露天装药量计算及最大安全距离计算

合集下载

平朔安家岭露天矿东部境界优化

平朔安家岭露天矿东部境界优化

平朔安家岭露天矿东部境界优化武建波;武懋;赵天佑【摘要】根据安家岭露天矿东部境界的现实情况,对东部地表境界进行多方案对比分析,得出最优的东部靠界边界,对安全爆破位置进行合理划分,对靠界边坡进行优化设计提高了边坡的稳定性,研究保证了安家岭露天矿东部靠界安全可靠、技术可行、经济合理.【期刊名称】《露天采矿技术》【年(卷),期】2018(033)005【总页数】4页(P10-13)【关键词】露天矿;境界;控制爆破;弧形凹端帮;优化【作者】武建波;武懋;赵天佑【作者单位】中煤平朔集团有限公司,山西朔州 036006;中煤平朔集团有限公司生产技术管理中心,山西朔州 036006;中煤平朔集团有限公司生产技术管理中心,山西朔州 036006【正文语种】中文【中图分类】TD824.50 概况平朔安家岭露天煤矿位于宁武煤田北端,地跨朔州市平鲁、朔城两区,行政隶属朔州市平鲁区管辖。

该矿是我国自行设计、自主建设的平朔矿区第二座大型露天煤矿,设计生产能力15.0 Mt/a,核定生产能力20.0 Mt/a。

矿建工程于1997年10月1日开工建设,2001年7月1日主体工程基本建成,进行联合试运转,2003年7月1日全面进行试生产,2004年达产。

2007年进行改扩建,矿界东西长5.1~7.77 km,南北宽1.39~4.87 km,地表境界面积30.33 km2,东边界最宽,西边界最窄。

安家岭露天煤矿采用单斗-卡车综合开采工艺。

上部黄土层外包剥离,岩石剥离自营采用单斗-卡车开采工艺,采煤采用单斗-卡车-地表半固定破碎站-带式输送机半连续工艺。

主要开采4#煤、9#煤、11#煤3个煤层,煤层埋藏深度为170~247 m,煤层厚度变化不大、赋存稳定,煤层平均厚度4#煤10.4 m,9#煤16.3 m,11#煤4.1 m,开采煤层总平均厚度近30.8 m。

现矿坑生产能力10万t/m。

正常采掘带宽度40 m,内排土场最下台阶坡底线与11#煤工作面坡底线最小安全距离50 m,排土工作线跟进采煤工作线。

露天爆破设计题参考示例

露天爆破设计题参考示例

露天爆破设计题参考示例设计题一某露天剥离工程,爆破岩石为泥岩和泥砂岩互层,岩石普氏系数f =4~5,台阶高度为12m,炮孔直径120mm,垂直梅花形布孔,采用散装铵油炸药,导爆管毫秒雷管起爆。

工程总方量为130万m³,工期一年。

爆区距离居民区300m。

设计要求:做出可实施的爆破技术设计,设计内容应包括(但不限于):爆破方案选择、爆破参数设计、药量计算、起爆网路设计、爆破安全设计计算、安全防护措施等、及相应的设计图和计算表。

一、设计依据1、中华人民共和国安全生产法2、民用爆炸物品安全管理条例3、爆破安全规程GB6722-20144、本工程设计及现场勘查资料5、本工程中标通知书6、本爆破工程合同二、工程概况爆破岩石为泥岩和泥砂岩互层,岩石普氏系数f =4~5,爆区距离居民区300m。

工程总方量为130万m³,工期一年。

三、爆破方案采用深孔台阶爆破,取台阶高度为12m,钻孔直径120mm,垂直钻孔。

炸药为多孔粒状铵油炸药,以乳化炸药作为起爆药卷,采用导爆管毫秒雷管起爆网路。

考虑爆区离民宅最近距离约300m,(若为矿山开采则加入以下内容:矿山开采量大,开采年限长),爆破频次高,为保证居民的生活稳定和爆破工程的顺利实施,爆破采用毫秒延时起爆技术,最小抵抗线避开被保护物方向,严格控制段发药量,以减小爆破振动对居民的影响。

四、爆破参数设计与计算(以下参数计算中,因各参数有多种取值计算方法,而本孔径为120mm,在深孔爆破中算是较小的,建议均按孔径的倍数进行计算取值)1、台阶高度:H=12m;2、钻孔直径:d=120mm,钻孔方向:垂直;3、底盘抵抗线:W1=kd,取k=35,W1=4.2m;4、超深:h=(8~12)d=1.2m;5、孔深:L=12+1.2=13.2m;6、填塞长度:L2=(25~40)d=4.2m;(可以取与底盘抵抗线同样的值)7、装药长度L1=13.2-4.2=9m;8、单孔装药量为Q=14πd2L1∆=14π×1.22×90×1=101.7kg(注:式中孔径和孔深均将单位统一到分米dm,密度∆取1kg/dm3)9、单耗:根据岩石普氏系数f =4~5,又属于露天剥离工程,取q=0.35kg/m3(若为金属矿石开采爆破,则可高一些,如0.4~0.45);10、采用散装铵油炸药,耦合、连续装药结构,见装药结构图:导爆管雷管MS9炸药11、单孔负担面积为S =Q qH=101.70.35×12=24.22m 212、排距:b=W 1=4.2m ; 13、孔距:a=S/b=24.22/4.2=5.7m14、每孔爆破方量:V=abH=5.7×4.2×12=287m 3 15、爆破规模按每年施工250天计算,两天放炮一次。

