中考数学总复习 第7讲 一元二次方程教学案

合集下载

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。

一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。

此外,一元二次方程对其它学科的学习也有重要意义。

因此,其地位可谓是“承上启下”,不可或缺。

2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。

过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。

情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。

3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。

难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。

二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。

”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。

给学生留出足够的思考时间和空间,让学生自己去探索,归纳。

从真正意义上完成对知识的自我构建。

并用多媒体直观演示,最大限度地调动学生学习的积极性。

学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。

我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。

三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。

2015年河北中考数学总复习课件(第7课时_一元二次方程)

2015年河北中考数学总复习课件(第7课时_一元二次方程)

将 x=-1 代入方程解出 m=1, 再将 m=1 代入方程中并解这个一元二次方程即可.
解 析
冀考解读
课前热身
考ห้องสมุดไป่ตู้聚焦
冀考探究
第7课时┃ 一元二次方程
考 点 聚 焦
考点1 一元二次方程的概念
ax2+bx+c=0 a≠0). 一元二次方程的一般形式为_______________(
冀考解读
课前热身
考点聚焦
冀考解读
课前热身
考点聚焦
冀考探究
第7课时┃ 一元二次方程
例 4 解下列一元二次方程: (1)[2014· 遂宁] x2+2x-3=0; (2)2(x-3)=3x(x-3).
解:(1)∵x2+2x-3=0, ∴(x+3)(x-1)=0, ∴x1=1,x2=-3. (2)∵2(x-3)=3x(x-3), ∴2(x-3)-3x(x-3)=0, ∴(x-3)(2-3x)=0, 2 ∴x1= ,x2=3. 3
考点聚焦 冀考探究
第7课时┃ 一元二次方程
课 前 热 身
1.下列方程中是关于 x 的一元二次方程的是 ( C ) 1 2 A.x + 2=0 x B.ax2+bx+c=0 C.(x-1)(x+2)=1 D.3x2-2xy-5y2=0 解 析 根据一元二次方程的定义:只含有一个
未知数,并且未知数的最高次数是 2 的整式方程叫做一元 二次方程.
解 析
方程的一般形式为 2x2-2x+2=0,故选 B.
冀考解读
课前热身
考点聚焦
冀考探究
第7课时┃ 一元二次方程
例 2 [2014· 菏泽] 已知关于 x 的一元二次方程 x2+ax+b =0 有一个非零根- b, 则 a-b 的值为 ( A ) A.1 B.-1 C.0 D.-2

2016江苏中考数学复习课件:第7课时 一元二次方程及其应用

2016江苏中考数学复习课件:第7课时 一元二次方程及其应用

增长率等量关系:增长率=增长量÷基 一元二次方 程的实际应 用中两个常 见关系
础量×100%;
利润等量关系:①利润=售价-成本;②
利润 100% 成本 利润率=⑥____________
重难点突破
解一元二次方程
例1(2015 兰州)解方程:x2-1=2(x+1). 【思路分析】先把方程化成一般形式,再进行计算.
根与系数的关系:方程 ax2+bx+c=0(a≠0)的两个根是
b c a x1x2=⑤_____ x1, x2,则x1+x2=④_____, a
一元 二次 方程 的应 用
1.一般解题步骤:列一元二次方程解应用题 的步骤和列一次方程(组)解应用题步骤一 样,即审、设、列、解、验、答六步 2.一元二次方程的实际应用中两个常见关系
两根的积求常数项;当已知常数项时,先利用两根的积
求另一个根,再利用两根的和求系数;
1 1 x1 x2 (1) x x x x 1 2 1 2
③求某些代数式的值常用的变化:
(2)x12+x22=(x1+x2)2-2x1x2 (3)(x1-x2)2=(x1+x2)2-4x1x2
一元二次方程的应用
例4(2015 东营)2013年,东营市某楼盘以每平方米6500元的均 价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,
决定进行降价促销,经过连续两年下调后,2015年的均价为每
平方米5265元. (1)求平均每年下调的百分率; (2)假设2016年的均价仍然下调相同的百分率,张强准备购买 一套100平方米的住房,他持有现金20万元,可以在银行贷款30
(2)【思路分析】如果下调的百分率相同,求出2016年 的房价,进而确定出100平方米的总房款,与持有现金和 银行贷款总和相比较即可做出判断. 解:如果下调的百分率相同,2016年的房价为:

2021年中考数学第七讲 一元二次方程(40PPT)

2021年中考数学第七讲 一元二次方程(40PPT)

【跟踪训练】
1.(2019·玉林中考)若一元二次方程x2-x-2=0的两根为x1,x2,则(1+x1)+x2(1-x1) 的值是 ( A )
A.4
B.2
C.1
D.-2
2.(2019·贵港中考)若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且
1 1 2,则m等于
3
(B)
A.-2
【答题关键指导】 1.在解决方程有无实数根的问题时要注意区分是否为一元二次方程. 2.一元二次方程有实数根包括有两个不相等的实数根和两个相等的实数根两种 情况. 3.根据一元二次方程根的情况确定未知系数时,不仅要考虑b2-4ac的符号,还要 考虑二次项系数不为0.
【跟踪训练】
1.(2020·安徽中考)下列方程中,有两个相等实数根的是 ( A )
第七讲 一元二次方程
一、一元二次方程的概念 1.定义:只含有___1___个未知数,并且未知数的最高次数是___2___的整式方程. 2.一般形式:___a_x_2+_b_x_+_c_=_0_(_a_≠__0_)___.
二、一元二次方程的解法
解法 直接开平方法
形式 x2=p(p≥0) (mx+n)2=p(p≥0,m≠0)
2
化简得k2+2k=0,
解得k=0或k=-2.
5.(2019·随州中考)已知关于x的一元二次方程x2-(2k+1)x+k2+1=0有两个不相 等的实数根x1,x2. (1)求k的取值范围. (2)若x1+x2=3,求k的值及方程的根.
【解析】(1)∵关于x的一元二次方程x2-(2k+1)x+k2+1=0有两个不相等的实数根, ∴Δ>0,∴[-(2k+1)]2-4(k2+1)>0,

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第7讲 一元二次方程及应用

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第7讲 一元二次方程及应用
返回
数学
(2)解:∵x2-4mx+3m2=0,即(x-m)(x-3m)=0, ∴x1=m,x2=3m. ∵m>0,且该方程的两个实数根的差为2, ∴3m-m=2, ∴m=1.
返回
数学
考点3 *一元二次方程根与系数的关系
8.(2021 黄石)已知关于 x 的一元二次方程 x2+2mx+m2+m=0 有 实数根. (1)求 m 的取值范围; (2)若该方程的两个实数根分别为 x1,x2,且x12+x22=12,求 m 的值.
返回
数学
14.(2018广东)关于x的一元二次方程x2-3x+m=0有两个不相 等的实数根,则实数m的取值范围是( A )
A.m<9
4
B.m≤9
4
C.m>9
4
D.m≥9
4
返回
数学
15.(2019广东)已知x1,x2是一元二次方程x2-2x=0的两个实 数根,下列结论错误的是( D )
A.x1≠x2
一元二次方 题14,
题4,
程的解 4分
3分
解一元二次 方程
题 题9,3
21(2), 分 2分
题17, 6分
返回
数学
一元二次方程
题9,
题8,
根的判别式
3分
3分
一元二次方程
的应用题
◇链接教材◇人教版:九上第二十一章P1-P26
北师版:九上第二章P30-P58
返回
数学
课前预习
1.(2021深圳)已知方程x2+mx-3=0的一个根是1,则m的值为 2.
2.(2021广州)方程x2-4x=0的实数解是 x1=0,x2=4 .

