠ACB=60°. 在△DEF 中,∵∠EDF=90°,45F ∠=︒,∴∠DEF=45°. 又∵EF ∥BC ,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°. 故答案为:15.【点睛】本题考查三角形内角和定理及平行线的性质,熟练掌握平行线的性质是解题的关键. 14.4【解析】【分析】先去括号化简,然后利用完全平方公式进行变形,即可得到答案.【详解】解:∵(2)3m m -=,∴223m m -=,∴()221214m m m -=-+=,故答案为:4.【点睛】本题考查了代数式求值,解题的关键是利用完全平方公式变形进行求值.15.18【解析】【分析】根据题目已知条件可知,本题考查圆相关知识点,涉及圆周角、圆心角之间的关系,弧的运用,垂径定理多知识点综合运用,需要构造辅助线,利用全等的判别,角的互换解答本题【详解】设∠EBF=x,则∠BAE=2x,连接OC 交AB 于点G,连接OB,BC,OD,如下图所示∵C是AB的中点,点O为圆心∴OC⊥AB(垂径定理)又∵点C与点D关于弦AB对称∴CD⊥AB,且C,D,O三点共线,GD=GC∴∠AGD=∠BGC=90°,GA=GB故△AGD≅△BGC(SAS)∴∠ADG=∠BCG=90°-2x又∵OB=OC∴∠OBC=∠OCB=∠ADC=90°-2x又∵同弧AB∠E=∠COB=180°-2∠OBC=180°-2⨯(90°-2x)(在△OCB中)∵BF⊥AE在△BEF中,∠E=90°-∠EBF=90°-x故综上:180°-2⨯(90°-2x)=90°-x解得x=18°故本题答案为:18【点睛】本题考查圆知识点综合运用,难度较高,需要熟悉垂径定理辅助线做法以及角的等量互换方式即可16.9 4【解析】【分析】由题意,设点A (a -,0),B (0,b -),E (0,c ),得到()6a b c +=,过点D 作DF ⊥x 轴,与x 轴交于点F ,过点C 作CG ⊥DF ,与DF 相交于点G ,然后证明△ABO ≌△CGD ,△AEO ∽△ADF ,利用比例求出线段的长度,得到点C 、D 的坐标,代入反比例函数解析式,得到3ac =,即可求出答案.【详解】解:由题意,A ,B 分别在x ,y 轴的负半轴上,点E 在y 轴上,设点A (a -,0),B (0,b -),E (0,c ),∴OA=a ,OB=b ,OE=c ,∵ABE ∆的面积是3, ∴1()32a b c +=, ∴()6a b c +=;过点D 作DF ⊥x 轴,与x 轴交于点F ,过点C 作CG ⊥DF ,与DF 相交于点G ,∴DF ∥y 轴,∴180EDG DEB ∠+∠=︒,∵AD ∥BC ,∴180EBC DEB ∠+∠=︒,∴EDG EBC ∠=∠,∵∠ABC=∠CDA ,∴∠ABE=∠CDG ,∵∠AOB=∠CGD=90°,AB=CD ,∴△ABO ≌△CGD ,∴DG=OB=b ,CG=AO=a ,∵DF ∥BE ,∴△AEO ∽△ADF , ∴AE AO EO AD AF DF==, 在Rt △AOE 中,勾股定理得AE =, ∵23AE AD =,∴AD = ∴32AD AO AF a AE •==,32AD EO DF c AE •==, ∴2a OF =,322a CG OF AO OF a a +=+=+=, ∴32GF DF DG DF OB c b =-=-=-, ∴333(,),(,)2222a D c C a c b -, ∵点C 、D 在k y x=的图像上, ∴3223322k c a k c b a ⎧=⎪⎪⎪⎨⎪-=⎪⎪⎩,化简得:34964ac k ac ab k =⎧⎨-=⎩, ∴b c =,∵()6a b c +=,∴3ac =,∴334k ⨯=, ∴94k =; 故答案为:94. 【点睛】本题考查了反比例函数的性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,以及平行线的性质等知识,解题的关键是熟练掌握所学的性质定理,正确得到边的关系,从而进行解题.17.13x -<≤,见解析.【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】 解:26(1)31(2)2x x x ⎧⎪⎨+>⎪⎩, 解不等式(1)得,3x ≤,解不等式(2),1x >-,所以,原不等式组的解集为-13x ≤<,在数轴上表示如下:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.见解析.【解析】【分析】【详解】证明:∵BE FC =,∴BE EF CF EF +=+,即BF CE =;又∵AB DC =,B C ∠=∠ ,∴()SAS ABF DCE ≌△△; ∴A D ∠=∠.19.21x +.【解析】【分析】把被除式分母利用完全平方公式因式分解,按照分式除法的运算法则计算,再通分整理可得最简结果,把x 的值代入计算即可.【详解】原式()()()221111x x x x +=⨯+--+()()211111x x x x x +-+=-++ 22111x x x +-+=+ 21x =+当1x =时,原式==【点睛】本题考查分式的计算——化简求值,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析【解析】【分析】(1)画法一:根据作一个角等于已知角,得到OM 的平行线,在平行线上截取OA 的长度,再作线段垂直平分线即可,点C 即为所求作的点;画法二:根据作一个角等于已知角,得到OM 的平行线,作OA 的垂直平分线,在平行线上截取BC=12OA 的长度,点C 即为所求作的点; (2)连接OC ,AB 交于点D ,点D 即为所求作的点;利用相似三角形的性质证明即可.【详解】解:画法一:画法二:如图,点C ,D 分别为(1),(2)所求作的点.(2)证明如下:由(1)得//BC OA ,12BC OA =, ∴DBC DAO ∠=∠,DCB DOA ∠=∠,∴DBC DAO ∆∆∽, ∴12DC BC DO AO ==, ∴2OD CD =.【点睛】本题考查复杂作图,熟练掌握基本作图步骤是解题的关键.21.(1)甲的速度是60m /min ,乙的速度是90m /min ;(2)103,209 【解析】【分析】(1)根据图1中的数据,可以计算出甲的速度,然后图2中的数据,可以计算出乙的速度,本题得以解决;(2)根据题意,可知a 是甲走完全程用的时间,b 是乙走完全程用的时间,然后根据(1)中的结果和全程为200m ,即可计算出a 和b 的值,本题得以解决.【详解】解:(1)由图1可得甲的速度是120260m/min ÷=.由图2可知,当43x =时,甲,乙两人相遇, 故()4602003v +⨯=乙,解得90m /min v =乙.答:甲的速度是60m /min ,乙的速度是90m /min .(2)由图2可知:乙走完全程用了min b ,甲走完全程用了min a , ∴20020909b ==, 20010603a ==. ∴a 的值为103,b 的值为209. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 22.(1)100,14.72;(2)不合理,见解析【解析】【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户), ∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=, ∴月均用水量不超过14.72t 的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%70%<,∴用14.72作为标准m 不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.23.(1)见解析;(2)12 【解析】【分析】(1)连接OD ,AD .根据圆周角定理得到∠ADB=90°,求得∠ADC=90°,根据线段中点的定义得到DE=AE ,求得∠EAD=∠EDA ,根据等腰三角形的性质得到∠OAD=∠ODA ,推出OD ⊥DE ,于是得到结论;(2)过点F 作FH ⊥AB 于点H ,连接OF ,得到∠AHF=90°.根据余角的想性质得到∠G=∠BAF ,根据相似三角形的性质得到AF FH GB BA=,由垂线段最短可得FH≤OF ,当且仅当点H ,O 重合时等号成立.于是得到结论.【详解】(1)证明:连接OD ,AD .∵AB 为O 直径,点D 在O 上,∴90ADB ∠=︒,∴90ADC ∠=︒.∵E 是AC 的中点,∴DE AE =,∴EAD EDA ∠=∠.∵OA OD =,∴OAD ODA ∠=∠.∵90OAD EAD BAC ∠+∠=∠+︒,∴90ODA EDA ∠+∠=︒,即90ODE ∠=︒,∴OD DE ⊥.∵D 是半径OD 的外端点,∴DE 是O 的切线.(2)过点F 作FH AB ⊥于点H ,连接OF ,∴90AHF ∠=︒.∵AB 为O 直径,点F 在O 上,∴90AFB ∠=︒,∴90BAF ABF ∠=∠=︒.∵90BAC ∠=︒,∴90G ABF ∠+∠=︒,∴G BAF ∠=∠.又90AHF GAB ∠=∠=︒,∴AFH GBA ∆∆∽, ∴AF FH GB BA=. 由垂线段最短可得FH OF ≤,当且仅当点H ,O 重合时等号成立.∵AC AB <,∴BD 上存在点F 使得FO AB ⊥,此时点H ,O 重合, ∴12AF FH OF GB BA BA =≤=, 即AF GB 的最大值为12. 【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.24.(1(2)12 【解析】【分析】 (1)①先利用等腰三角形的性质求出67.5EDA ∠=︒,再得到45ACB ABC ∠=∠=︒,故可知22.5DCA DCB ∠=∠=︒,故可求解;②过点D 作DF BC ⊥于点F ,根据CD 平分ACB ∠,得到AD FD =,故AD FD DB DB =,利用特殊角的三角函数值即可求解;(2)证法一:过点A 作⊥AG AE 交CD 的延长线于点G ,连接BG ,证明AGB AEC ∆∆≌,得到135AGB AEC ∠=∠=︒,CE BG =,再得到在BEG ∆和AGE ∆是等腰直角三角形,故cos 45GE BE ==︒,cos 452AE GE =⋅︒=,再利用在Rt ABE ∆中,tan AE ABE BE∠=即可求解; 证法二:根据已知条件证明BEC CEA ∆∆∽,得到BE EC BC CE EA CA ==,再利用在Rt ABC ∆中,cos 45CA BC ==︒,则BE EC CE EA ==,从而得到BE =,AE =,再利用在Rt ABE ∆中,tan AE ABE BE∠=即可求解. 【详解】 (1)①证明:∵45AED ∠=︒,AE DE =, ∴1804567.52EDA -︒∠==︒︒. ∵AB AC =,90BAC ∠=︒,∴45ACB ABC ∠=∠=︒,22.5DCA ∠=︒,∴22.5DCB ∠=︒,即DCA DCB ∠=∠,∴CD 平分ACB ∠.