露天爆破设计

露天爆破设计

作业:冬季煤台阶爆破设计已知条件:1、岩性:褐煤f=32、台阶:H=8m a=70o C=3m 孔径D=220mm3、炸药单耗:铉油炸药k=247g/m3。

孔内装药密度,硝铉类800g/m34、采用导爆索传,孔内起爆药柱起爆,排问微差爆破,孔内反向起爆。

5、台阶长度160余米,宽20米。

要求:1、若采用三排装药,设计有关参数2、绘制工程示意图(孔位、组网、表明第一孔位规格)3、编制本次作业规程及质量验收单(含工序图)。

露天矿爆破任务1、爆破参数设计:台阶爆破参数包括孔径D、孔深L、底盘抵抗线W1、排距b、孔距a、超深h、台阶高度H、坡顶线至前排孔口的距离C、炸药单耗k等。

为达到良好的爆破效果,必须合理上述各参数。

1.1孔网参数1.1.1底盘抵抗线W1台阶坡面往往是斜面,垂直深孔存在两种抵抗线,即底盘抵抗线W1、最小抵抗线W。

底盘抵抗线是影响台阶爆破效果的重要参数之一。

底盘抵抗线过大,根底多,大块率多,后冲作用大,影响爆破效果。

其过小浪费炸药,增大钻孔工程量,而且飞石严重,安全性差。

为了克服爆炸时的最大阻力,避免台阶底部出现根底,应采用底盘抵抗线作为爆破参数设计的依据。

(1) 按炮孔直径计算:W I=(20~50)D=30 220=6.6m(2) 根据体积公式计算:「0.785 l EC 0.785 0.6 800 9mm=7.7mW1=D .. =220 . -------------------------kmH 0.247 1.4 8式中:W I——底盘抵抗线,mD——孑L径,mm——装药密度,kg/m3——装药系数,=0.6~0.8,取0.6m——炮孔密集系数,m=0.6~1.5,取m=1.4k——炸药单耗,kg/m3(3) 根据钻孔作业的安全条件计算:W1=Hcot +C=8cot70o+3=5.91m式中:C——从钻孔中心至坡顶线的钻孔作业安全距离,C=3m——台阶坡面角,=70°综上,W1=6m1.1.2 炮孔密集系数m: m=—^=1.17W11.1.3 孔距a:a=mW1=1.17 7=8.17=9m1.1.4 排距b: b=W1=6m1.2炮孔参数:1.2.1 孔径D:孔径主要取决丁钻机类型,台阶高度和岩性,现已知D=220mm1.2.2超深h:为了增加炮孔底部的药量,克服台阶底部底板岩石的火制作用,使爆破不留根底,并形成平整的底面,钻孔应有一定的超深。

露天矿爆破经典设计

露天矿爆破经典设计

露天台阶中深孔爆破设计说明书设计:(作业)设计审批:计划审核:(成绩)评语:施工爆破时间:______年__月__日__时__分一、爆破作业任务书编号:NO.2011-10-23-802✄………………………………………………………………………………………………………………四、爆破任务书回执单编号:NO.2011-10-23-802注:请现场负责人在作业后,将此回执单当日反馈到技术组。

原因一栏中填写未完成原因,若完成填二、逐孔爆破设计(一)、爆破设计参数(二)、布孔形式、装药技术、起爆网路敷设及起爆方法1、布孔形式:矩形2、装药技术:连续注药3、起爆网络设计采用微差(斜向、平行)起爆网路进行敷设,以孔间微差为25ms,排间微差为100ms。

4、起爆方法为:脉冲起爆体系。

(三)、施工流程附炮孔编号示意图(四)、炮孔装药断面示意图三、露天采场火工材料审批表已知条件:1、钻孔直径,D=0.22m;2、炸药类型乳化炸药;3、起爆材料为导爆管;4、炸药单耗为210g/m3;5、起爆方式为反向起爆;6、起爆网络布置为逐孔起爆;7、爆破孔数为40个;8、台阶高度为H=8m;9、炮孔为垂直孔;要求:1、设计合理的孔网参数和装药结构实现排间、孔间的微差逐孔爆破。

2、绘制炮孔布置平面图并标明起爆先后顺序。

3、填写和编制本次爆破作业规程和质量验收单。

1、爆破参数计算与设计1.1炮孔参数1.1.1孔径D;孔径主要取决于所选的钻机和岩石的性质。

D=0.22m1.1.2孔深L=H+h=8+1.2=9.2m式中: L——钻孔深度,m;H——台阶高度,m;h——超深,m;1.1.2.1超深h的计算垂直深孔超深值计算公式W=1.2mh=(0.15—0.35)1W为8m。

注:由于露天矿爆破一般为松动爆破所以此处系数取0.156。

11.2孔网参数1.2.1底盘抵抗线W 1的计算台阶坡面通常情况下都为斜面,所以对于垂直孔有两种抵抗线,即最小抵抗线W 和底盘抵抗线。

露天开采爆破设计附带图纸-cad——完美版

露天开采爆破设计附带图纸-cad——完美版

露天开采爆破设计目录1 工程概况 (1)2 设计依据 (1)3 爆破方案及工机具选择 (1)4 爆破参数选择 (2)4.1 矿石爆破参数设计与计算 (2)4.2 岩石爆破参数设计与计算 (3)5 炮孔布置、装药结构、起爆网路设计 (4)5.1 炮孔布置 (4)5.3 起爆网络设计 (5)6 安全距离计算校核 (7)6.1 飞石的安全距离 (7)6.2 爆破地震安全距离计算 (7)7 施工工艺及安全技术措施 (7)7.1 施工流程图 (7)7.2 施工准备 (7)7.3 钻孔 (7)7.4 装药 (8)7.5 填塞 (8)7.6 起爆网络 (8)7.7 爆破警戒 (9)7.8 爆后检查 (9)7.9 盲炮处理 (9)8 施工组织 (10)9 主要经济技术指标 (11)10 附图 (12)附图一矿石爆破炮孔剖面图 (12)附图二岩石爆破炮孔剖面图 (13)露天开采爆破设计1 工程概况本深凹露天铁矿,生产规模为年产铁矿石150万吨,剥采比1.7t/t,台阶高度12m,年工作330天,两个台阶生产,每天工作2班制;矿石体重4.12吨/m3,坚固性系数f=12-16;岩石体重2.7吨/m3,坚固性系数f=8-10,松散系数为1.5。

爆破点300m外有居民房屋(砖房),爆破必须考虑爆破震动对居民房屋的影响。

2 设计依据(1)矿区地形简易平面图及有关文件资料。

(2)根据现场的实际测量及工程特点。

(3)《爆破安全规程》(GB 6722-2003)。

(4)《采矿设计手册》(矿床开采卷)2003年版。

(5)《爆破设计与施工》汪旭光 - 冶金工业出版社。

(6)《民用爆炸物品安全管理条例》国务院令第466号。

(7)安全现状评价报告。

3 爆破方案及工机具选择由工程资料可知本爆破工程矿石爆破总工程量矿石150万吨,岩石爆破总工程量150万x1.7=255万吨,通过岩体密度进行换算可得矿石体积为36.4x104m3,岩石体积为94.4x104m3。