一元二次方程根的判别式的应用教学案

一元二次方程根的判别式的应用教学案

1.2 二次根式的性质(1)【要点预习】1.二次根式的性质:(1)2____(0)a =≥;(2)(__0)____(__0).a a a a ⎧=⎨-⎩【课前热身】1.填空:2= . 答案:22. = . 答案:43. ________= .答案:1 1【讲练互动】【例1】计算:(1) 33 3.⎤+⎦;解:(1) 原式=)233333+-.(2) 原式=((22220=---=.【黑色陷阱】注意2的区别,2表示a 的算术平方根的平方, 其运算结果为a ;a 2的算术平方根, 其结果由a 的符号决定, 当a 为正数时结果为a ;当a 为负数时结果为-a . 【变式训练】 1. 计算:(1) 2((2)2;(3)31.73-答案:(1) 4;(2)815;(3)19.【例2】(2008广州中考)如图,实数a、b在数轴上的位置,化简分析:根据图中数轴,可知-1<a<0<b<1,于是a a=-,b b=,a b b a-=-,于可化简原式.解:由题意得a<0<b, ∴原式=|a|-|b|-|a-b|=-a-b+(a-b)=-2b.号外面,可以先写成绝对值的形式,判断符号,然后化去绝对值.【变式训练】2. 2得…………………………………………………………( )A. 2B. -4x+4C. -2D. 4x-4答案:A【同步测控】基础自测1.下列算式错误的是…………………………………………………………………………( )6= B. 6- C. 2(6= D. 26=答案:D2.( )A.11 C.1±( D.答案:B3.= a-,则实数a在数轴上的对应点一定在……………………………………()A. 原点左侧 B. 原点右侧C. 原点或原点左侧D. 原点或原点右侧答案:C4. 当x>2答案:x-25.则此直角三角形的斜边长为 . 答案:36. 计算:(1) 2(;(2) 2-(3) .答案:(1)-6;(2)0.3;能力提升7. π的值是…………………………………………………………………( )A. 3.14-2πB. 3.14C. -3.14D. 无法确定解析:由于3.14<π 3.14 3.14ππ=-=-,所以原式=π-3.14-π=-3.14.答案:C8.已知0<a ,那么…………………………………………………………( )A. aB.a -C.a 3D.a 3-解析:由于a <0,故|a |=-a ,因此原式33a a ==-. 答案:D9.已知已知1x =+1y =222x xy y -+的值是 .解析:原式=(x -y )2=((22112⎡⎤+-+==⎣⎦.答案:210. 若化简|1-x |2x -5,则x 的取值范围是 . 解析:由题意得, 原式=(x -1)+(x -4)=2x -5, 故可知1-x ≤0且x -4≥0, 解得x ≥4. 答案:x ≥411. 已知a 、b 、c 为△ABC 分析:根据“三角形两边之和大于第三边”可得a+b >c ,b+c >a ,于是a b c a b c =+-=+-a b c b c a =--=+-,故可化简原式.解:∵a 、b 、c 为△ABC 的三边长,∴a+b >c , b+c >a . ∴原式=(a+b-c )+(b+c-a )=2b . 12. 阅读下面的文字后,回答问题.小王和小李解答题目:“先化简下式,再求值:a ,其中a =7时,得出了不同的答案.小王的解答是:原式=()11a a a +-=;小李的解答是:原式=()12127113a a a a =+-=-=⨯-=.(1)_____的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:___________.分析:由于a =7>111a a -=-,因此小王的解答错误.解:(1)小王;a . 创新应用13.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a 、b ,使a+b=m ,n ab =,使得22m +=,n b a =⋅,=)(b a >7m =,12n =,由于4+3=7,4312⨯=.即227+=2+解:这里m=13,n =42. ∵7+6=13,7×6=42,∴2213+=a+b >c , b+c >a .1.2 二次根式的性质(2)【要点预习】1.二次根式的性质2:________(0,0);a b=≥≥__0,__0).a b【课前热身】1.)A. B. C. D.答案:B2. 当0x<=___________.答案:-x3. =;=.答案:11 5 34. =_________.【讲练互动】【例1】化简:解:(1)原式=12×5=60. (2)原式=.(3)原式. (4)原式【绿色通道】对二次根式化简结果的要求:一是根号内不再含有开得尽方的因式;二是根号内不再含有分母. 二次根式化简的步骤:一是预备阶段,包括分解质因数,化带分数为假分数,处理好被开方数的符号,根号内分数的分子、分母同乘一个数,使分母变成一个完全平方数等;二是运用二次根式的性质的秩序:先运用积和商的自述平方根性质,的性质.【变式训练】1.化简:;答案:(1)40;(2)45;;【例2】先化简,再求出下面算式的近似值.(精确到0.01).解:(1)原式2.45=.(2)原式1.06=≈.(3)原式22.45≈.【黑色陷阱】第(1)题注意应化为正数后再化简;第(3)题根号内不是积的形式,注意要先分解因式,化成积的形式后再化简.【变式训练】2.先化简,再求出下列算式的近似值:(1)(结果保留三个有效数字);(2)(精确到0.01).答案:(1)0.110; 2.50.【例3】在44⨯的方格内画△ABC,使它的顶点都在格点上,三条边长分别为2,2的直角三角形CBA的斜边长;由于==因此可视作两条直角边长分别为3,1的直3,1的直角三角形的斜边长.解:化简后三角形的三边分别为ABC 如图所示. 【变式训练】3. 在44⨯的方格内画△ABC,使它的顶点都在格点上,三条边长分别为分析:由于===2,1的直角三3,2的直角三角形的斜边长.ABC 如图所示. 【同步测控】基础自测1.(2007潍坊中考)) A.10B.C.D.20答案:B2.的结果是………………………………………………………………( ) A.0.6 B.0.06 C.6.0± D.06.0± 答案:A3. 下列化简正确的是 ………………………………………………………………………( )959=⨯=45B.=7+24=31CBA22⨯=3623答案:C4. 等腰直角三角形的腰长为4,则斜边上的高线长为……………………………………()A.4 D.答案:B5.=a的取值范围是 .答案:a≥06. 化简:(1)162 ;(3) (4)答案:(1)(3)(4)6;7.直角三角形的两直角边长度的比为3∶2.解:设两直角边长分别为3x, 2x, 则由勾股定理得(3x)2+(2x)2=2, 13x2=520, x2=40.∵x>0, ∴x=∴两条直角边的长分别为能力提升8. (2007莱芜中考则x的取值范围是…………………………()A. x≥0B. x>0C. x≥1D. x>1解析:根据二次根据成立的意义,必须满足x≥0且x-1≥0,可解得x≥1.答案:C9.若等边三角形的边长是6,则它的高为…………………………………………………( )A.3B.C.D.解析:由勾股定理,得等边三角形的高答案:C10.(2007乌鲁木齐中考)的被开方数相同的概率是.==4个中有33 4 .答案:3 411.先化简,再用计算器求出各算式的近似值(结果保留4个有效数字):(1)(2)(3)答案:3.953;1.118;0.3953;0.3440.○12. 观察下列各式及其验证过程:验证:===.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明. 解:(1),(2)创新应用13.在如图的4×4方格内画△ABC,使它的顶点都在格点上,且AB=BC=2,AC并求B点到AC的距离.DCBA分析:由于=2,2的直角三故可视作两条直角三角形边长分别为2,4的直角三角形的斜边长,因此△ABC可作出. 再利用面积法可求得B点到AC的距离.解:作BD⊥AC于D. AB=BC=2,AC=.∵S△ABC=12×2×2=2=12AC·BD, ∴BD=4AC===一元二次方程复习指南一、课程目标要求1.经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,了解一元二次方程及其相关概念.2.能灵活用直接开平方法、因式分解法、配方法、公式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想.3.会用一元二次方程模型解实际问题,并从中经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,更好地体会数学的价值.二、知识脉络简图三、重点知识回顾1,含有一个未知数,并且未知数的最高指数是2的整式方程,叫做一元二次方程. 注意一元二次方程就必须满足:①整式方程;②只含有一个未知数;③未知数的最高次数为2(未知数的指数为2,二次项的系数不为0).2,一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),其中ax 2是二次项,bx 是一次项,c 是常数项,a 是二次项系数,b 是一次项系数,c 是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax 2+bx +c =0(a ≠0)的一般形式.其中,尤其注意a ≠0的条件,有了a ≠0的条件,就能说明ax 2+bx +c =0是一元二次方程.若不能确定a ≠0,并且b ≠0,则需分类讨论:当a ≠0时,它是一元二次方程;当a =0时,它是一元一次方程.3,一元二次方程的根的定义可以当作性质定理使用,即若有实数m 是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.4,一元二次方程的解法有:直接开平方法、因式分解法、配方法和公式法.对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:x =2b a -±b 2-4ac ≥0). 注意一元二次方程如果有解,就有两个解(有时有两个相同的解).5.四种一元二次方程解法的适用范围(1)开平方法和因式分解法都只适用于一些特殊的方程.当方程的左边是含有未知数的完全平方式,而右边是一个非负数的形式时,应用开平方法.(2)当方程一边是0,而另一边适于因式分解时,可用因式分解法.(3)配方法和公式法适于任何有实数根的一元二次方程.当二次项系数是1且一次项系数是2的倍数时,可用配方法;当二次项系数不是2的倍数且不易用因式分解法时,可考虑用公式法.(4)公式法虽是“万能”的,但它总是“下策”,只有在迫不得已时才使用,而因式分解才是首选方法.(5)因为一元二次方程通过配方法然后开方即得公式法,所以开平方是基础,配方法是关键,公式法是重点,而因式分解是最快捷有效的方法.6,列一元二次方程解简单的实际应用问题的方法和步骤与列一元一次方程解应用题基本相同.简单地可分为:设、找、列、解、检、答等六个步骤.具体地就是:(1)设 弄清题意和题目中的数量关系,用字母(如x )表示题目中的一个未知数;(2)找 找到能够表示应用题全部含义的一个相等的关系;(3)列 根据这个相等的数量关系式,列出所需的代数式,从而列出方程;(4)解 解这个所列的分式方程,求出未知数的值;(5)检 检验;(6)答 写出答案(包括单位名称).这六个步骤关键是“列”,难点是“找”.四、思想方法导读1转化思想:如将一元二次方程转化为一次方程,转化的策略是降次,降次的途径是配方、开方和因式分解.2建模思想:弄清问题的实际背景,找出实际问题中相关数量之间的相等关系,并把这种关系“翻译”为一元二次方程.常见的实际问题有:增长率问题、面积问题、利润问题等.2配方法:配方法不仅可以用来解一元二次方程,而且也是解决其它数学问题的方法,如学习二次函数就少不了配方法.五、典型例题解析考点一:一元二次方程的有关概念例1(09荆门)关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.解析:因为该方程的二次项系数为字母,根据已知条件:只有一解(相同解算一解),考虑字母的适用范围,应将字母分0=a 和0≠a 两种情况分类讨论:解:(1)当0=a ,方程为一元一次方程 022=+-x 此时有实数根1=x ;(2)当0≠a ,方程为二次方程.由相同解算一解得:[]0)2(8)2(22=-=-+-=∆a a a ,解得2=a 此时方程有实数根1=x综合(1)、(2),选D评注:字母系数的取值范围问题是否要讨论,要看清题目的条件.一般设问方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。