②解:过点D 作DF BC ⊥于点F ,∴90DFB ∠=︒.∵90BAC ∠=︒,∴DA CA ⊥.又CD 平分ACB ∠,∴AD FD =, ∴AD FD DB DB=. 在Rt BFD ∆中,45ABC ∠=︒,∴sin 2FD DBF DB ∠==,∴2AD DB =. (2)证法一:过点A 作⊥AG AE 交CD 的延长线于点G ,连接BG ,∴90GAE ∠=︒.又90BAC ∠=︒,45AED ∠=︒,∴BAG CAE ∠=∠,45AGE ∠=︒,135AEC ∠=︒,∴AGE AEG ∠=∠,∴AG AE =.∵AB AC =,∴AGB AEC ∆∆≌,∴135AGB AEC ∠=∠=︒,CE BG =,∴90BGE ∠=︒.∵AE BE ⊥,∴90AEB =︒∠,∴45BEG ∠=︒,在Rt BEG ∆和Rt AGE ∆中,cos 45GE BE ==︒,cos 452AE GE =⋅︒=, 在Rt ABE ∆中,1tan 2AE ABE BE ∠===. 证法二:∵AE BE ⊥,∴90AEB =︒∠,∴90BAE ABE ∠+∠=︒.∵45AED ∠=︒,∴45BED ∠=︒,45EAC ECA ∠+∠=︒,∴135AEC BEC ∠=∠=︒.∵90BAC ∠=︒,∴90BAE EAC ∠+∠=︒,∴ABE EAC ∠=∠.∵45ABC ∠=︒,∴45ABE EBC ∠+∠=︒,∴ECA EBC ∠=∠,∴BEC CEA ∆∆∽, ∴BE EC BC CE EA CA==. 在Rt ABC ∆中,cos 45CA BC ==︒,∴BE EC CE EA==∴BE =,AE =.在Rt ABE ∆中,1tan 2AE ABE BE ∠===.【点睛】此题主要考查等腰三角形、三角函数及相似三角形的综合运用,解题的关键是熟知全等三角形的性质与判定、等腰直角三角形的性质、三角函数的应用及相似三角形的判定与性质. 25.(1)214y x =;(2)在,见解析;(3)-8 【解析】【分析】(1)由抛物线的对称轴是y 轴可列式求出k ,即可得到结果;(2)过(0,2)F 的直线与抛物线C 交于P ,Q 两点,设直线PQ 的解析式为2y tx =+将2y tx =+代入214y x =,得2480x tx --=,可判断出该方程有两个不相等的实数根1x ,2x ,设()11,P x y ,()22,Q x y ,设出直线OP 的解析式为11y y x x =,设(,)A m n ,2m x =,1214=n x x ,计算可得12124x x =-,即可求出A 的坐标,进行判断即可; (3)根据题意可设直线解析式y ax b =+,依题意得0∆=,得到2b a =-,可求出切线l 的解析式为2y ax a =-,得到2222a MF a ⎛⎫+= ⎪⎝⎭,由勾股定理得22222(22)a NF a ⎛⎫-=+-- ⎪⎝⎭,代入即可求解;【详解】解:(1)∵抛物线C 的对称轴是y 轴, ∴2402k k k--=且0k ≠,∴4102k -=, 解得14k =, ∴抛物线C 的解析式为214y x =. (2)点A 在直线2y =-上.理由如下:∵过(0,2)F 的直线与抛物线C 交于P ,Q 两点,∴直线PQ 与x 轴不垂直.设直线PQ 的解析式为2y tx =+,将2y tx =+代入214y x =,得2480x tx --=, ∴216320t ∆=+>,∴该方程有两个不相等的实数根1x ,2x ,不妨设()11,P x y ,()22,Q x y ,∴直线OP 的解析式为11y y x x =. 设(,)A m n .∵QA x ⊥轴交直线OP 于点A ,∴2m x =, ∴2121212111144x x y n x x x x x ⋅=⋅==. 又方程2480x tx --=的解为2x t =±∴()2212(24428x x t t t t =+-=-+=-, ∴12124x x =-, 即点A 的纵坐标为-2,∴点A 在直线2y =-上.(3)∵切线l 不过抛物线C 的顶点,∴设切线l 的解析式为y ax b =+(0)a ≠.将y ax b =+代入214y x =,得2440x ax b --=, 依题意得0∆=,即22(4)4(4)16160a b a b --⨯-=+=,∴2b a =-,∴切线l 的解析式为2y ax a =-. 当2y =时,22a x a +=,∴22,2a M a ⎛⎫+ ⎪⎝⎭.· 当2y =-时,22a x a -=,∴22,2a N a ⎛⎫-- ⎪⎝⎭. ∵(0,2)F , ∴2222a MF a ⎛⎫+= ⎪⎝⎭, 由勾股定理得22222(22)a NF a ⎛⎫-=+-- ⎪⎝⎭, ∴222222222(22)a a MF NF a a ⎡⎤⎛⎫⎛⎫+--=-+--⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2222222216a a a a aa a a ⎛⎫⎛⎫+-+-=+-- ⎪⎪⎝⎭⎝⎭ 22416a a a=⋅- 8168=-=-.【点睛】本题主要考查了二次函数的综合应用,结合一元二次方程的根的判别式的求解方法,对二次函数与一元二次方程的结合考查比较全面.。
福州市初三数学质量检查
B .A .C .D .第3题图第8题图福州市初三数学质量检查2020年福州市初中毕业班质量反省数 学 试 卷〔全卷共4页,三大题,共22小题;总分值150分;考试时间120分钟〕友谊提示:一切答案都必需填涂在答题卡上,答在本试卷上有效.学校 姓名 考生号一、选择题〔共10小题,每题4分,总分值40分;每题只要一个正确的选项,请在答题卡的相应位置填涂〕1.-2020的相对值是〔 〕.A .2020 B.-2020 C.20101 D.-201012.2020年福州市参与中考的先生数约79000人,这个数用迷信记数法表示为〔 〕. A .3109.7⨯ B. 31079⨯ C. 4109.7⨯ D. 51079.0⨯ 3.如图是由4个大小相反的正方体搭成的几何体,其仰望图是〔 〕.4.以下计算不正确的选项是〔 〕.A .a +b =2abB .2a a ⋅=3a C .63a a ÷=3a D .()2ab =22b a5.⊙O 1和⊙O 2的半径区分为5和2,O 1O 2=7,那么⊙O 1和⊙O 2的位置关系是〔 〕. A .外离 B .外切 C . 相交 D .内含 6.以下事情中是肯定事情的是〔 〕.A .翻开电视机,正在播旧事B .掷一枚硬币,正面朝下C .太阳从西边落下D .明天我市晴天 7.三角形的三边长区分为5,6,x ,那么x 不能够是〔 〕. A .5 B. 7 C. 9 D.118.假定一次函数y=kx+b 的图象如下图,那么k 、b 的取值范围是〔 〕. A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <0第13题图第17(1)题图第15题图第10题图9.在等边三角形、正方形、菱形、矩形、等腰梯形、圆这几个图形中,既是轴对称图形又是中心对称图形的有〔 〕.A .3个B .4个C .5个D .6个10.如图,在平面直角坐标系中,△PQR 可以看作是△ABC 经过以下变换失掉:①以点A 为中心,逆时针方向旋转90; ②向右平移2个单位; ③向上平移4个单位. 以下选项中,图形正确的选项是〔 〕.二、填空题〔共5小题,每题4分,总分值20分.请将答案填入答题卡的相应位置〕 11.因式分解:=-42a .12.某电视台综艺节目从接到的500个热线 中,抽取10名〝幸运观众〞,小英打通了一次热线 .她成为〝幸运观众〞的概率是 .13.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOG=60°,那么∠DCF 等于 .14.一次函数11+-=x y 与正比例函数x ky =2的图象交于点A 〔2,m 〕,那么k 的值是 .15.如图,1A 〔1,0〕,2A 〔1,-1〕,3A 〔-1,-1〕,3A 〔-1,1〕,4A 〔2,1〕,…,那么点2010A 的坐标是 .三、解答题〔总分值90分.请将解答进程填入答题卡的相应位置〕 16.〔每题7分,总分值14分〕 〔1〕计算:9)3(2201+---+-π.〔2〕12=-x y ,求代数式)()1(22y x x ---的值.17.〔每题7分,总分值14分〕〔1〕如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.①填空:∠ABC= °;∠DEF= °;BC= ;DE= ; ②判别△ABC 与△DEF 能否相似,并证明你的结论.第19题图第18题图①第18题图②第17(2)题图〔2〕如图,四边形ABCD 是正方形,G 是BC 上恣意一点〔点G 与B 、C 不重合〕,AE ⊥DG 于E ,CF ∥AE 交DG 于F. 求证:△ADE ≌△DCF .18.〔此题总分值12分〕〝五一〞时期,新华商场贴出促销海报.在商场活动时期,王莉同窗随机调查了局部参与活动的顾客,并将调查结果绘制了两幅不完整的统计图.请你依据图中的信息回答以下效果: 〔1〕王莉同窗随机调查的顾客有__________人; 〔2〕请将统计图①补充完整;〔3〕在统计图②中,〝0元〞局部所对应的圆心角是_________度;〔4〕假定商场每天约有2000人次摸奖,请预算商场一天送出的购物券总金额是多少元?19.〔此题总分值11分〕如图等腰梯形ABCD 是⊙O 的内接四边形,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为15.〔1〕求证:BC 是直径; 〔2〕求图中阴影局部的面积.20.〔此题总分值12分〕为了援助云南人民抗旱救灾,某品牌矿泉水自动承当了为灾区消费300吨矿泉水的义务.〝五一〞大派送为了回馈广阔顾客,本商场在4月30日至5月6日时期举行有奖购物活动.每购置100元的商品,就有一次摸奖的时机,奖品为:一等奖:50元购物卷 二等奖:20元购物卷 三等奖:5元购物卷第21题图第21题备用图第22题图第22题备用图〔1〕由于义务紧急,实践加工时每天的任务效率比原方案提高了20%,结果提早2天完成义务.该厂实践每天加工消费矿泉水多少吨?〔2〕该公司组织A 、B 两种型号的汽车共16辆,将300吨矿泉水一次性运往灾区.A 型号汽车每辆可装20吨,运输本钱500元/辆.B 型号汽车每辆可装15吨,运输本钱300元/辆.运输本钱不超越7420元的状况下,有几种契合题意的运输方案?哪种运输方案更省钱?21.〔此题总分值13分〕如图,Rt △ABC 中,∠A =30°,AC =6.边长为4的等边△DEF 沿射线AC 运动〔A 、D 、E 、C 四点共线〕,使边DF 、EF 与边AB 区分相交于点M 、N 〔M 、N 不与A 、B 重合〕. 