露天采石场周边安全距离的确定

露天采石场周边安全距离的确定

技术与市场技术应用2020年第27卷第11期露天采石场周边安全距离的确定张㊀科(广东中恒安检测评价有限公司ꎬ广东湛江524000)摘㊀要:露天采石场生产工艺流程涉及到凿岩(穿孔)㊁爆破㊁铲装㊁运输等主要工序ꎬ其中爆破作业风险极高ꎬ一旦发生放炮事故(如操作不当引起早爆㊁盲炮ꎬ处理不规范造成意外爆炸等)ꎬ势必造成现场作业人员伤亡㊁设备设施损坏㊁危及周边环境(设施)㊁人员或单位的安全ꎬ特别是当安全距离不足时ꎬ一旦发生事故(或事件)ꎬ势必造成各种不必要的纠纷ꎬ甚至造成第三方人员的伤亡ꎮ再者ꎬ我国法律法规等还针对特殊的保护对象(如电力设施㊁公路㊁铁路㊁通信设施㊁广播电视设施㊁石油天然气管道等)还规定了专门的安全距离要求ꎮ因此ꎬ合理㊁合规确定露天采石场与周边环境的安全距离显得尤为重要ꎮ关键词:爆破作业ꎻ爆破安全距离ꎻ保护对象doi:10.3969/j.issn.1006-8554.2020.11.0311㊀选择原则某市露天采石场主要开采矿种为建筑用花岗岩和玄武岩ꎬ大部分矿石质量检测报告显示ꎬ微(未)风化层矿石饱和单轴抗压强度在80~120MPaꎬ坚固性系数(普氏系数)f在8~12ꎬ周边环境中面临一般民用建筑物较多ꎬ但同时也有个别采石场周边有电力设施㊁公路㊁铁路等情况ꎮ特殊保护对象(如电力设施㊁公路㊁铁路等)可通过查阅相关法律法规等规定ꎬ如«公路安全保护条例»第十七条 禁止在下列范围内从事采矿㊁采石㊁取土㊁爆破作业等危及公路㊁公路桥梁㊁公路隧道㊁公路渡口安全的活动:(一)国道㊁省道㊁县道的公路用地外缘起向外100mꎬ乡道的公路用地外缘起向外50m ꎬ本文就不针对该项内容进行阐述ꎮ本文根据该市采石场的基本情况ꎬ主要从爆破安全的角度出发ꎬ分析爆破安全距离的确定方法ꎮ2㊀爆破安全距离确定方法根据«爆破安全规程»«GB6722-2014»(简称 规程 ) 13.1.1爆破地点与人员和其他保护对象之间的安全允许距离ꎬ应按各种爆破有害效应分别核定ꎬ并取最大值 的规定ꎬ露天采石场主要爆破有害效应为地震波㊁冲击波和个别飞散物(露天采石场主要指的是 爆破飞石 )ꎮ2 1㊀爆破振动安全允许距离根据规程第13.2.4条公式(萨道夫斯基公式):R=(KV)1α Q13Q 炸药量ꎬ齐发爆破为总药量ꎬ延时爆破为最大单段药量ꎬkgꎮV 保护对象所在地安全允许质点振速ꎬcm/sꎮKꎬα 与爆破点至保护对象间的地形㊁地质条件有关的系数和衰减指数ꎬ应通过现场试验确定ꎻ在无试验数据的条件下ꎬ根据规程中的 表1爆区不同岩性的K㊁α值 进行取值ꎮ分析公式可知ꎬ单考虑某一因素(其他因素不变)的前提下ꎬK值越大ꎬR越大ꎻα越小ꎬR越大ꎻV越小ꎬR越大ꎻQ越大㊁R越大ꎮ参数选取:该市露天采石场开采建筑用花岗岩㊁建筑用玄武岩碎石居多ꎬ岩石饱和抗压强度在80~120MPa居多ꎬ坚固性系数f(普氏系数)在8~12ꎬ属于下表和规程 表1爆区不同岩性的K㊁α值 表中的 中硬度岩石 类ꎮ根据上述公式分析可知ꎬ按最不利参数取K=250㊁α=1.5ꎮ表1㊀爆区不同岩性的K㊁α值岩性岩石坚固性系数fKα坚硬岩石>1250~1501.3~1.5中硬岩石8~12150~2501.5~1.8软岩石<8250~3501.8~2.0㊀㊀该市露天采石场周边面临一般民用建筑物居多ꎬ露天深孔爆破主振频率f在10~60Hzꎬ根据上述公式分析可知ꎬ按最不利参数取V=2.0cm/sꎮ同时该市露天采石场采用导爆管雷管非电起爆法ꎬ分段延时爆破起爆ꎬ单段药量最大一般不超过500kgꎬ按最不利参数取单段最大药量Q=500kgꎮ将最不利参数K=250㊁α=1.5㊁V=2.0cm/s㊁Q=500kg代入上面公式进行计算ꎬ爆破振动安全允许距离Rʈ198mꎬ因此ꎬ爆破地震波引起的爆破振动安全允许距离不超过200mꎮ应说明的是ꎬ如果保护对象未列入规程 表2爆破振动安全允许标准 中时ꎬ爆破振动安全允许标准可参照类似工程或保护对象所在地的设计抗震烈度值来确定爆破振动速度极限值ꎬ如表2所示ꎮ该市抗震设防烈度在7~8度ꎬ根据«建筑工程抗震设防分类标准»(GB50223-2008) 7.1采煤㊁采油和矿山生产建筑 可知ꎬ该市露天采石场建筑物抗震设防类别属 标准设防类(丙类) ꎬ建筑物抗震烈度取抗震设防烈度即可ꎮ77技术应用TECHNOLOGYANDMARKETVol.27ꎬNo.11ꎬ2020从表2可知ꎬ随着建筑物设计抗震烈度增大ꎬ允许地面质点振动速度则相应增加ꎬ根据上述公式分析可知ꎬV越大ꎬ则R将会越小ꎬ小于V=2.0cm/s的数值ꎮ2 2㊀爆破空气冲击波安全允许距离由于爆破冲击波受围岩与土层性质㊁覆盖层厚度㊁装药量等诸多因素影响ꎬ目前国家标准中尚未有对中深孔爆破冲击波的统一计算公式(但对地表裸露爆破有冲击波计算公式)ꎬ所以一般参照地表裸露爆破冲击波计算结果ꎬ然后进行工程经验取值ꎻ由于炮孔具有一定的填塞长度㊁上部有覆盖层等因素ꎬ一般冲击波安全允许距离较小ꎮ表2㊀建筑物抗震烈度与相应地面质点振动速度的关系建筑物设计抗震烈度/度567允许地面质点振动速度/cm s-12~33~55~8㊀㊀露天采石场爆破一般属于松动爆破或减弱抛掷(加强松动)爆破ꎬ爆破作用指数n一般在0.75上下(不会超过1)ꎬ根据原规程6.6.3条 爆破作用指数n<3的爆破作业ꎬ对人员和其他保护对象的防护ꎬ应首先考虑个别飞散物和地震安全允许距离 的规定亦可知ꎬ露天采石场台阶爆破ꎬ爆破冲击波安全允许距离可不作为重点考虑ꎮ2 3㊀个别飞散物安全允许距离根据规程可知ꎬ露天岩土深孔台阶爆破个别飞散物的安全距离ꎬ应按设计且不小于200mꎻ浅孔台阶爆破在复杂地质条件下或未形成台阶工作面时不小于300mꎬ其他情况下可取200mꎮ露天采石场在掘沟阶段时(通常只有1个自由面㊁密集孔㊁药量大)ꎬ存在钻凿浅孔并逐层降坡形成符合设计规定高度台阶的过程ꎬ所以ꎬ露天岩土浅孔台阶爆破个别飞散物的安全距离ꎬ在未形成台阶工作面时不小于300mꎬ因此应根据实际情况分别进行对待ꎮ1)新设矿区(需进行表土剥离㊁爆破往下进行掘沟形成设计规定高度的台阶)ꎬ或已形成有多级台阶的采场(但未到达«采矿许可证»允许开采的最低标高水平ꎬ仍能继续往下进行掘沟㊁准备形成下一个台阶时)ꎬ由于在未形成设计规定高度的台阶前往下掘沟ꎬ需按浅孔爆破逐层降坡至下一个开采台阶水平㊁形成符合设计规定高度的台阶ꎬ因此ꎬ个别飞散物的距离要求应不小于300mꎮ2)已形成多级规整台阶的采场ꎬ且不能再往下继续开拓台阶(即已经开采至«采矿许可证»允许的最低开采标高)ꎬ个别飞散物的距离要求应不小于200mꎮ不管何种情形ꎬ如果沿山坡爆破时ꎬ下坡方向(坡度超过30ʎ时)的个别飞散物安全允许距离应增大50%ꎮ根据上述分析可知ꎬ爆破有害效应中ꎬ数值最大的是个别飞散物的安全允许距离ꎬ因此矿山爆破安全距离的取值应根据个别飞散物的数值而定ꎮ爆破安全距离确定后ꎬ在爆破安全影响范围内不得设置有其他工贸企业的生产和生活设施ꎬ不得有非本单位设置的建构筑物(主要指的是其他单位或个人的民居或其他设施)ꎮ3㊀结语对比从爆破施工安全角度出发确定的 爆破安全距离 与国家法律法规等规定的 特殊保护对象的安全距离 进行对比㊁分析ꎬ取二者最大值作为最终露天采石场与周边环境的安全距离ꎮ同时应注意的是ꎬ根据国家安全监管的角度和要求ꎬ起算位置应从矿区拐点组成的边界往外开始推算ꎬ而不是实际爆破作业点ꎮ参考文献:[1]㊀国家质量监督检验检疫总局ꎬ国家标准化管理委员会.GB6722-2014爆破安全规程[S].2014.[2]㊀汪旭光ꎬ于亚伦.台阶爆破[M].北京:冶金工业出版社ꎬ2017.[3]㊀于润沧.采矿工程师手册[M].北京:冶金工业出版社ꎬ2009.87。