中考数学一轮总复习 第7课时 二次方程(组)(无答案) 苏科版

中考数学一轮总复习 第7课时 二次方程(组)(无答案) 苏科版

第7课时:二次方程(组)【课前预习】 (一)知识梳理1、一元二次方程,二元二次方程(组)的定义。

2、一元二次方程的解法,基本思想是降次,常用方法是直接开平方法、配方法、因式分解法、公式法、十字相乘法。

3、二元二次方程组(一个是二元一次方程、一个是二元二次方程)的解法,基本思想是消元、降次,常用方法代入消元法。

(二)课前练习2221.3(1)2(2)40 .2. .3.7100 .4.1)(21x x x x x x x x m x m --+-==-+=-++将方程化成一元二次方程的一般形式,得,一次项系数是,二次项系数是方程的根是若一个三角形的三边长均满足方程,那么此三角形的周长是关于的一元二次方程(2)100 .x m m +-=的一个根为,那么的值是 5.下列关于x 的方程:2232223(1)230,(2)20,(3)5,(4)1x x x x x x y x--=-+=+=+= 其中是一元二次方程的有 . 6.用规定方法解下列方程:(1)()22132x -=(开平方法与因式分解法) (2)242x x +=(配方法与公式法)【解题指导】2221.1310 (2)3 (3)3250x x x x x +-=+=--=例解下列方程:()2261102.210x y y x y ⎧-+-=⎨--=⎩例解二元二次方程组:3.2)340x ( ). . . . mm x mx m m m m -+-==±==-≠±A 2B 2C 2D 2例方程(是关于的一元二次方程,则例5.m 为何值时,方程组 2y 12xy 3x m ⎧=⎨=+⎩有两个相同的实数解.【巩固练习】()2222221.150 .2.210,4 .3.1 5 (2)( (3)(4)(32)110m x mx m a a a a x x y x x -+-=-+=-=-=+=+-+=方程是关于x 的一元二次方程,则满足的条件是若则2解下列方程:()4.请你写出一个有一根为1的一元二次方程: .22520111; (2) 2830x y x y xy x y -=+=⎧⎧⎨⎨=-+=⎩⎩.解下列方程组:()【课后作业】 班级 姓名一、必做题:1、已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( ) A .3- B .3 C .0 D .0或3 2、用配方法解一元二次方程542=-x x 的过程中,配方正确的是( ) A .(1)22=+x B .1)2(2=-x C .9)2(2=+x D .9)2(2=-x 3、一元二次方程2520x x -=的解是( )A .x 1 = 0 ,x 2 =25B . x 1 = 0 ,x 2 =52-C .x 1 = 0 ,x 2 =52D . x 1= 0 ,x 2 =25-4、下列说法中,正确的是( )A .如果a b c d b d ++=,那么a cb d= B 3C .当1x <D .方程220x x +-=的根是2112x x =-=,5、方程(x-1)2=4的解是 .6、请你写出一个两根分别为2,3的一元二次方程: .7、若关于x 的方程2210x x k ++-=的一个根是0,则k = .8、若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k +=.9、用配方法解方程542=-x x 时,方程的两边同加上 ,使得方程左边配成一个完全平方式. 10、解方程:(1)2(3)4(3)0x x x -+-=. (2)2230x x --=(3)2310x x --=. (4)0)3(2)3(2=-+-x x x(5)2213x x +=. (6)x 2-6x +1=0.11、解方程组:(1)27x 6xy 82x 3y 5⎧-=⎨-=⎩ (2)二.选做题:1、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A .1B .2C .-1D .-22、方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =3、2(3)5(3) .x x x -=-一元二次方程的根为4、2222()4()120,1 .x x x x x x x ----=-+已知实数满足则代数式的值为5、用适当的方法解关于x 的方程(1)064)94(32=+--x x (2)032)26(2=+++x x6. 222222)(1)-120,+y x y x y x +-+=已知(求的值。