〔1〕求证:△ADM 是等腰三角形;〔2〕设AD =x ,△ABC 与△DEF 堆叠局部的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围;〔3〕能否存在一个以M 为圆心,MN 为半径的圆与边AC 、EF 同时相切,假设存在,央求出圆的半径;假设不存在,请说明理由.22.〔此题总分值14分〕在平面直角坐标系xOy 中,抛物线c bx x y ++-=2与x 轴交于A 〔-1,0〕,B 〔-3,0〕两点,与y 轴交于点C .〔1〕求抛物线的解析式;〔2〕设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; 〔3〕点Q 在直线BC 上方的抛物线上,且点Q 到直线BC 的距离最远,求点Q 坐标.第17(2)题图2020年福州市初中毕业班质量反省数学试卷参考答案和评分规范评分规范说明:1. 规范答案只列出试题的一种或几种解法. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只需写明主要步骤即可. 假设考生的解法与规范答案中的解法不同,可参照规范答案中的评分规范相应评分.2. 第一、二大题假定无特别说明,每题评分只要总分值或零分.3. 评阅试卷,要坚持每题评阅究竟,不能因考生解答中出现错误而中缀对此题的评阅. 假设考生的解答在某一步出现错误,影响后继局部而未改动此题的内容和难度,视影响的水平决议后继局部的给分,但原那么上不超事先继局部应得分数的一半.4. 规范答案中的解答右端所注分数,表示考生正确做到这一步应得的累加分数.5. 评分进程中,只给整数分数.一、选择题〔共10小题,每题4分,总分值40分.〕 题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCDBBA二、填空题:〔共5小题,每题4分,总分值20分.〕 11. )2)(2(+-a a ;12.501; 13.30°; 14. -2; 15. (503,-503) . 三、解答题:(总分值90分) 16.〔每题7分,总分值14分〕 〔1〕解:原式=31221+-+-------------------------------------------------4分 =214--------------------------------------------------------------7分〔2〕解:原式=y x x x +-+-2212-------------------------------------4分=12++-y x -----------------------------------------------5分 ∵12=-x y ,∴原式=1+1=2------------------------------------------------7分17.〔每题7分,总分值14分〕17〔1〕①135,135,22,2;------------------------------------------4分②△ABC 与△DEF 相似--------------------------------------------5分理由:由图可知,AB=2,EF=2 ∴21==EF DE BC AB .------------------------------------------6分 ∵∠ABC =∠DEF =135°,∴△ABC ∽△DEF .--------------------------------------------7分(2) 证明: ∵四边形ABCD 是正方形 ∴AD=DC, ∠ADC =90°,∴∠ADG+∠CDG =90°.--------------------------------------2分 又∵AE ⊥DG ,∴∠AED =∠AEF =90°. ∴∠DAE+∠ADE =90°,∴∠DAE=∠CDG .-----------------------------------------------4分 ∵CF ∥AE ,∴∠CFD =∠AEG =90°.∴∠AED =∠CFD .----------------------------------------------6分 ∴△ADE ≌△DCF .-----------------------------------------------7分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 18.〔此题总分值12分〕解:⑴200------------------------------------------------------3分. 〔2〕画图正确------------------------------------------------6分 〔3〕216-----------------------9分 〔4〕5.6200501020305400120=⨯+⨯+⨯+⨯=x.∴6.5×2000=13000〔元〕----------------------------12分 ∴估量商场一天送出的购物券总金额是13000元.19.〔此题总分值11分〕解:(1)证明:∵等腰梯形ABCD 是⊙O 的内接四边形, ∴∠ADC +∠ABC =180°.∴∠ABC =180°―∠ADC =180°―120°=60°.---------------1分 ∴∠DCB =∠ABC =60°.-----------------------------------------------2分 ∵AC 平分∠BCD ,∴∠ACD=∠ACB=30°.----------------------------------------------------3分 ∵∠ABC +∠ACB +∠BAC =180°,∴∠BAC =90°.----------------------------------------------------------4分 ∴BC 是直径.--------------------------------------------------------------5分 (2)∵AD ∥BC ,∴∠DAC =∠ACB =30°. ∴∠DAC =∠DCA .∴AD =DC .---------------------------------------------------------------6分 设CD=x ,得AB=AD=DC =x , ∵∠BAC =90°,∠ACB =30°, ∴BC =2x .∵四边形ABCD 的周长为15,∴x =3.----------------------------------------------8分 ∴BC=6,AO=DO=3. 衔接AO 、DO ,∠AOD =2∠ACD =60°.----------------------------------------------9分 ∵△ADO 和△ADC 同底等高,∴S △ADO =S △ADC .------------------------------------------------------10分第21题图 1∴图中阴影局部的面积=扇形AOD 的面积=ππ233360602=⨯⨯.------------------------------------------------11分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 20. 〔此题总分值12分〕〔1〕设该厂实践每天加工消费矿泉水x 吨,依题意得:2%)201(300300++=xx ∴解得x =25------------------------------------------------------------5分 经检验:x =25是原方程的解.-------------------------------------6分 答:该公司原方案布置750名工人消费矿泉水。
2020年福州市九年级质量检测数学试题答案及评分参考
A F D EB C2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1-. ···························································································· 5分 ∴原不等式组的解集是1-<x ≤3, ··············································································· 6分······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ,∴BE +EF =CF +EF , 即BF =CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A =∠D . ······································································································· 8分19.(本小题满分8分)解:原式221(1)(1)(1)x x x x +=⋅+--+ ······················································································· 3分2(1)(1)111x x x x x -++=-++ ·························································································· 4分 221111x x x x +-=-++ ·································································································· 5分 21x =+. ··········································································································· 6分当1x =时,原式 ················································································· 7分=. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA , ∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO ==, ∴OD =2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60÷m/min . ································································ 2分由图2可知,当43x =时,甲,乙两人相遇,故4(60)2003v +⨯=乙,解得90v =乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b ==, ······························································································· 6分20010603a ==. ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a =. ····························································································· 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72. (2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600+++=(户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000⨯=,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m , ∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300++=<,2060100220380300+++=>, ∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB =90°, ······················································· 1分∴∠ADC =90°.∵E 是AC 的中点, ∴DE =AE ,∴∠EAD =∠EDA . ··················································· 2分 ∵OA =OD ,∴∠OAD =∠ODA . ······················································································· 3分 ∵∠OAD +∠EAD =∠BAC =90°, ∴∠ODA +∠EDA =90°, 即∠ODE =90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点, ∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF =90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°, ∴∠BAF +∠ABF =90°.∵∠BAC =90°, ∴∠G +∠ABF =90°, ∴∠G =∠BAF . ························································································· 6分 又∠AHF =∠GAB =90°, ∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA=. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴»BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合,∴AF FH GB BA =≤12OF BA =, ············································································ 10分 即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG =90°,∴AM =12GB . ······················································ 6分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB =90°, ∴∠AFG =90°, ∴AF ⊥GB . ························································· 7分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴»BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA 180452︒-︒==67.5°. ······································································· 1分∵AB =AC ,∠BAC =90°, ∴∠ACB =∠ABC =45°,∠DCA =22.5°,························································· 2分 ∴∠DCB =22.5°, 即∠DCA =∠DCB , ∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD =FD , ································································································· 4分 ∴AD FD DB DB=. 在Rt △BFD 中,∠ABC =45°, ∴sin ∠DBF FD DB==, ················································································ 5分∴AD DB = ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°. 又∠BAC =90°,∠AED =45°, ∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°,·············································· 7分 ∴∠AGE =∠AEG , ∴AG =AE . ······························································································· 8分 ∵AB =AC ,∴△AGB ≌△AEC , ···················································································· 9分F B A C D E。
{3套试卷汇总}2020年福州市九年级上学期期末学业质量监测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 中最长的弦为8cm ,则⊙O 的半径为( )cm .A .2B .4C .8D .16【答案】B【解析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】∵⊙O 中最长的弦为8cm ,即直径为8cm ,∴⊙O 的半径为4cm .故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键.2.如图是一根空心方管,则它的主视图是( )A .B .C .D .【答案】B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线. 3.如图,A B 、是函数1y x=的图像上关于原点对称的任意两点,//BC x 轴,//AC y 轴,ABC ∆的面积记为S ,则( )A .2S =B .4S =C .24S <<D . 4S >【答案】A 【分析】根据反比例函数图象上的点A 、B 关于原点对称,可以写出它们的坐标,则△ABC 的面积即可求得.【详解】解:设A(x ₁,y ₁),根据题意得B(-x ₁,-y ₁),BC=2x ₁,AC=2y ₁∵A 在函数1y x=的图像上 ∴x ₁y ₁=11111122222S x y x y ∴=⨯⋅== 故选: A【点睛】本题考查的是反比例函数的性质.4.用配方法解方程x 2-4x+3=0时,原方程应变形为( )A .(x+1)2=1B .(x-1)2=1C .(x+2)2=1D .(x-2)2=1【答案】D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得 x 2-4x=-3,配方,得 x 2-2x+4=-3+4,即(x-2)2=1 ,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.5.小华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A .3.2米B .4.8米C .5.2米D .5.6米【答案】B 【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm , 则可列比例为1.6=26x 解得,x=4.1.故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.6.如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a-b+c 的值为( )A .0B .-1C .1D .2【答案】A 【解析】试题分析:因为对称轴x=1且经过点P (3,1)所以抛物线与x 轴的另一个交点是(-1,1)代入抛物线解析式y=ax 2+bx+c 中,得a-b+c=1.故选A .考点:二次函数的图象.7.反比例函数(0)k y k x =≠的图象经过点()2,6-,若点(3,)n 在反比例函数的图象上,则n 等于( ) A .-4B .-9C .4D .9【答案】A 【分析】将点(-2,6)代入(0)k y k x =≠得出k 的值,再将(3,)n 代入(0)k y k x=≠即可 【详解】解:∵反比例函数(0)k y k x =≠的图象经过点()2,6-, ∴k=(-2)×6=-12,∴12y x=-又点(3,n)在此反比例函数12yx=-的图象上,∴3n=-12,解得:n=-1.故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.8.