露天煤矿穿孔、爆破设计方案

露天煤矿穿孔、爆破设计方案

山西交口某某煤业有限公司露天煤矿穿爆工程施工组织设计(方案)交口县金利达工程爆破服务有限公司山西交口某某煤业有限公司2013年5月1日施工组织设计(方案、措施)审批表1 爆区环境与地质山西某某煤业有限公司露天煤矿位于山西省吕梁市交口县城关镇境内,爆破环境比较开阔,采用深孔台阶爆破,要保证放下的岩石大块率不高。

岩石比较坚硬,岩石系数为6-10,岩石的爆破难易程度一般。

本露天煤矿最终开采境界内的岩层大多为近水平沉积岩层,岩石层理明显,水平方向连续性好。

矿山开采最上层剥离物为黄土,为不破坏边坡的稳定性,应采取措施,遂采取垂直钻孔爆破方案。

2 爆破方案选择根据本露天矿采剥工艺,结合采装设备对岩石破碎块度、疏散度的要求,考虑到岩石的软硬程度,确定本矿山岩石层破碎方式为台阶松动爆破。

煤层顶板岩层厚度(即穿孔工作面到煤层的高度)若不足一个标准台阶高度,可采用小台阶爆破法处理,做到“分爆分采”,减少废石混入和降低贫化。

部分爆破区的炮孔穿透含水层,水孔装药应使用乳化炸药。

掘沟工程可根据掘沟高度即掘沟宽度单独进行爆破设计。

3 标准台阶孔网参数设计(爆破对象为一般难爆岩石,达到爆破松动的效果,采用“经验法”设计)矿山生产标准台阶高度10m,本矿爆破岩石厚度3-8m,本设计采用爆破最大用药量,用8m计算,使用的穿孔设备时KY120型履带式露天潜孔钻机,穿孔直径d=120mm。

根据矿区岩层可爆性分析,结合类似矿山的爆破经验,炸药单耗kg。

施工过程中可根据不同爆破区的岩石硬度、初步确定为q=0.403m可爆性、岩石结构、层理发育程度的因素进行适当的调整,以期达到最佳爆破经济效果。

1)、孔径ø=110mm;2)、台阶高度H=8.0m3)、炮孔超深取h=1.5m4)、炮孔深度L=H+h=9.5m5)、填塞长度ho=3.0m6)、单孔装药量Q=qabWkg7)、实际单孔单耗q=0.43m8)、布孔方式:穿凿竖直孔,一般采用梅花形布孔方式。

露天煤矿开采基础知识(讲稿)