【初中数学】中考数学 第一部分 教材知识梳理 第二单元 第7课时 一元二次方程及其应用课件

【初中数学】中考数学 第一部分 教材知识梳理 第二单元 第7课时 一元二次方程及其应用课件

数,b为增长后的量,则 a(1 m)n b ;当m为平
均下降率,n为下降次数,b为下降后的量,则
a(1 m)n b .
(2)利润问题:见第6课时考点3.
最新中小学教案、试题、试卷、课件 8
(3)面积问题: A.如图(1),设空白部分的宽为x, (a-2x)(b-2x) ; 则S阴影=⑧____________
提取公因式得:(x+1)(x-3)=0,
解得 x1 =-1或 x2 =3.
最新中小学教案、试题、试卷、课件 11
拓展1 (’15重庆A卷)一元二次方程 x2-2x=0
的根是 ( D )
A. x1= 0, x2 = -2
C. x1= 1, x2 = -2
B. x1= 1, x2= 2
D. x1 = 0, x2 = 2
_________ 2a
可化为a(x+m)(x+n)=0的方程,用因式分解法 求解,则x1=-m,x2=-n
最新中小学教案、试题、试卷、课件 4
考点2 一元二次方程根的判别式(2011版新课 标选学内容)
一元二次方程 判别式 根的情况
b2-4ac___ > 0
ax2+bx+c=0(a≠0) = 0 b2-4ac___ < 0 b2-4ac___
3
2. 一元二次方程的解法
一般形式:ax2+bx+c=0(a≠0)
直接开 平方法
配方法 公式法 因式分 解法
形如(x+m)2=n(n≥0)的方程,可直接开方求 n m 解.则 x1 n m , x2 ①______
若ax2+bx+c=0(a≠0)不易于分解因式,可考虑 配方为a(x+h)2=k,再直接开方求解 公式法求根公式:x=②b b2 4ac (b2 4ac 0)

2014届苏科版中考数学复习方案(7)一元二次方程(20页)

2014届苏科版中考数学复习方案(7)一元二次方程(20页)
考点聚焦 归类探究 回归教材
解 析
第7课时┃归类探究
方法点析
(1)判别一元二次方程有无实数根,就是计算
判别式Δ=b2-4ac的值,看它是否大于0.因此,在计算前
应先将方程ቤተ መጻሕፍቲ ባይዱ为一般式. (2)注意二次项系数不为零这个隐含条件.
考点聚焦
归类探究
回归教材
第7课时┃归类探究
探究四、一元二次方程的应用
命题角度: 1.用一元二次方程解决增长率问题.
考点聚焦
归类探究
回归教材
第7课时┃回归教材
回 归 教 材
根的判别式作用大 教材母题
k取什么值时,方程x2-kx+4=0有两个相等的实数根?求这 时方程的根.
考点聚焦
归类探究
回归教材
第7课时┃回归教材


∵方程有两个相等的实数根,
∴(-k)2-4×1×4=0,即k2=16.
解得k1=4,k2=-4.
的含未知数的因式时,不能直接约去这个因式,因为如果 约去则是默认这个因式不为零,那么如果此因式可以为零, 则方程会失一个根,出现漏根错误,所以应通过移项,提 取公因式的方法求解.
考点聚焦 归类探究 回归教材
第7课时┃归类探究
探究三、一元二次方程根的判别式
命题角度: 1.判别一元二次方程根的情况; 2.求一元二次方程字母系数的取值范围. 例3.[2013•北京] 已知关于x的一元二次方程x2+2x+2k-4=0 有两个不相等的实数根. (1)求k的取值范围; (2)若k为正整数,且该方程的根都是整数,求k的值.
考点聚焦
归类探究
回归教材
第7课时┃归类探究
解 析
-b± x= 通过对方程的观察发现此题直接应用公式法 b2-4ac 解比较方便. 2a