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦D.16的平方根是2±【答案】B【分析】逐一对选项进行分析即可.【详解】A. 必然事件的概率为1,该选项说法正确,不符合题意;B. 心想事成,万事如意是随机事件,该选项说法错误,符合题意;C. 平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D. 16的平方根是2±,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.9.如图,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=B.2653500x x+-=C.213014000x x--=D.2653500x x--=【答案】B【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】依题意,设金色纸边的宽为xcm,则:()()8025025400x x ++=,整理得出:2653500x x +-=.故选:B .【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.10.如图,在ABC ∆中,,A B 两个顶点在x 轴的上方,点C 的坐标是()1,0- .以点C 为位似中心,在x 轴的下方作ABC ∆的位似,图形A B C ∆'',使得A B C ∆''的边长是ABC ∆的边长的2倍.设点B 的横坐标是-3,则点B '的横坐标是( )A .2B .3C .4D .5【答案】B 【解析】设点B′的横坐标为x ,然后根据△A′B′C 与△ABC 的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x ,∵△ABC 的边长放大到原来的2倍得到△A′B′C ,点C 的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B 的对应点B′的横坐标是1.故选B .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.11.已知点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为圆1O ,过点B 、C 的圆记作为圆2O ,过点C 、A 的圆记作为圆3O ,则下列说法中正确的是( )A .圆1O 可以经过点CB .点C 可以在圆1O 的内部 C .点A 可以在圆2O 的内部D .点B 可以在圆3O 的内部【答案】B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为1O∴点C 可以在圆1O 的内部,故A 错误,B 正确;∵过点B 、C 的圆记作为圆2O∴点A 可以在圆2O 的外部,故C 错误;∴点B 可以在圆3O 的外部,故D 错误.故答案为B .【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 【答案】B【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x .根据题意得:100(1+x )1=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”.二、填空题(本题包括8个小题)13.如图,在菱形c 中,,,E P Q 分别是边AB ,对角线BD 与边AD 上的动点,连接,EP PQ ,若60,6ABC AB ∠=︒=,则EP PQ +的最小值是___.【答案】33【分析】作点Q 关于BD 对称的对称点Q’,连接PQ ,根据两平行线之间垂线段最短,即有当E 、P 、Q’在同一直线上且'EQ AB ⊥ 时,'EP PQ +的值最小,再利用菱形的面积公式,求出EP PQ +的最小值.【详解】作点Q 关于BD 对称的对称点Q’,连接PQ .∵四边形ABCD 为菱形∴'PQ PQ = ,//AB CD∴'EP PQ EP PQ +=+当E 、P 、Q’在同一直线上时,'EP PQ +的值最小∵ 两平行线之间垂线段最短∴当'EQ AB ⊥ 时,'EP PQ +的值最小∵60,6ABC AB ∠=︒=∴6AC = ,2cos306=63BD =⨯︒⨯ ∴11832S ABCD AC BD =⨯= ∵'6'S ABCD AB EQ EQ =⨯=∴6'183EQ =解得'33EQ =∴EP PQ +的最小值是33 . 故答案为:33.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键. 14.在半径为3cm 的圆中,长为πcm 的弧所对的圆心角的度数为____________.【答案】60︒【分析】根据弧长公式求解即可.【详解】 1803180180360n r l n nn πππ====︒故本题答案为:60︒.【点睛】本题考查了圆的弧长公式,根据已知条件代入计算即可,熟记公式是解题的关键.15.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.【答案】1【分析】从俯视图中可以看出最底层硬币的个数及形状,从主视图可以看出每一层硬币的层数和个数,从左视图可看出每一行硬币的层数和个数,从而算出总的个数.【详解】解:三堆硬币的个数相加得:3+4+2=1.∴桌上共有1枚硬币.故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.【答案】 (1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用17.如图,某河堤的横截面是梯形ABCD ,BC AD ∥,迎水面AB 长26m ,且斜坡AB 的坡比(即BE AE)为12:5,则河堤的高BE 为__________.【答案】24cm【分析】根据坡比(即BE AE)为12:5,设BE=12x ,AE=5x ,因为AB=26cm ,根据勾股定理列出方程即可求解.【详解】解:设BE=12x ,AE=5x ,∵AB=26cm ,222AE BE AB +=∴()()22212526x x += 2x =∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解. 18.将方程22(32)10x x x --++=化成一般形式是______________.【答案】2550x x -+=【分析】先将括号乘开,再进行合并即可得出答案.【详解】x 2-6x+4+x+1=0,2550x x -+=.故答案为:2550x x -+=.【点睛】本题考查了一次二次方程的化简,注意变号是解决本题的关键.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A(-2,-2) , B(-4,-1) , C(-4,-4).(1) 画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2) 将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.【答案】(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.20.某公司2016年10月份营业额为64万元,12月份营业额达到100万元,(1)求该公司11、12两个月营业额的月平均增长率;(2)如果月平均增长率保持不变,据此估计明年1月份月营业额.【答案】(1)该公司11、12两个月营业额的月平均增长率为25%;(2)1明年1月份月营业额为125万元.【分析】(1)设该公司11、12两个月营业额的月平均增长率为x,根据该公司10月份及12月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据明年1月份月营业额=今年12月份营业额×(1+增长率),即可求出结论.【详解】解:(1)设该公司11、12两个月营业额的月平均增长率为x,依题意,得:64(1+x)2=100,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去).答:该公司11、12两个月营业额的月平均增长率为25%.(2)100×(1+25%)=125(万元).答:明年1月份月营业额为125万元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.我县寿源壹号楼盘准备以每平方米5000元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套120平方米的住房,开发商给予以下两种优惠方案供选择: ①打9.8折销售;②不打折,一次性送装修费每平方米70元.试问哪种方案更优惠?【答案】(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为x ,根据等量关系“起初每平米的均价(1⨯-下调百分率)(1⨯-下调百分率)=两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价1000.98⨯⨯+两年物业管理费②方案:下调后的均价100⨯,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是x ,依题意得25000(1)4050x -=,解得:110%x =,21910x =(不合题意,舍去). 答:平均每次降价的百分率为10%.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.22.如图,AB 为⊙O 的弦,若OA⊥OD,AB、OD 相交于点C,且CD=BD .(1)判定BD 与⊙O 的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD 的长.【答案】(1)见解析;(2)1【分析】(1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.【详解】解:(1)证明:连接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,则BD为圆O的切线;(2)解:设BD=x,则OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴线段BD的长是1.23.已知:如图,Rt△ABC中,∠ACB=90°,sinB=35,点D、E分别在边AB、BC上,且AD∶DB=2∶3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设AB a=,CD b=,试用a、b表示AC.【答案】(1)98;(2)25AC a b =-. 【解析】试题分析:()1在Rt ABC △中,根据3sin 5B =,设35AC a AB a ==,. 则4BC a =. 