露天煤矿开采基础知识(讲稿)

露天煤矿开采基础知识煤炭行业安全生产专业术语讲解二 0 一五年三月二十日第一部分 概述 ..................................... 2 一、露天开采特点 ..................................... 2 二、露天开采的基本步骤: .............................. 2 三、采场要素 ......................................... 3 第二部分 露天采煤的主要工艺过程 ...................... 5 一、穿孔 ............................................. 5 二、爆破工作 ......................................... 6 三、采装工作 ......................................... 8 四、运输工作 ......................................... 8 五、排土工作 ......................................... 8 第三部分 露天矿开拓开采及开采境界 .................... 8 一、露天矿开拓 ....................................... 8 二、首采区位臵的选择: ................................ 9 三、公路运输开拓 ..................................... 9 四、露天矿开采境界.................................... 9 五、间断开采工艺 .................................... 12 六、汽车运输 ........................................ 12 七、排土场 .......................................... 13 八、土地复垦 ........................................ 15 九、边坡稳定工程 .................................... 15 十、防水和排水 ...................................... 15 十一、地面防排水 .................................... 15 十二、工业场地总平面布臵 ............................. 16 十三、安全生产专业术语解释 ........................... 16-2-对于储量丰富、 埋藏浅的煤田, 可采用剥离煤层上部覆盖岩层的 方法进行开采, 这种开采方法叫做露天开采。

第七章-露天工程爆破PPT课件

第七章-露天工程爆破PPT课件
18
底盘抵抗线WD设计计算
1)根据钻孔作业的安全条件:
式中:H-台阶高度,m; a-台阶坡面角,一般a=
600~750;
B-从钻孔中心至坡顶线的安全距 离,对大型钻孔B
>2.5~3.0m 2)按台阶高度确定: 3)按炮孔直径确定
我国露天矿山深孔爆破的底盘抵抗线 一般为孔径的20~50 倍。即:
WD Hctg B
常用的堵塞材料有砂子、粘土、岩粉等。 小直径炮眼则常用炮泥堵塞。炮泥是用砂子和粘土混合 配制而成的,其重量比为3∶1再加上20%的水。混合均匀后 再揉成直径稍小于炮眼直径的炮泥段。 堵塞时要注意保护和雷管脚线和起爆药包。间隔装药时 还应注意间隔堵塞长度。
29
5、露天深孔爆破施工技术——起爆网路
一般采用的起爆网路有:电爆网路、非电导 爆管起爆网路、或复式起爆网路等。具体连接方 式和注意要求已在起爆器材和起爆技术章节中讲 述。一定要保证网路的可靠性。连接过程中随时 检查,电爆网路更应注意网路电阻检测。
排间顺序起爆 a—排间全区顺序起爆;b—排间分区顺序起爆
35
起爆顺序『2』
(2)排间奇偶式顺序起爆 增大自由面,改变抵抗线方 向,增强破碎
排间奇偶式顺序起爆
36
起爆顺序『3』
(3)波浪式顺序起爆 增加孔间或排间深孔爆破 的相互作用,达到加强岩 块碰撞挤压、改善破碎效 果,同时还可以减小爆堆 宽度,但操作较复杂。
注意:放入起爆药包后,不可用猛力去冲捣起爆药包。 4)装药结构:
一般采用单一连续的装药结构,即孔内连续装入同一品 种和密度的炸药。当底盘夹制作用较大时,则宜采用组合装 药结构,即孔底采用威力较高的炸药,而上部采用威力较低 的普通炸药
27
装药结构

露天岩土爆破设计专题(吴))

露天岩土爆破设计专题(吴))

新浇大体积混凝土(C20):
10
龄 期:初凝~3d 龄 期:3 d~7 d
龄 期:7d~28d
1.5~ 2.0 3.0~4.0 7.0~8.0
2.0~2.5 4.0~5.0 8.0~10.0
2.5~3.0 5.0~7.0 10.0~12
注1: 表中质点振动速度为三分量中的最大值;振动频率为主振频率。 注2:频率范围根据现场实测波形确定或按如下数据选取:硐室爆破f<20Hz;露天深 孔爆破f=10~60Hz;露天浅孔爆破f=40~100Hz;地下深孔爆破f=30~100Hz;地下 浅孔爆破f=60~300 Hz。 注3:爆破振动监测应同时测定质点振动相互垂直的三个分量。
1
土窑洞、土坯房、毛石房屋
2
一般民用建筑物
3
工业和商业建筑物
4
一般古建筑与古迹
5
运行中的水电站及发电厂中心控 制室设备
6
水工隧洞
7
交通隧道
8
矿山巷道
9
永久性岩石高边坡
安全允许质点振动速度V,cm/s
f≤10 Hz 0.15~0.45
10Hz< f≤50Hz
0.45~0.9
f>50 Hz 0.9~1.5
填塞长度L2 :L2 = (20~30) d L2 ≮ 0.75W1
L2 =(0.7~1.0)W1
q1

1 4000

d12

装药长度L1 :L1=Q1 / q1
单耗q:查表
线装药密度q1:q1=Q1/L1
单孔装药量 Q1: Q1 q W1 H a
Q1 k q H a b
二、露天爆破设计考核注意点

爆破计算公式

爆破计算公式

露天爆破摘自《爆破设计与施工》露天台阶爆破是在地面上以台阶形式推进的石方爆破方法。

台阶爆破按照孔径、孔深不同,分为深孔台阶爆破和浅孔台阶爆破。

通常将炮孔孔径大于50mm、孔深大于5m的台阶爆破统称为露天深孔台阶爆破。

1.台阶要素深孔爆破的台阶要素如图所示。

H为台阶高度,m;W1为前排钻孔的底盘抵抗线,m;L为钻孔深度,m;l1为装药长度,m;l2为填塞长度,m;h为超深,m;α为台阶坡面角,(º);a为孔距,m;b为排拒,m(图中未标出);B为在台阶面上从钻孔中心至坡顶线的安全距离,m。