2021河北中考数学复习 第7讲 一元二次方程

2021河北中考数学复习 第7讲 一元二次方程

第7讲 一元二次方程1. (2021,河北)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,…第一步 x 2+b a x +⎝⎛⎭⎫b 2a 2=-c a+⎝⎛⎭⎫b 2a 2,…第二步 ⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2,…第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),…第四步 x =-b +b 2-4ac 2a.…第五步 (1)嘉淇的解法从第 四 步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c=0(a ≠0)的求根公式是( x =-b ±b 2-4ac 2a); (2)用配方法解方程:x 2-2x -24=0.【思路分析】 本题考查了用配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型.第一步,移项,把常数项移到方程右边;第二步,配方,左、右两边加上一次项系数一半的平方;第三步,左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型.方程两边同时除以二次项系数,即化成x 2+px +q =0型,然后配方.解:(1)四 x =-b ±b 2-4ac 2a(2)移项,得x 2-2x =24.配方,得x 2-2x +1=24+1,即(x -1)2=25.开方,得x -1=±5.∴x 1=6,x 2=-4.2. (2021,河北)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是(B)A. a <1B. a >1C. a ≤1D. a ≥1【解析】 ∵关于x 的方程x 2+2x +a =0不存在实数根,∴b 2-4ac =22-4×1×a <0.解得a >1.3. (2021,河北)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 有一根为0【解析】 由(a -c )2>a 2+c 2得出-2ac >0,∴Δ=b 2-4ac >0.∴方程有两个不相等的实数根.一元二次方程的概念及解法例1 解下列方程:(1)x 2-2x -1=0;(2)x 2-1=2(x +1);(3)x 2+3x =-14. 【思路分析】 根据所给方程的形式,选择合适的方法解方程. 解:(1)a =1,b =-2,c =-1.Δ=b 2-4ac =4+4=8>0.∴方程有两个不相等的实数根.∴x =-b ±b 2-4ac 2a =2±222=1±2, 即x 1=1+2,x 2=1- 2.(2)移项,得x 2-1-2(x +1)=0,(x +1)(x -1)-2(x +1)=0,因式分解,得(x +1)(x -1-2)=0,于是,得x +1=0或x -3=0.∴x 1=-1,x 2=3.(3)配方,得x 2+3x +⎝⎛⎭⎫322=-14+⎝⎛⎭⎫322, ⎝⎛⎭⎫x +322=2. 由此可得x +32=±2. ∴x 1=-32+2,x 2=-32- 2. 针对训练1(2021,邯郸一模) 用配方法解一元二次方程2x 2-4x -2=1的过程中,变形正确的是(C)A. 2(x -1)2=1B. 2(x -2)2=5C. (x -1)2=52D. (x -2)2=52 【解析】 2x 2-4x -2=1,2x 2-4x =3,x 2-2x =32,x 2-2x +1=32+1,(x -1)2=52.也可以把各选项中的方程展开化为一般形式,和题干中的方程做对比.一元二次方程根的判别式例2 (2021,扬州)如果关于x 的方程mx 2-2x +3=0有两个不相等的实数根,那么m 的取值范围是( m <13且m ≠0 ). 【解析】 ∵方程有两个不相等的实数根,∴4-12m >0.解得m <13.但当m =0时,原方程不是一元二次方程,所以m ≠0.针对训练2(2021,石家庄桥西区一模)常数a ,b ,c 在数轴上的位置如图所示,则关于x 的一元二次方程ax 2+bx +c =0根的情况是(B)训练2题图A. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 无法确定【解析】 从数轴上可知,a ,c 异号,则b 2-4ac >0,所以方程有两个不相等的实数根. 针对训练3 (2021,张家口桥东区模拟)若关于x 的一元二次方程34x 2+3x +tan α=0有两个相等的实数根,则锐角α等于(D)A. 15°B. 30°C. 45°D. 60°【解析】 ∵方程有两个相等的实数根,∴Δ=(3)2-4×34×tan α=0.解得tan α= 3.∴α=60°.一元二次方程的实际应用例3 (2021,宜昌,导学号5892921)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理.若江水污染指数记为Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q 值都以平均值n 计算,第一年有40家工厂用乙方案治理,共使Q 值降低了12.经过三年治理,境内长江水质明显改善.(1)求n 的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家,求m 的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q 值比上一年都增加一个相同的数值a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q 值与当年用甲方案治理降低的Q 值相等.第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值.【思路分析】 (1)平均数×数量=总数.(2)按相同增长率,第一年40家,第二年40(1+m )家,第三年40(1+m )2家,三年总和等于190家列方程求解即可.(3)先求出第二年用甲方案治理降低的Q 值,再根据第三年用甲方案使Q 值降低了39.5,列方程组求解即可.解:(1)∵40n =12,∴n =0.3.(2)根据题意,得40+40(1+m )+40(1+m )2=190.解得m 1=12,m 2=-72(舍去). ∴m =50%.∴第二年用乙方案新治理的工厂数量为40(1+m )=40×(1+50%)=60(家).(3)设第一年用甲方案治理降低的Q 值为x .第二年Q 值用乙方案治理降低了100n =100×0.3=30.根据题意,得⎩⎪⎨⎪⎧x +a =30,x +2a =39.5. 解得⎩⎪⎨⎪⎧x =20.5,a =9.5.针对训练4(2021,白银)如图,某小区计划在一块长为32 m 、宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是(A)训练4题图A. (32-2x )(20-x )=570B. 32x +2×20x =32×20-570C. (32-x )(20-x )=32×20-570D. 32x +2×20x -2x 2=570【解析】 设道路的宽为x m .根据题意,得(32-2x )(20-x )=570.针对训练5 (2021,眉山)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕产品每件利润为14元,此批次蛋糕产品属第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?【思路分析】 (1)利润增加的量除以2即为档次提高的量.(2)设生产的是第x 档次产品,则相应的产量是76-4(x -1),每件利润是10+2(x -1);等量关系是:每件利润×产量=总利润.解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕产品属第三档次产品.(2)设该烘焙店生产的是第x 档次的产品.根据题意,得[76-4(x -1)][10+2(x -1)]=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.一、 选择题1. 已知关于x 的方程x 2-mx +3=0的一个解为x =-1,则m 的值为(A)A. -4B. 4C. -2D. 2【解析】 把x =-1代入原方程,得m =-4.2. (2021,石家庄28中质检)若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为(B)A. -6B. 6C. 18D. 30【解析】 已知条件转化为x 2+4x =4,原式=-3x 2-12x +18=-3(x 2+4x )+18=6.3. (2021,石家庄40中二模)用配方法解方程x 2+x -1=0,配方后所得方程是(C)A. ⎝⎛⎭⎫x -122=34B. ⎝⎛⎭⎫x +122=34C. ⎝⎛⎭⎫x +122=54D. ⎝⎛⎭⎫x -122=54 【解析】 配方过程x 2+x =1,x 2+x +⎝⎛⎭⎫122=1+⎝⎛⎭⎫122,⎝⎛⎭⎫x +122=54. 4. (2021,唐山路南区一模)已知关于x 的方程x 2+mx -1=0的根的判别式的值为5,则m 的值为(D)A. ±3B. 3C. 1D. ±1【解析】 根据题意,得Δ=m 2+4=5.解得m =±1.5. (2021,唐山丰南区一模)现定义运算“★”,对于任意实数a ,b ,都有a ★b =a 2-a ·b +b .如:3★5=32-3×5+5.若x ★2=10,则实数x 的值为(C)A. -4或-1B. 4或-1C. 4或-2D. -4或2【解析】 根据题意,得x ★2=x 2-2x +2.∴x 2-2x +2=10.解得x 1=4,x 2=-2.6. (2021,唐山路南区二模)下列方程中,没有实数根的是(D)A. x 2-2x =0B. x 2-2x -1=0C. x 2-2x +1=0D. x 2-2x +2=0【解析】 选项A ,Δ=4>0;选项B ,Δ=8>0;选项C ,Δ=0;选项D ,Δ=-4<0.7. (2021,娄底)关于x 的一元二次方程x 2-(k +3)x +k =0的根的情况是(A)A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定【解析】 ∵Δ=[]-(k +3)2-4k =k 2+2k +9=(k +1)2+8>0,∴方程有两个不相等的实数根.8. (2021,定西)关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是(C)A. k ≤-4B. k <-4C. k ≤4D. k <4 【解析】 因为方程有实数根,所以Δ=16-4k ≥0.解得k ≤4.9. (2021,桂林)已知关于x 的一元二次方程2x 2-kx +3=0有两个相等的实数根,则k 的值为(A)A. ±2 6B. ± 6C. 2或3D. 2或 3【解析】 因为方程有两个相等的实数根,所以Δ=k 2-24=0.解得k =±2 6.10. (2021,秦皇岛海港区模拟)某城市2021年底已有绿化面积300 hm 2,经过两年绿化,绿化面积逐年增加,到2021年底已达到363 hm 2.设绿化面积的年平均增长率为x .根据题意,所列方程正确的是(B)A. 300(1+x )=363B. 300(1+x )2=363C. 300(1+2x )=363D. 363(1-x )2=300【解析】 2021年底的绿化面积是300(1+x ) hm 2,2021年底的绿化面积是300(1+x )2 hm 2,可得方程.11. (2021,绵阳)在一次酒会上,每两人都只碰一次杯.若一共碰杯55次,则参加酒会的有(C)A. 9人B. 10人C. 11人D. 12人【解析】 设参加酒会的有x 人,则每人碰杯(x -1)次.因为每两人都只碰一次杯,所以共碰杯x (x -1)2次,得方程x (x -1)2=55,取正根x =11. 二、 填空题12. (2021,淮安)一元二次方程x 2-x =0的根是 x 1=0,x 2=1 .【解析】 x (x -1)=0,得x 1=0,x 2=1.13. (2021,秦皇岛海港区模拟)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为 1 .【解析】 把x =1代入方程,得m +n =-1,则m 2+2mn +n 2=(m +n )2=1.14. (2021,南充)若2n (n ≠0)是关于x 的方程x 2-2mx +2n =0的根,则m -n 的值为( 12). 【解析】 把x =2n 代入方程,得(2n )2-2m ·2n +2n =0, 变形为2n (2n -2m +1)=0,∵2n ≠0,∴2n -2m +1=0.∴m -n =12. 15. (2021,邵阳)已知关于x 的方程x 2 +3x -m =0的一个解为x =-3,则它的另一个解是 x =0 .【解析】 把x =-3代入方程解得m =0,则原方程为x 2 +3x =0,可求出另一个解是x =0.16. (2021,唐山丰南区一模)若关于x 的方程x 2-6x +c =0有两个相等的实数根,则c 的值为 9 .【解析】 因为方程有两个相等的实数根,所以Δ=36-4c =0.解得c =9.17. (2021,威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实数根,则m 的最大整数值是 4 .【解析】 因为方程有实数根, 所以Δ=4-8(m -5)≥0.解得 m ≤112.又因为m ≠5,所以m 的最大整数值是4.三、 解答题18. 解下列方程:(1)x 2-3x +1=0;(2)x 2-2x =6-3x ;(3)(2x +3)2=8.【思路分析】 针对各个方程的特点,选择适当的解法.(1)用公式法.(2)用因式分解法.(3)用直接开平方法.解:(1)这里a =1,b =-3,c =1.∵b 2-4ac =(-3)2-4×1×1=5>0,∴x =3±52,即x 1=3+52,x 2=3-52. (2)原方程可化为x (x -2)=-3(x -2).移项,因式分解,得(x -2)(x +3)=0.于是,得x -2=0或x +3=0.x 1=2,x 2=-3. (3)2x +3=±22,2x =±22-3,x 1=-3+222,x 2=-3-222. 19. (2021,北京)关于x 的一元二次方程ax 2+bx +1=0.(1)当b =a +2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【思路分析】 (1)把b =a +2代入根的判别式,判断出正负即可.(2)由Δ=0得出a ,b 之间的关系,任取一组符合条件的值,再解方程.解:(1)Δ=b 2-4a =(a +2)2-4a =a 2+4>0,所以方程有两个不相等的实数根.(2)∵方程有两个相等的实数根,∴Δ=b 2-4a =0.令b =2,a =1,此时方程为x 2+2x +1=0,∴x 1=x 2=-1.20. 【发现思考】已知等腰三角形ABC 的两边长分别是方程x 2-7x +10=0的两个根,求等腰三角形ABC 三条边的长各是多少?如图所示的是涵涵的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.【探究应用】请解答以下问题:已知等腰三角形ABC 的两边长是关于x 的方程x 2-mx +m 2-14=0的两个实数根. (1)当m =2时,求等腰三角形ABC 的周长;(2)当△ABC 为等边三角形时,求m 的值.涵涵的作业解:x 2-7x +10=0.a =1,b =-7,c =10.∵b 2-4ac =9>0,∴x =-b ±b 2-4ac 2a =7±32. ∴x 1=5,x 2=2.∴当腰为5,底为2时,等腰三角形的三条边长分别为5,5,2.当腰为2,底为5时,等腰三角形的三条边长分别为2,2,5.【思路分析】 一要检查解方程的过程和结果,二要考虑方程的解是三角形的边,需满足任意两边之和大于第三边.解:【发现思考】错误之处:当腰为2,底为5时,等腰三角形的三条边长分别为2,2,5.错误原因:此时不能构成三角形(或不符合三角形的三边关系).【探究应用】(1)当m =2时,方程为x 2-2x +34=0. 解得x 1=12,x 2=32. 当12为腰时,因为12+12<32,所以不能构成三角形. 当32为腰时,等腰三角形的三边长分别为32,32,12.此时周长为32+32+12=72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根.∴Δ=m 2-4⎝⎛⎭⎫m 2-14=m 2-2m +1=0.∴m 1=m 2=1,即m 的值为1.21. (2021,盐城)一商店销售某种商品,平均每天可售出20件,每件赢利40元.为了扩大销售、增加赢利,该店采取了降价措施,在每件赢利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天可售出 26 件;(2)当每件商品降价多少元时,该商店每天的销售利润为1 200元?【思路分析】 (1)20+3×2=26.(2)设降价x 元,则销量为(20+2x )件,每件赢利(40-x )元.等量关系是每件赢利×销量=总赢利.最后要选择符合条件的解.解:(1)26(2)设每件商品降价x 元时,该商店每天的销售利润为1 200元,则平均每天售出(20+2x )件,每件赢利(40-x )元,且40-x ≥25,即x ≤15.根据题意,得(40-x )(20+2x )=1 200.整理,得x 2-30x +200=0.解得x 1=10,x 2=20(舍去).答:当每件商品降价10元时,该商店每天的销售利润为1 200元.22. (2021,德州)为积极响应新旧动能转换,提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备的成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 之间的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元.如果该公司想获得10 000万元的年利润,那么该设备的销售单价应定为多少万元?【思路分析】 (1)用待定系数法求一次函数关系式.(2)等量关系是:每台利润×销量=总利润.根据条件决定方程的根的取舍.解:(1)设年销售量y 与销售单价x 之间的函数关系式为y =kx +b (k ≠0).将(40,600),(45,550)代入y =kx +b ,得⎩⎪⎨⎪⎧40k +b =600,45k +b =550. 解得⎩⎪⎨⎪⎧k =-10,b =1 000. ∴年销售量y 与销售单价x 之间的函数关系式为y =-10x +1 000.(2)设该设备的销售单价应定为x 万元,则每台设备的利润为(x -30)万元,销售量为(-10x +1 000)台.根据题意,得(x -30)(-10x +1 000)=10 000.整理,得x 2-130x +4 000=0.解得x 1=50,x 2=80.∵此设备的销售单价不得高于70万元,∴x =50.答:该设备的销售单价应定为50万元.1. (2021,福建A ,导学号5892921)已知一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则下列判断正确的是(D)A. 1一定不是关于x 的方程x 2+bx +a =0的根B. 0一定不是关于x 的方程x 2+bx +a =0的根C. 1和-1都是关于x 的方程x 2+bx +a =0的根D. 1和-1不都是关于x 的方程x 2+bx +a =0的根【解析】 方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则有(2b )2-4(a +1)2=0,且a +1≠0.解得b =a +1或b =-(a +1),且a +1≠0.若b =a +1,则-1是方程x 2+bx +a =0的根;若b =-(a +1),则1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠-(a +1).故1和-1不会同时是方程x 2+bx +a =0的根.2. (2021,舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a 2.则该方程的一个正根是(B) 第2题图 A. AC 的长B. AD 的长C. BC 的长D. CD 的长【解析】 用配方法解方程x 2+ax =b 2,易得正根x =b 2+a 24-a 2.据勾股定理知AB =b 2+a 24.∵AD =AB -BD =b 2+a 24-a 2,∴AD 的长是方程的正根. 3. (2021,河北,导学号5892921)对于实数p ,q ,我们用符号min{p ,q }表示p ,q 两数中较小的数,如min{1,2}=1.因此,min{-2,-3}= -3 ;若min{(x -1)2,x 2}=1,则x = 2或-1 .【解析】 min{-2,-3}=- 3.∵min{(x -1)2,x 2}=1,∴当(x -1)2<x 2时,(x -1)2=1.解得x 1=2,x 2=0(不合题意,舍去).当(x -1)2≥x 2时,x 2=1.解得x 1=1(不合题意,舍去),x 2=-1.4. (2021,内江B ,导学号5892921)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为 1 .【解析】 把(x +1)看作一个整体,据已知条件可得x +1=1或x +1=2,所以x 1=0,x 2=1.所以和为1.。