根据:2:3AD DB =,得出: 23AD a DB a ==,.根据平行线分线段成比例定理,用a 表示出,.DE CE 即可求得.()2先把AD 用a 表示出来,根据向量加法的三角形法则即可求出.试题解析:(1)390sin 5ACB B ∠=︒=,, ∴35AC AB =,∴设35AC a AB a ==,. 则4BC a =. :2:3?23AD DB AD a DB a ,,.=∴== 90ACB ∠=︒ 即AC BC ⊥,又DE BC ⊥,∴AC//DE .∴DE BD AC AB =,CE AD CB AB =,∴335DE a a a =,245CE a a a=. ∴95DE a =,85CE a =. DE BC ⊥, ∴9tan 8DE DCE CE ∠==. (2):2:3:2:5AD DB AD AB =∴=,.∵AB a =,CD b =,∴25AD a =.DC b =-. ∵AC AD DC =+,∴25AC a b =-. 24.如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .【答案】见解析【解析】根据等边三角形性质得∠B=∠C ,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB . 【详解】证明:∆ABC 是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.25.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?【答案】(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案.【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=0.4,x2=−2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862×(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.26.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.【答案】(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩ , 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.27.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=1.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【答案】(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为110元.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=1,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60,∴x=60时,w有最大值为-2(60-65)2+1950=110(元),∴当销售单价为60元时,该公司日获利最大为110元.【点睛】本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为()A.12 B.16 C.24 D.32【答案】B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【详解】解:∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=4cm,同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,∴四边形EFGH的周长为16cm.故选:B.【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.2.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【答案】B【详解】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm1,则BP为(8﹣t)cm,BQ为1tcm,由三角形的面积计算公式列方程得:12×(8﹣t)×1t=15,解得t1=3,t1=5(当t=5时,BQ=10,不合题意,舍去).故当动点P,Q运动3秒时,能使△PBQ的面积为15cm1.故选B.【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.3.方程x 2+2x-5=0经过配方后,其结果正确的是A .2(1)5x +=B .2(1)5x -=C .2(1)6x +=D .2(1)6x -= 【答案】C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知2+25x x =,即2+216x x +=,配方为()216x +=.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.4.对于二次函数()212y x =-+的图象,下列说法正确的是( )A .开口向下B .对称轴1x =C .顶点坐标是()1,2D .与x 轴有两个交点 【答案】C【分析】根据抛物线的性质由a=2得到图象开口向上,再根据顶点式得到顶点坐标,再根据对称轴为直线x=1和开口方向和顶点,从而可判断抛物线与x 轴的公共点个数.【详解】解:二次函数y=2(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x 轴没有公共点.故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,其顶点坐标为(h ,k ),对称轴为x=h .当a >0时,抛物线开口向上,当a <0时,抛物线开口向下.5.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有( )A .56B .560C .80D .150 【答案】B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B .【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数÷样本容量.6.若2是关于方程x 2﹣5x+c =0的一个根,则这个方程的另一个根是( )A .﹣3B .3C .﹣6D .6 【答案】B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为a , 由一元二次方程根与系数的关系得:5251a -+=-=, 解得3a =,故选:B .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键. 7.已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O 的半径为4cm ,点P 在⊙O 上,∴OP =4cm .故选:B .【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r .8.如图,O 的半径为3,BC 是O 的弦,直径AD BC ⊥,30D ∠=,则BC 的长为( )A .2πB .πC .2πD .3π【答案】C【分析】连接OC ,利用垂径定理以及圆心角与圆周角的关系求出BOC ∠;再利用弧长公式180n r l =︒π即可求出BC 的长.【详解】解:连接OC260AOC D ∠=∠=︒ (同弧所对的圆心角是圆周角的2倍)∵直径AD BC ⊥∴AC =AB (垂径定理) ∴2120BOC AOC ∠=∠=︒1203=2180180n BC ==︒πr ππ 故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.9.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A .B .C .D .【答案】C【解析】根据简单几何体的三视图即可求解. 【详解】三视图的俯视图,应从上面看,故选C 【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.10.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.关于x 的一元二次方程2(3)(2)0x x p ---=的根的情况是() A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .不确定【答案】A【分析】将方程化简,再根据24b ac ∆=-判断方程的根的情况. 【详解】解:原方程可化为22560x x p -+-=,222(5)4(6)10p p ∴∆=---=+>所以原方程有两个不相等的实数根. 故选:A 【点睛】本题考查了一元二次方程根的情况,灵活利用∆的正负进行判断是解题的关键.当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个不相等的实数根;当∆<0时,方程没有实数根.12.抛物线2y x 2=-+的对称轴为 A .x 2= B .x 0=C .y 2=D .y 0=【答案】B【分析】根据顶点式的坐标特点,直接写出对称轴即可. 【详解】解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为直线x=h . 二、填空题(本题包括8个小题)13.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______. 【答案】4-【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x =1, 则当x =1时,y =1−2−3=−1,是最小值; 当x =3时,y =9−6−3=0是最大值.y 的最大值和最小值的和是-1故答案为:-1. 【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14【分析】如图,作点A 关于CM 的对称点A′,点B 关于DM 的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点'B .120CMD ∠=, 60AMC DMB ∴∠+∠=, ∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =, ''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=, CD ∴的最大值为14,故答案为14.。