为了达到良好的爆破效果,必须正确确定上述各项台阶要素。

2.爆破参数2.1孔径露天深孔的孔径主要取决于钻机类型、台阶高度和岩石性质。

一般来说钻机选型确定后,其钻孔直径就已确定下来。

国内常用的深孔直径有76~80mm,100mm,150mm,170mm,200mm,250mm,310mm几种。

2.2孔深与超深孔深是由台阶高度和超深确定。

岩石台阶高度为15~20m。

国内矿山的超深值一般为0.5~3.6m。

后排孔的超深值一般比前排小0.5m。

垂直深孔孔深L=H+h倾斜深孔孔深L=H/sinα+h2.3底盘抵抗线a根据钻孔作业的安全条件W1≥Hcotα+B式中W1—底盘抵抗线,mα—台阶坡面角,(º)H—台阶高度,mB—从钻孔中心至坡顶线的安全距离,对大型钻机,B≥2.5~3.0mB按台阶高度和孔径计算W1=(0.6~0.9)HW1=K•d2.4孔距和排拒孔距a 是指同一排深孔中相邻两钻孔中心线间的距离。

孔距按下式求得:a=mW1式中的密集系数m值通常大于1.0,在宽孔距爆破中则为3~4 或更大。

但是第一排孔往往由于底盘抵抗线过大,应选用较小的密集系数,以克服底盘的阻力。

排距 b 是指多排孔爆破时,相邻两排钻孔间的距离,在采用正三角形布孔时,排距与孔距的关系为b=a•gsin60º=0.866×ab为排拒,m;a为孔距,m。

浅谈柬埔寨地区深基坑露天爆破施工技术

浅谈柬埔寨地区深基坑露天爆破施工技术

浅谈柬埔寨地区深基坑露天爆破施工技术[摘要]柬埔寨德瓦度假村项目在复杂场地环境下成功实施深基坑爆破施工技术。

施工过程中采用深孔松动爆破方案,精细化管理方法,确保了周围复杂环境的安全,加快了现场施工进度,为今后复杂环境下深基坑爆破开挖提供了经验和借鉴。

[关键词]深基坑;露天爆破;1工程概况1.1工程概述柬埔寨德瓦度假村项目Office 3工程位于柬埔寨西哈努克市,建筑面积约8.2万㎡,建筑高度123.1m,地下3层,地上25层,基坑占地面积约5740㎡,是集酒店、办公为一体的综合性服务办公楼。

工程效果图详见图1。

图1 Office 3效果图1.2场地条件Office 3基坑爆破施工范围如图1橙色区域所示。

北侧及东侧均为市政道路,其中北侧基坑边界与周围的一处民房相距35m,东侧与市政路相距43m;南侧及西侧均为场内规划道路,其中西侧与已完工的Office 2相距30m,与已完工的Office 1相距104m,南侧与业主混凝土加工房(蓝色区域)相距64m。

图2 爆破区周边情况1.3设计概况Office 3爆破开挖施工范围为部分基坑及基坑东侧局部区域,爆破范围长约92.5m,宽约76.3m,结构±0的绝对标高为+44.0m。

Office 3爆破区现状标高如图3所示,爆破前最高点绝对标高约为+51m。

爆破区域分为8个标高,分别为:45m、43m、42.9m、42.85m、42.45m、41.65m和37.7m。

基坑标高分布如图4所示,基坑最低点绝对标高为+37.7m。

基坑最大变化高度为13.3m,总计爆破开挖土方量约6.3万立方。

图3 爆破区现状标高概况图图4 基坑标高分布示意图2可行性分析1.现场地勘情况根据地勘报告所示,Office 3下部为风化岩层,地表下3m 左右岩层强度已达到29MPa,向下集中于40~50MPa,局部岩层出现58MPa。

2.现场环境复杂,爆破施工重难点在于安全管理,就安全管理重难点进行分析如下表:表1 安全管理重难点岩层较硬,结合项目前期公寓楼土方开挖的经验以及对当地地质条件的了解,普通开挖方法远不能满足进度要求,耗时费力,严重影响项目成本。

露天矿爆破的安全距离

露天矿爆破的安全距离

露天矿爆破的安全距离摘要:露天矿生产常用爆破造成负面影响的主要因素,结合爆破理论,计算出重要因素的影响范围,并对照国家相关标准,进行了验证,对保证矿山的爆破安全,有一定的参考意义。

关键词:深孔爆破;地震波:空气冲击波;个别飞石;危险半径;炸药氧平衡露天矿爆破一般来讲主要包括4种形式,即深孔大爆破、浅孔拉底爆破、覆土爆破以及边坡处理特种爆破。

从安全角度来讲,这几种爆破并非装药量越大,危险性就越大,而是要根据爆破所能产生的个别飞石远近、爆堆移动距离、伤害性冲击波范围来具体确定危险半径的。

露天矿为了生产,必须要进行爆破,而爆破时必须要把危险区域内的人员和设备撤离出去,爆破后人员设备还要返回到作业岗位。

因而爆破势必会造成采场局部或整个采场短时间的停产影响。

危险半径小,恢复生产快一些;危险半径大,恢复生产慢一些。

因而,合理划定危险半径,既能保证人员设备避免爆破伤害,又能尽快恢复生产,对露天矿爆破而言,特别对采掘到深部,空间狭小的矿山,显得非常重要。

1 露天矿爆破危害简析一般情况下,露天矿的4种生产爆破,以深孔大爆破运用最多,覆土爆破次之,拉底爆破再次,边坡处理特种爆破使用频率最少。

在实际生产中,有的露天矿存在大爆破质量问题,导致覆土爆破和拉底爆破使用频率大于深孔大爆破的使用频率,不足为怪。

4种爆破中,相对而言,深孔爆破的一次装药量大,爆破规模也大,产生的爆破地震波最大,爆破飞石多,但散逸距离较小,飞石易于控制,爆破释放的气体最多,伤害性空气冲击波范围较小。

因而,深孔爆破的警戒范围划定中,应重点考虑地震波和飞石的影响。

爆破释放的有毒有害气体问题,由于现今使用的炸药的氧平衡基本都能达到零氧平衡,甚至偏于正氧平衡,加之露天爆破,释放空间大,达不到对人有大的伤害程度。

覆土爆破的空气冲击波最大,地震波最小,个别飞石细小但不易控制,在爆破的警戒范围划定中,应重点考虑冲击波和飞石对周围环境的伤害。

拉底爆破的空气冲击波和地震波都比较小,但由于拉底部位的岩石破碎度裂隙度难以探明,因而其飞石最难控制,在爆破的警戒范围划定中,应重点考虑、飞石对周围环的破坏。

露天矿爆破作业的安全距离

露天矿爆破作业的安全距离

露天矿爆破作业的安全距离露天矿爆破作业的安全距离1.爆破飞石的最小安全距离个别飞石的散开距离与地形、地质药包表达式及气象条件有关,可按以下公式计算:R=20Kn2W式中R—飞石安全距离(m);K—与岩石性质、地形、地质气象有关的系数,一般取1.0—1.5;对着抛掷方向取大值,背着抛掷方向取小值;n—最小一个药包的爆炸作用指数;W—最大一个药包的最小抵抗线(m)。