2024年中考数学一轮复习考点07 一元二次方程(精讲)(解析版)31

2024年中考数学一轮复习考点07 一元二次方程(精讲)(解析版)31

考点07.一元二次方程(精讲)【命题趋势】一元二次方程以考查一元二次方程的相关概念、解一元二次方程、根的判别式、韦达定理(根与系数的关系)、一元二次方程的应用题为主,既有单独考查,也有和二次函数结合考察最值问题,年年考查,分值为15分左右。

预计2024年各地中考还将继续考查,复习过程中要多注意各基础考点的巩固,特别是解法中公式法的公式,不要和后续二次函数顶点坐标的纵坐标公式记混了。

【知识清单】1:一元二次方程的相关概念(☆☆)1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。

2)一般形式:2(0)0ax bx c a ++=≠,其中:a 是二次项系数,b 是一次项系数,c 是常数项。

3)一元二次方程的解:使一元二次方程左右两边相等的未知数的值,就是该一元二次方程的解。

2:一元二次方程的解法(☆☆☆)1)直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程。

2)配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程。

3)因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=。

4)公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入2b x a-±=即可。

5)根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式。

6)一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根。

2021年一元二次方程复习教案

2021年一元二次方程复习教案

2021年一元二次方程复习教案2021年一元二次方程复习教案11、复习一元二次方程,一元二次方程的解的概念;2、复习4种方法解简单的一元二次方程;3、会建立一元二次方程的模型解决简单的实际问题。

[学习过程]一、回顾知识点1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。

2、一元二次方程的一般形式是_______________________________。

3、一元二次方程的解法有____________、____________、____________、____________。

4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。

①当△0时,方程有__________;②当△=0时,方程有__________;③当△0时,方程有__________。

5. 一元二次方程的两根为,则两根与方程系数之间有如下关系:二巩固练习二、填空题:1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。

2、已知x=1是一元二次方程x2-2mx+1=0的一个解,则m=______。

3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。

4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。

5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。

6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。

7、解方程5(x- )2=2(x- )最适当的方法是_____________。

二、填空题:(每题3分,共24分)8.一元二次方程的二次项系数为,一次项系数为,常数项为 ;9. 方程的解为10.已知关于x一元二次方程有一个根为1,则11.当代数式的值等于7时,代数式的值是 ;12.关于实数根(注:填“有”或“没有”)。