2020年福州市九年级质量检测数学试题
2020年福州市九年级质量检测数 学 试 题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D 2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线A B C D3.下列运算中,结果可以为3-4的是 A .32÷36 B .36÷32 C .32×36 D .(3-)×(3-)×(3-)×(3-) 4.若一个多边形的内角和是540°,则这个多边形是 A .四边形 B .五边形 C .六边形 D .七边形5.若a a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为 A .911616x y x y -=⎧⎨+=⎩B .911616x yx y -=⎧⎨-=⎩ C .911616x yx y +=⎧⎨+=⎩D .911616x y x y +=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A.b一定增大,c可能增大B.b可能不变,c一定增大C.b一定不变,c一定增大D.b可能增大,c可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V圆锥=13S底h,V圆柱=S底h)是A.21πm3B.36πm3C.45πm3D.63πm39.如图,在菱形ABCD中,点E是BC的中点,以C为圆心,CE长为半径作EF,交CD于点F,连接AE,AF.若AB=6,∠B=60°,则阴影部分的面积是A.632π+B.633π+C.933π-D.932π-10.小明在研究抛物线2()1y x h h=---+(h为常数)时,得到如下结论,其中正确的是A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x1-上C.当1-<x<2时,y随x的增大而增大,则h<2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2>2h,则y1>y2第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D是BC延长线上一点,E是AC上一点,∠B=∠EDF=90°,∠A=30°,∠F=45°,若EF∥BC,则∠CED等于度.14.若m(m-2)=3,则(m-1)2的值是.15.如图,在⊙O中,C是AB的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE=2∠EBF,则∠EBF等于度.16.如图,在平面直角坐标系xOy中,□ABCD的顶点A,B分别在x,y轴的负半轴上,C,D在反比例函数kyx=(x>0)的图象上,AD与y轴交于点E,且AE=23AD,若△ABE的面积是3,则k的值是.ACFEDBAD BCFE46主视图76左视图俯视图CDB AEFOxyBCDEA O三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中31x =-. 20.(本小题满分8分)如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点. (1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200 m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图212345 -1-2 -3 -4 -5 0AFDEBCy x 1202 O xsb aO 43NM O AB22.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.23.(本小题满分10分)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在BD 上,连接BF 并延长交AC 的延长线于点G . (1)求证:DE 是⊙O 的切线; (2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ; ②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图2AEBD CGF OBACDEB AC DE40 4 8 12 16 20 24 28 32 280 220 180 a 6020月均用水量 (单位:t ) 频数(户数)25.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:22=+-的对称轴是y轴,过点F(0,2)(4)y kx k k x作一直线与抛物线C相交于P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=2-于点M,N,求22-的值.MF NF。
2019-2020年福建省福州市九年级上册期末质量检测数学试题有答案-优质版
福州市第一学期九年级期末质量检测数学试卷(考试时间:120分钟,满分:150分)一、选择题:(共10小题,每题4分,满分40分;每小题只有一个正解的选项。
)1.下列图形中,是中心对称的是( )2.若方程k x x x =--)2)(7(3的根是7和2,则的值为( ) A.0 B.2 C.7 D.2或73.从气象台获悉“本市明天降水概率是80%”,对此信息,下面几种说法正确的是( ) A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水 C.明天肯定下雨 D.明天降水的可能性大4.二次函数22-=x y 的顶点坐标是( )A .(0,0)B .(0,-2)C .(0,2)D .(2,0) 5.下列图形中,∠B=2∠A 的是( )6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示,设边框的宽为 cm ,如果整个挂图的面积是25400cm ,那么下列方程符合题意的是( )A .5400)80)(50(=--x xB .5400)280)(250(=--x xC .5400)80)(50(=++x xD .5400)280)(250(=++x x 7.正六边形的两条对边之间的跳高是32,则它的边长是( ) A .1 B .2 C .3 D .328.若点M (m ,n )(mn ≠0)在二次函数)0(2≠=a ax y 图象上,则下列坐标表示的点也在该抛物线图象上的是( )A .(n m ,-)B .(m n ,)C .(22,n m )D .(n m -,)9.在⊙O 中,将圆心绕着圆周上一点A 旋转一定角度θ,使旋转后的圆心落在⊙O 上,则θ的值可以是( ) A .30° B .45° C .60° D .90°10.圆心角为60°的扇形面积为S ,半径为r ,则下列图象大致描述S 与r 的函数关系的是( )二、填空题(共6小题,每题4分,满分24分) 11.点(0,1)关于原点O 对称的点是____________12.从实数―1,―2,1中随机选取两个数,积为负数的概率是__________ 13.已知∠APB=90°,以AB 为直径作⊙O ,则点P 与⊙O 的位置关系是________14.如图,利用标杆BE 测量建筑物的高度,如果BE=1.2m ,AB=1.6m ,BC=12.4m,那么建筑物的高CD=_______m 15.已知□ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD∥轴,当双曲线xky =经过B ,D 两点时,则=k ________ 16.二次函数,)2(22m m x y +-=当1+<<m x m 时,y 随 的增大而减小,则m 的取值范围是____________ 三、解答题(共9小题,满分86分)17.(8分)解方程0162=++x x18.(8分)已知关于的一元二次方程0141)1(2=-=-m x 有两个不相等的实数根,求m 的取值范围.19.(8分)如图,△ABC 中,∠C=90°,CA=CB=1,将△ABC 绕点B 顺时针旋转45°,得到△DBE (A ,D 两点为对应点),画出旋转后的图形,并求线段AE 的长.20.(8分)一个不透明的盒子中有2枚黑棋,枚白棋,这些棋子除了颜色外无其他差别,现从中随机摸出一枚棋子(不放回),再随机摸出一枚棋子.(1)若“摸出两枚棋子的颜色都是白色”是不可能事件,请写出符合条件的一个 值(2)当=2 时,“摸出两枚棋子的颜色相同”与“摸出两枚棋子的颜色不同”的概率相等吗?说明理由.21.(8分)如图,△ABC 中,点D 在BC 边上,有下列三个关系式:①∠BAC=90°,②,DCADAD BD ③AD ⊥BC 选择其中两个式子作为已知,余下一个作为结论,写出已知,求证,并证明. 已知: 求证:证明:22.(10分)如图,在左边托盘A (固定)中放置一个生物,在右边托盘B (可左右移动)中放置一定重量的砝码,可使得仪器左右平衡,改变托盘B 与支撑点M 的跳高,记录相应的托盘B 中的砝码质量,得到下表:托盘B 与点M 的距离(cm) 10 15 20 25 30 托盘B 中的砝码质量y (g )3020151210(1)把上表中(,y )的各级对应值作为点的坐标,在如图所示的平面直角坐标系中描出其余的点,并用一条光滑的曲线连接起,观察所画的图象,猜想y 与的函数关系,求出该函数关系式. (2)当托盘B 向左移动(不能超过点M )时,应往托盘B 中添加砝码还是减少砝码?为什么?23.(10分)如图,在Rt △ABC 中,∠C=90°,O 为AB 边上一点,⊙O 交AB 于点E ,F 两点,BC 切⊙O 于点D ,且.121==EF CD (1)求证:⊙O 与AC 相切; (2)求图中阴影部分的面积.24.(13分)在平面直角坐标系Oy 中,对于点P (,y ),若点Q 的坐标为),(y x x -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)如果点M (m ,n )的“关联点”N 在函数2x y =的图象上,当0≤m ≤2 时,求线段MN 的最大值.25.(13分)如图,C 为线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△HAC 与等边△DCB ,连接DH.(1)如图1,当∠DHC=90°时,求ACBC的值; (2)在(1)的条件下,作点C 关于直线DH 的对称点E ,连接AE ,BE , 求证:CE 平分∠AEB.(3)现将图1中的△DCB 绕点C 顺时针旋转一定角度α(0°<α<90°),如图2,点C 关于直线DH 的对称点为E ,则(2)中的结论是否还成立,并证明.。
2020福建省福州市初中毕业班质检数学卷
2,3,4,5 中任取 3 个数,则这 3 个数能构成一组勾股数的概
E
F
率是
.