为保证绝对安全,一般按上式计算结果再乘以系数3—4;当遇大风天气,顺风提高方向的飞散距离还应增加25%--50%,同时参照现行爆破安全规程,爆破理应飞石的最小安全距离应不小于表1所列数值。

爆破飞石的最小安全距离表1项次爆破方法排雷最小安全距离(m)项次爆破方法排雷最小安全距离(m)1炮孔爆破、炮孔药壶爆破2006小洞室爆破4002二次爆破、蛇穴爆破4007直井爆破、平洞爆破3003深孔爆破、深孔药壶爆破3008边线控制爆破2004炮孔爆破准则扩大药壶509拆除爆破1005深孔爆破法扩大药壶10010基础龟裂爆破502.爆破震动对建筑群防护影响的安全距离地震波强度随药量、药包埋置深度、爆破介质、爆破方式、传播途径、爆心距以及局部场地条件等因素的变化而不同,其中主要因素是爆心距离及装药量。

爆破地震波对建筑物的影响生命安全的安全距离,一般可按下式计算:Rc=Kca3√-Q式中Rc—场地爆破地点至建筑物的安全距离(m);Kc—根据建筑物地基特殊性土石性质而定的系数,见表2;a—依爆破作用指数n确定的系数,见表3;Q—爆破装药量(kg).土石性质系数Kc数值表2 项次被保护建筑物的地基的岩性系数Kc值备注1坚硬致密的岩石3.0 药包如布置在水中或水溶性饱和饱和的土中,则Kc值应增加1.5—2.0倍。

2粗糙有裂隙的岩石5.03松软岩石6.04砾石碎石土7.05砂土8.06粘土9.07回填土15.08含水饱和的土20.0系数a的数值表3 项次爆破市场条件系数a值备注1药壶爆破n≦0.51.2在地面上爆破时,地面震动作用可不考虑。

露天装药量计算及最大安全距离计算

露天装药量计算及最大安全距离计算

露天矿爆破装药量如何计算?一、浅孔爆破每孔装药量可按体积公式计算:q=kW3或 q=kV或kɑHW式中:q-每孔装药量,kg;k-炸药单耗,kg/m3;V-单孔爆破岩石体积。

一次爆破总量按下式进行计算:Q=Nq或kV总式中:Q-一次爆破炸药总量;kg;N-一次爆破炮孔总数;V总-一次炮孔爆破总方量;m3。

二、深孔爆破装药量计算:(一)单个深孔爆破时装药量计算:正常情况下:Q=qɑHW d当ɑ≥W d时,以底盘抵抗线代替孔距;Q=qHW d2当台阶坡面角小于55°时,应将底盘抵抗线用最小抵抗线代替:Q=qɑHW,当W d与段高H相差悬殊时,Q=qɑW d H1式中:H1-换算标高,m。

H1=W d/(0.7~0.8)在用上述公式计算每孔装药量时,还需用每孔最大可能装药量G进行验算。

G=g(L-Lr)式中:G-炮孔可能最大装药量,kg;g-每米炮孔的可能装药量,kg/m;L-炮孔长度;Lr-填塞长度。

应满足:G≥Q即:G(L-Lr)≥qW dɑH(二)多排孔爆破时装药量的计算:多排孔爆破时,第一排孔装药量计算同上,第二排起,装药量应有所增加。

Q1=kqɑbH式中:Q1-第二排以后的各排每孔装药量,kg;k-岩石阻力夹制系数,采用微差爆破时,取k=1.0~1.2,采用齐发爆破时,取k=1.2~1.5,第二排孔取下限,最后一排孔取上限。

(三)倾斜台阶深孔装药量计算Q′=qWɑL式中:Q′-倾斜孔每孔装药量;q-炸药单耗;L-斜孔(不包括超深)长度,m。

倾斜深孔,超深部分药量应单独计算:Q c=ph式中:Q c-超深部分炮孔装药量,kg;p-每米炮孔的装药量,kg/m;h-超深。

(四)分段装药:分段装药各分段装药量单独计算:Q1=q1ɑW12Q2=q2ɑW22Q3=q3ɑW32…式中:W1,W2,W3-各分段的最小抵抗线,m。

最大单响药量与距离由1aKRV⎫=⎪⎭或V=K(Q1/3/R)α推出Q=R3(V/K)3/α式中:V——振速,cm/s,(一般砖房安全允许振速为2.0-3.0,取2.0cm/s)Q——单响最大药量R——安全距离,m,K,α——与岩性相关系数,对中硬岩石,取K=200,α=1.6V—爆破地震安全速度,cm/s,即测定地点建筑物基岩质点的允许安全震动速度,根据《爆破安全规程》规定见表1-2将各参数代入上式,计算得出不同距离的允许最大单响药量表如下:说明:以上药量取值是根据业主提供的环境情况理论取值,实际取值应根据现场环境情况确定,待公安机关审批、安全评估后方能实施。

露天开采爆破设计附带图纸cad——完美版

露天开采爆破设计附带图纸cad——完美版

露天开采爆破设计目录1 工程概况 (1)2 设计依据 (1)3 爆破方案及工机具选择 (1)4 爆破参数选择 (2)4.1 矿石爆破参数设计与计算 (2)4.2 岩石爆破参数设计与计算 (3)5 炮孔布置、装药结构、起爆网路设计 (5)5.1 炮孔布置 (5)5.3 起爆网络设计 (6)6 安全距离计算校核 (8)6.1 飞石的安全距离 (8)6.2 爆破地震安全距离计算 (8)7 施工工艺及安全技术措施 (8)7.1 施工流程图 (8)7.2 施工准备 (8)7.3 钻孔 (9)7.4 装药 (9)7.5 填塞 (10)7.6 起爆网络 (10)7.7 爆破警戒 (10)7.8 爆后检查 (11)7.9 盲炮处理 (11)8 施工组织 (12)9 主要经济技术指标 (13)10 附图 (14)附图一矿石爆破炮孔剖面图 (14)附图二岩石爆破炮孔剖面图 (15)露天开采爆破设计1 工程概况本深凹露天铁矿,生产规模为年产铁矿石150万吨,剥采比1.7t/t,台阶高度12m,年工作330天,两个台阶生产,每天工作2班制;矿石体重4.12吨/m3,坚固性系数f=12-16;岩石体重2.7吨/m3,坚固性系数f=8-10,松散系数为1.5。