初中一元二次方程教案模板

初中一元二次方程教案模板

初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。

2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。

3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。

二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。

2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。

2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。

3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。

4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。

5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。

6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。

四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。

2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。

3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。

4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。

2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。

3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。

4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。

六、教学资源:1. 教材:一元二次方程相关章节的内容。

2. 课件:教师制作的课件,包括图片、文字和动画等。

初中复习方略数学第七讲 一元二次方程

初中复习方略数学第七讲 一元二次方程

1.一元二次方程二次项系数不为 0. 2.找各项系数时,要将方程化为一般形式,并注意每项的符号.
解一元二次方程
解法
形式
直接
x2=p(p≥0)或(mx+n)2=
开平方法
p(p≥0,m≠0)Fra bibliotek配方法
(x-m)2=n(n≥0)
公式法
ax2+bx+c=0(a≠0,b2- 4ac≥0)
因式分解法
(x-x1)(x-x2)=0
D.有两个不相等的实数根
2.(2021·广安中考)关于 x 的一元二次方程(a+2)x2-3x+1=0 有实数根,
则 a 的取值范围是( A )
A.a≤14 且 a≠-2
B.a≤41
C.a<14 且 a≠-2
D.a<41
3.(2021·济宁中考)已知 m,n 是一元二次方程 x2+x-2 021=0 的两个实数根,
【例题变式】某超市经销一种商品,每千克成本为 50 元,经试销发现,该种商品的
每天销售量 y(千克)与销售单价 x(元/千克)满足一次函数关系,其每天销售单价,销
售量的四组对应值如下表所示:
销售单价 x(元/千克)
55 60 65 70
销售量 y(千克)
70 60 50 40
(1)求 y(千克)与 x(元/千克)之间的函数表达式.
第七讲 一元二次方程
知识清单·熟掌握
一元二次方程的有关概念 1.定义的三要素: (1)只含有___一___个未知数. (2)所含未知数的最高次数是___2___ . (3)必须是__整__式__方程. 2.一般形式:y= __a_x_2_+__b_x_+__c_(a,b,c是常数,a≠0),a为二次项系数, b为一次项系数,c为常数项. 3.一元二次方程的解(根):使一元二次方程左右两边_相__等___的未知数的值.

初中数学试讲教案《一元二次方程复习》

初中数学试讲教案《一元二次方程复习》

初中数学试讲教案《一元二次方程复习》只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

下面,小编为大家分享初中数学试讲教案《一元二次方程复习》,希望对大家有所帮助!试讲人:XXX知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!1、自我介绍:30s大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!2、一元二次方程概念、系数、根的判别式:8min30s我们今天的课堂内容是复习一元二次方程。

首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:(1)x -10x+9=0 是 1 -10 9(2)x +2=0 是 1 0 2(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)(4)3x -5x=3x 不是整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的`一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!一元:只含一个未知数二次:含未知数项的最高次数为2方程:一个等式一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。

记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。

2015年陕西省中考数学总复习课件:第7讲 一元二次方程

2015年陕西省中考数学总复习课件:第7讲 一元二次方程

项.
要点梳理 2.解法 首先考虑 次考虑 3.公式: 一元二次方程ax2+bx+c=0(a≠0)的求根公式:
-b± b2-4ac 2 x= (b -4ac≥0) 2a
直接开平方法 配方法
,因式分解法;其 , 公式法 .

要点梳理
4.一元二次方程的根的判别式
对于一元二次方程ax2+bx+c=0(a≠0): (1)b2-4ac>0⇔方程有两个 不相等 的实数根; (2)b2-4ac=0⇔方程有两个 相等 的实数根;
-8± 104 (y+3)(1-3y)=1+2y ,y-3y +3-9y=1+2y ,∴5y +8y-2=0,y= 2×5
2 2 2 2
-4± 26 -4+ 26 -4- 26 = ,∴y1= ,y2= 5 5 5
(4)(3x+5)2-5(3x+5)+4=0;
(3x+5)2-5(3x+5)+4=0,(3x+5-1)(3x+5-4)=0, (3x+4)(3x+1)=0,3x+4=0 或 3x+1=0, 4 1 ∴x1=- ,x2=- 3 3
(3)b2-4ac<0⇔方程
没有
实数根.
要点梳理 5.一元二次方程的根与系数的关系
若一元二次方程ax2+bx+c=0(a≠0)的两根分别为
b x1,x2,则有x1+x2= -a c ,x1x2= a

转化思想 一元二次方程的解法——直接开平方法、配方法、公 式法、因式分解法,都是运用了“转化”的思想, 把待解决的问题(一元二次方程),通过转化、归结为 已解决的问题(一元一次方程),也就是不断地把“未 知”转化为“已知”.
D.(x-2)(x-3)=12
【点评】
对于一元二次方程ax2+bx+c=0(a≠0)的根

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律. (2)体积变化问题关键是寻找其中的不变量作为等量关系. (3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键. (4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程. (5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇. (6)和、差、倍、分问题 增长量=原有量×增长率; 现有量=原有量+增长量; 现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意. 【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x += 【思路点拨】把二次项系数化为1,常数项右移,方程两边都加上一次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】移项,得2231x x -=-二次项系数化为1,得23122x x -=- 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 由此可得3144x -=± 11x =,212x =【总结升华】用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程 无实数解.举一反三:【变式】用配方法解方程x 2-7x-1=0. 【答案】将方程变形为x 2-7x=1,两边加一次项系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为 x=7+532或x=7-532.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(m+2)2﹣8m =m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0, ∴△≥0,∴方程总有实数根; (2)解:解方程得,x=,x 1=2m,x 2=1, ∵方程有两个不相等的正整数根, ∴m=1或2,∵m=2不合题意, ∴m=1.【总结升华】(1)注意隐含条件m ≠0;(2)注意整数根的限制条件的应用,求出m 的值,要验证m 的值是否符合题意.举一反三:【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】(1)证明:因为△=)12(4)2(2--+m m =4)2(2+-m所以无论m 取何值时, △>0,所以方程有两个不相等的实数根. (2)解:因为方程的两根互为相反数,所以021=+x x ,根据方程的根与系数的关系得02=+m ,解得2-=m ,所以原方程可化为052=-x ,解得51=x ,52-=x .类型二、分式方程3.解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1) x+1=2x-5, 解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6.【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:【变式1】解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得22(3)1x x -+-=. 2261x x -+-=. 5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.【变式2】方程22123=-+--xx x 的解是x= . 【答案】0x =.4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A.B.C.D.【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值. 【答案】D ;【解析】由题意得增根是:化简原方程为:把代入解得2m =-或1,故选择D.【总结升华】分式方程产生的增根,是使分母为零的未知数的值. 举一反三:【变式】若关于x 的方程2332+-=--x mx x 无解,则m 的值是 . 【答案】1.类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【思路点拨】在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系. 【答案与解析】设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】流水问题公式:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度; 静水速度=(顺流速度+逆流速度)÷2;水流速度=(顺流速度-逆流速度)÷2.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树, 由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x ,那么两个月后的销售价格为625(1-20%)(1+6%),两个月后的成本价为500(1-x )2,然后根据已知条件即可列出方程,解方程即可求出结果. 【答案与解析】设该产品的成本价平均每月应降低的百分数为x . 625(1-20%)(1+6%)-500(1-x )2=625-500 整理,得500(1-x )2=405,(1-x )2=0.81. 1-x=±0.9,x=1±0.9, x 1=1.9(舍去),x 2=0.1=10%.答:该产品的成本价平均每月应降低10%. 【总结升华】题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1 B .k≥﹣1 C .k≠0 D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. B. C. D.二、填空题 7.方程﹣=0的解是 .8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根, (1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么? 【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D . 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲一元二次方程
陕西《中考
说明》
陕西2012~
2014年中考
试题分析
考点归纳考试要求年份题型题号分值考查内容分值比重
一元二次方
程及其解法
理解配方
法,会用因
式分解法、
公式法、配
方法解简单
的数字(有
理数)系数
的一元二次
方程
2014 选择题8 3
一元二次方
程的解的定