13.一副三角尺如图摆放,D 是 BC 延长线上一点,E 是 AC 上一点,∠ B
B ∠EDF 90°,∠A 30°,∠F 45°,若 EF∥BC,则∠CED 等
于
度.
CD
E F D
14.若 m(m 2) 3,则(m 1)2 的值是
第Ⅰ卷
一、选择题:本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.
1.在实数 π , 22 ,2.02002, 3 8 中,无理数的是 47
A. π 4
B. 22 7
C.2.02002
D. 3 8
2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是
x
1
,其中
x
3 1.
BE
FC
20.(本小题满分 8 分)
如图,已知∠MON,A,B 分别是射线 OM,ON 上的点.
M
(1)尺规作图:在∠MON 的内部确定一点 C,使得 BC∥OA
且 BC 1 OA;(保留作图痕迹,不写作法)
A
2
(2)在(1)中,连接 OC,用无刻度直尺在线段 OC 上确定一
赵爽弦图
笛卡尔心形线
科克曲线
斐波那契螺旋线
A
B
C
D
3.下列运算中,结果可以为 3-4 的是
A.32÷36
B.36÷32
Hale Waihona Puke C.32×36D.( 3 )×( 3 )×( 3 )×( 3 )
4.若一个多边形的内角和是 540°,则这个多边形是
2019-2020年福建省福州市九年级上册期末质量检测数学试题有答案
福州市第一学期九年级期末质量检测数学试卷(考试时间:120分钟,?^分:150分)10小题,每题4分,满分40分;每小题只有一个正解的选项。
)2.若方程3x (x —7)(x —2) =k 的根是7和2,则的值为( )A.0B.2C.7D.2 或 7D.明天降水的可能性大24.二次函数y = x - 2的顶点坐标是y = ax 2(a # 0)图象上,则下列坐标表示的点也在该抛物线图象上的是()22、A. ( —m,n)B. ( n,m) C, ( m ,n ) D. ( m,-n)9 .在O O 中,将圆心绕着圆周上一点 A 旋转一定角度0 ,使旋转后的圆心落在。
。
上,则。
的值可以是1.下列图形中,是中心对称的是()、选择题:(共 3.从气象台获悉“本市明天降水概率是 80%”,对此信息,下面几种说法正确的是( A.本市明天将有 80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D. ( V2 , 0)A. (50 — x)(80 — x) =5400B.C. (50 +x)(80 +x) =5400D.7.正六边形的两条对边之间的跳高是 (50 -2x)(80 -2x) =5400 (50 2x)(80 2x) = 54002运,则它的边长是()8.若点 M (m, n ) (mnw0)在二次函数 A. ( 0, 0) B. ( 0, —2) C. ( 0, 2)6.在一幅长为80cm,宽为50cm 的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示, 设边框的宽为 cm,如果整个挂图的面积是 5400cm 2,那么下列方程符合题意的是()()A. 30°B. 45°C. 60°D. 90°10.圆心角为60。
的扇形面积为S,半径为r,则下列图象大致描述S与r的函数关系的是()二、填空题(共6小题,每题4分,满分24分)11.点(0, 1)关于原点O对称的点是12.从实数一1, —2, 1中随机选取两个数,积为负数的概率是13.已知/ APB=90 ° ,以AB为直径作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.11.112.1413.1514.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分8分)解:解不等式①,得x≤3.································································································解不等式②,得x>1-.·····························································································∴原不等式组的解集是1-<x≤3,················································································将该不等式组解集在数轴上表示如下:12345-50-1-4-2-3································································18.(本小题满分8分)证明:∵点E,F在BC上,BE=CF,A FD EBC∴BE +EF =CF +EF ,即BF =CE .············································································································在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABF ≌△DCE ,···································································································∴∠A =∠D .·········································································································19.(本小题满分8分)解:原式221(1)(1)(1)x x x x +=⋅+--+························································································2(1)(1)111x x x x x -++=-++ (22)1111x x x x +-=-++ (21)x=+.············································································································当1x =时,原式=···················································································==.······················································································20.(本小题满分8分)解:画法一:画法二:································································如图,点C ,D 分别为(1),(2)所求作的点.··························································(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,···············································································∴12DC BC DO AO ==,∴OD =2CD .························································································21.(本小题满分8分)解:(1)由图1可得甲的速度是1202=60÷m/min .·································································由图2可知,当43x =时,甲,乙两人相遇,故4(60)2003v +⨯=乙,解得90v =乙m/min .·····························································································答:甲的速度是60m/min ,乙的速度是90m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b ==,·································································································20010603a ==.·································································································∴a 的值为103,b 的值为209.22.(本小题满分10分)解:(1)依题意得100a =.·······························································································这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==,························································································································∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下:·················································································由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),·····························································∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=,∴月均用水量不超过14.72t 的户数小于60%.··············································∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%<70%,∴用14.72作为标准m 不合理. (1)解法二:不合理.理由如下:·················································································∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700,···························································即有300户家庭的月均用水量超过m .又2060100160300++=<,2060100220380300+++=>,∴m 应在16≤x <20内.···········································································而14.72<16,∴用14.72作为标准m 不合理. (1)23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB =90°,∴∠ADC =90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD =∠EDA .···························································································∵OA =OD ,∴∠OAD =∠ODA .··························································································∵∠OAD +∠EAD =∠BAC =90°,∴∠ODA +∠EDA =90°,即∠ODE =90°,·······························································································∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线.························································································(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF =90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°,∴∠BAF +∠ABF =90°.∵∠BAC =90°,∴∠G +∠ABF =90°,∴∠G =∠BAF .···························································································又∠AHF =∠GAB =90°,∴△AFH ∽△GBA ,·······················································································∴AF FH GB BA=.·····························································································由垂线段最短可得FH ≤OF ,···········································································当且仅当点H ,O 重合时等号成立.∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合,∴AF FH GB BA =≤12OF BA =,·············································································1即AF GB 的最大值为12.解法二:取GB 中点M ,连接AM .∵∠BAG =90°,∴AM =12GB .∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°,∴∠AFG =90°,∴AF ⊥GB .由垂线段最短可得AF ≤AM ,··········································································当且仅当点F ,M 重合时等号成立,此时AF 垂直平分GB ,即AG =AB .∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点,∴AF ≤12GB ,······························································································∴AF GB ≤12, (1)即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA 180452︒-︒==67.5°.·········································································∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°,·····························································∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB .························································································②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,····································································································∴AD FD DB DB=.在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF FD DB==,··················································································∴AD DB =.·································································································(2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°,··················································∴∠AGE =∠AEG ,∴AG =AE .·································································································∵AB =AC ,∴△AGB ≌△AEC ,························································································∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°.··························································································1∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE中,cos 45GE BE ==︒,cos 45AE GE =⋅︒=,···········································1在Rt △ABE 中,tan ∠ABE 12AE BE ==.·················································1(也可以将△AEB 绕点A 逆时针旋转90°至△AFC 得到AE ,CF =)FB AC DE G B A CDE。