爆破点300m外有居民房屋(砖房),爆破必须考虑爆破震动对居民房屋的影响。

2 设计依据(1)矿区地形简易平面图及有关文件资料。

(2)根据现场的实际测量及工程特点。

(3)《爆破安全规程》(GB 6722-2003)。

(4)《采矿设计手册》(矿床开采卷)2003年版。

(5)《爆破设计与施工》汪旭光- 冶金工业出版社。

(6)《民用爆炸物品安全管理条例》国务院令第466号。

(7)安全现状评价报告。

3 爆破方案及工机具选择由工程资料可知本爆破工程矿石爆破总工程量矿石150万吨,岩石爆破总工程量150万x1.7=255万吨,通过岩体密度进行换算可得矿石体积为36.4x104m3,岩石体积为94.4x104m3。

第七章露天深孔浅孔爆破

第七章露天深孔浅孔爆破
第28页/共97页
(3)、按台阶高度确定: 岩石坚硬,系数取小值,反之,系数取大值。
W1 (0.6 ~ 0.9)H
(4)、按钻孔直径确W定1 :kd k——日本取k=40,国内铁路上建议取k=32~
38; d——孔径,mm。
第29页/共97页
4、孔距与排距 孔距a是指同排的相邻两个炮孔中心线间的距
第4页/共97页
1、台阶要素 深孔爆破通常是在一个事先修好的台阶上进行钻孔作业,这个台阶也称作梯段。
所以台阶深孔爆破也称作梯段深孔爆破。 深孔爆破的孔网参数表示钻孔在台阶中的位置,如图6-1(a)所示。
第5页/共97页
台阶要素
a
b
B
Ll
H
L
L2
h
W
W1 第6页/共97页
L2
a
h
垂直钻孔
倾斜钻孔
3~6
6~8
10~20
7
0.60
0.70
0.85
1.00
10
0.70
0.85
1.00
1.25
15
0.85
1.00
1.25
1.50
20
1.00
1.25
1.50
1.75
25
1.25
1.50
1.75
2.00
第35页/共97页
确定超钻时,还可以参考表6-2进行选取,但表中所列数值适用于钻孔直径为 150mm的情形。如果钻孔直径不是150mm,则将表中的数值乘以d/150即可。
同时提高延米爆破量,降低炸药单耗,并在 改善破碎质量的前提下,使钻孔、装载、运输和 破碎等后续工序发挥高效率,并使工程的综合成 本达到最低。深孔爆破的炸药比较均匀地分散在 岩体中,用药量比较容易控制,与其它爆破方法 相比,深孔爆破的优越性主要表现在石方的机械 化施工和安全性两个方面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

露天矿爆破装药量如何计算?
一、浅孔爆破每孔装药量可按体积公式计算:
q=kW3
或 q=kV或kɑHW
式中:
q-每孔装药量,kg;
k-炸药单耗,kg/m3;
V-单孔爆破岩石体积。

一次爆破总量按下式进行计算:
Q=Nq或kV

式中:
Q-一次爆破炸药总量;kg;
N-一次爆破炮孔总数;
V

-一次炮孔爆破总方量;m3。

二、深孔爆破装药量计算:
(一)单个深孔爆破时装药量计算:
正常情况下:
Q=qɑHW
d
当ɑ≥W
d
时,以底盘抵抗线代替孔距;
Q=qHW
d
2
当台阶坡面角小于55°时,应将底盘抵抗线用最小抵抗线代替:
Q=qɑHW,
当W
d
与段高H相差悬殊时,
Q=qɑW
d H
1
式中:
H
1
-换算标高,m。

H 1=W
d
/(0.7~0.8)
在用上述公式计算每孔装药量时,还需用每孔最大可能装药量G进行验算。

G=g(L-Lr)
式中:
G-炮孔可能最大装药量,kg;
g-每米炮孔的可能装药量,kg/m;
L-炮孔长度;
Lr-填塞长度。

应满足:G≥Q即:
G(L-Lr)≥qW
d
ɑH
(二)多排孔爆破时装药量的计算:
多排孔爆破时,第一排孔装药量计算同上,第二排起,装药量应有所增加。

Q
1
=kqɑbH
式中:
Q
1
-第二排以后的各排每孔装药量,kg;
k-岩石阻力夹制系数,采用微差爆破时,取k=1.0~1.2,采用齐发爆破时,取k=1.2~1.5,第二排孔取下限,最后一排孔取上限。

(三)倾斜台阶深孔装药量计算
Q′=qWɑL
式中:
Q′-倾斜孔每孔装药量;
q-炸药单耗;
L-斜孔(不包括超深)长度,m。

倾斜深孔,超深部分药量应单独计算:
Q
c
=ph
式中:
Q
c
-超深部分炮孔装药量,kg;
p-每米炮孔的装药量,kg/m;
h-超深。

(四)分段装药:
分段装药各分段装药量单独计算:
Q 1=q
1
ɑW
1
2
Q 2=q
2
ɑW
2
2
Q 3=q
3
ɑW
3
2…
式中:
W 1,W
2
,W
3
-各分段的最小抵抗线,m。

最大单响药量与距离

1a
K
R
V

=⎪

或V=K(Q1/3/R)α推出Q=R3(V/K)3/α式中:
V——振速,cm/s,(一般砖房安全允许振速为2.0-3.0,取2.0cm/s)Q——单响最大药量
R——安全距离,m,
K,α——与岩性相关系数,对中硬岩石,取K=200,α=1.6
V—爆破地震安全速度,cm/s,即测定地点建筑物基岩质点的允许安全震动速度,根据《爆破安全规程》规定见表1-2
将各参数代入上式,计算得出不同距离的允许最大单响药量表如下:
现场环境情况确定,待公安机关审批、安全评估后方能实施。

相关文档
最新文档