2013 填空题12 3
一元二次方
程的解法
1.7%
由表格呈现内容可看出陕西历年中考对一元二次方程的考查主要是一元二次方程解的意义及解一元二次方程,如2014年第8题考查了一元二次方程解的意义,2013年第12题考查了解一元二次方程,题型主要以选择题和填空题为主,分值为3分,设题较为简单,预计在2015年的中考中,一元二次方程解的意义及其解法仍是本节考查的重点内容,题型为选择或填空,分值为3分,难度不大.
1.定义
只含有__一个未知数__,并且未知数的最高次数是__2__,这样的整式方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a,b,c是已知数,a≠0),其中a,b,c分别叫做二次项系数、一次项系数和常数项.
2.解法
首先考虑__直接开平方法__,__因式分解法__;其次考虑__配方法__,__公式法__.3.公式:
一元二次方程ax2+bx+c=0(a≠0)的求根公式:
__x=
-b±b2-4ac
2a
(b2-4ac≥0)__.
4.一元二次方程的根的判别式
对于一元二次方程ax2+bx+c=0(a≠0):
(1)b2-4ac>0⇔方程有两个__不相等__的实数根;
(2)b2-4ac=0⇔方程有两个__相等__的实数根;
(3)b2-4ac<0⇔方程__没有__实数根.
5.一元二次方程的根与系数的关系
若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=__-
b
a
__,x1x2=__
c
a
__.
转化思想
一元二次方程的解法——直接开平方法、配方法、公式
法、因式分解法,都是运用了“转化”的思想,把待解决的问题(一元二次方程),通过转化、归结为已解决的问题(一元一次方程),也就是不断地把“未知”转化为“已知”.
一个注意
注意:(1)根的判别式“b 2
-4ac”只有在确认方程为一元二次方程时才能使用;(2)使
用时,必须将一元二次方程转化为一般式ax 2
+bx +c =0,以便确定a ,b ,c 的值.
一个防范
正确理解“方程有实根”的含义.若有一个实数根则原方程为一元一次方程;若有两个实数根则原方程为一元二次方程.在解题时,要特别注意“方程有实数根”“有两个实数根”等关键文字,挖掘出它们的隐含条件,以免陷入关键字的“陷阱”.
1.(2014·陕西)若x =-2是关于x 的一元二次方程x 2-52
ax +a 2
=0的一个根,则a
的值为( B )
A .1或4
B .-1或-4
C .-1或4
D .1或-4
2.(2013·陕西)一元二次方程x 2
-3x =0的根是__x 1=0,x 2=3__.
一元二次方程的解法
【例1】 解下列方程:
(1)x 2
-2x =0;
(2)(2014·徐州)x 2
+4x -1=0;
(3)(1997-x)2+(x -1996)2
=1.
解:x 2
-2x =0,x(x -2)=0,∴x 1=0,x 2=2
(2)原式可化为(x 2+4x +4-4)-1=0,即(x +2)2
=5,两边开方,得x +2=±5,解
得x 1=-2+5,x 2=-2- 5 (3)解法一:(1997-x)2+(x -1996)2-1=0,(1997-x)2
+(x -1997)(x -1995)=0,(x -1997)[(x -1997)+(x -1995)]=0,2(x -1997)(x -1996)=0,x 1=1997,x 2=1996
解法二:因为(1997-x)2+(x -1996)2=[(1997-x)+(x -1996)]2
-2(1997-x)(x -1996),所以原方程可化为1-2(1997-x)(x -1996)=1,2(1997-x)(x -1996)=0,x 1=1997,x 2=1996
【点评】 解一元二次方程要根据方程的特点选择合适的方法解题,但一般顺序为:直接开平方法→因式分解法→公式法.
1.用指定的方法解下列方程:
(1)(2x -1)2
=9;(直接开平方法)
(2)x 2
+3x -4=0;(配方法)
(3)x 2
-2x -8=0;(因式分解法) (4)x(x +1)+2(x -1)=0.(公式法)
解:(1)(2x -1)2=9,2x -1=±3,∴x =1±32
,x 1=2,x 2=-1 (2)x 2
+3x -4=0,(x
+32)2=254,x +32=±52,∴x 1=1,x 2=-4 (3)x 2
-2x -8=0,(x -4)(x +2)=0,x 1=4,x 2=-2 (4)x(x +1)+2(x -1)=0,x 2
+3x -2=0,x =-3±172×1,∴x 1=-3-172,x 2=
-3+17
2
一元二次方程根的判别式
【例2】 (2014·深圳)下列方程没有实数根的是( C ) A .x 2+4x =10 B .3x 2+8x -3=0 C .x 2-2x +3=0 D .(x -2)(x -3)=12
【点评】 对于一元二次方程ax 2
+bx +c =0(a≠0)的根的情况的描述,必须借助根的判别式,Δ≥0方程有两个实数根,Δ>0方程有两个不相等的实数根,Δ=0方程有两个相等的实数根,Δ<0方程没有实数根,反之亦然.
2.(1)(2014·内江)若关于x 的一元二次方程(k -1)x 2
+2x -2=0有两个不相等实数根,则k 的取值范围是( C )
A .k >12
B .k ≥12
C .k >12且k≠1
D .k ≥1
2
且k≠1
(2)(2014·十堰)已知关于x 的一元二次方程x 2+2(m +1)x +m 2
-1=0. ①若方程有实数根,求实数m 的取值范围;
②若方程两实数根分别为x 1,x 2,且满足(x 1-x 2)2
=16-x 1x 2,求实数m 的值.
解:①由题意有Δ=[2(m +1)]2-4(m 2
-1)≥0,整理得8m +8≥0,解得m≥-1,∴实数m 的取值范围是m ≥-1
②由两根关系,得x 1+x 2=-2(m +1),x 1·x 2=m 2-1,(x 1-x 2)2=16-x 1x 2,(x 1+x 2)
2
-3x 1x 2-16=0,∴[-2(m +1)]2-3(m 2-1)-16=0,∴m 2
+8m -9=0,解得m =-9或m =1.∵m≥-1,∴m =1
试题
(1)解方程:3x(x +2)=5(x +2);
(2)解方程:9x 2
+6x +1=9;
(3)解方程:x 2
-2x +1=0. 错解
(1)解:3x(x +2)=5(x +2),
两边同时除以(x +2),得3x =5,∴x =5
3
.
(2)解:9x 2
+6x +1=9,
左边因式分解,得(3x +1)2
=9,
两边开平方,得3x +1=3,∴x =2
3
.
(3)解:x 2
-2x +1=0,
配方,得(x -1)2
=0,
两边开平方,得x -1=0,∴x =1. 剖析
(1)解方程3x(x +2)=5(x +2)时,方程两边同时除以含x 的代数式破坏了方程的同解
性,遗失了一个根x =-2;解方程9x 2
+6x +1=9,在开平方时,由于只取了一个算术平方
根,这样就把未知数的取值范围缩小了,遗失了一个根;解方程x 2
-2x +1=0时,解得的结果应写成x 1=x 2=1.
(2)一元二次方程ax 2+bx +c =0(a≠0)根的判别式表明,在Δ=b 2
-4ac≥0时,有两个实数根,即Δ>0时有两个不相等的实数根,Δ=0时有两个相等的实数根.但在解题过程中,往往出现只有一个根的现象,这就表明遗失了一个根.
(3)规范解答,理解一元二次方程的解法:直接开平方法、配方法、因式分解法、求根公式法的规范步骤,才能避免失根.
正解
(1)解:3x(x +2)=5(x +2),
3x(x +2)-5(x +2)=0, (x +2)(3x -5)=0, ∴x +2=0或3x -5=0,
∴x 1=-2,x 2=5
3.
(2)解:9x 2
+6x +1=9,
左边因式分解,得(3x +1)2
=9, 两边开平方,得3x +1=±3, 即3x +1=3或3x +1=-3,
∴x 1=23,x 2=-43.
(3)解:x 2
-2x +1=0,
配方,得(x -1)2
=0, 两边开平方,得x -1=0. ∴x 1=x 2=1.。

相关文档
最新文档