2019年浙江省中考数学:第3讲《因式分解》同步练习(含答案)

合集下载

2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( )A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=( )A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )A.=B.=C.=D.=7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2= .12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C= .15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.4.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.7.解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.二、填空题:本大题有6个小题,每小题4分,共24分;11.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.13.解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.14.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.15.解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1.16.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.18.解:(1)乙组数据的折线统计图如图所示:(2)①=50+.②S甲2=S乙2.理由:∵S甲2=[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.20.解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.21.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.23.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。

初中数学:因式分解强化练习(含答案)

初中数学:因式分解强化练习(含答案)

因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。

2019年浙江绍兴中考数学试题(解析版)

2019年浙江绍兴中考数学试题(解析版)

2019年浙江省绍兴市中考数学试卷考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共10小题,每小题4分,合计40分.{题目}1.(2019•绍兴T1)-5的绝对值是A.5B.-5C.15D.-15{答案}A{解析}本题考查了绝对值的意义,根据负数的绝对值等于它的相反数,得|-5|=5.因此本题选A.{分值}4{章节:[1-1-2-4]绝对值}{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2.(2019•绍兴T2)某市决定为全市中小学教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000元用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010{答案} B{解析}本题考查了科学记数法的表示方法,126000000=1.26×100000000=1.26×108,因此本题选B.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.(2019•绍兴T3)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.{答案}A{解析}本题考查了简单组合体的三视图,从正面看得到的视图是主视图.从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,因此本题选A.{分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}4.(2019•绍兴T4)为了解某地区九年级男生的身体情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15{答案}D{解析}本题考查了利用频率估计概率,先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.因此本题选D.{分值}4{章节:[1-25-3]用频率估计概率}{考点:利用频率估计概率}{类别:常考题}{难度:2-简单}{题目}5.(2019•绍兴T5)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°{答案} B{解析}本题考查了三角形内角和定理和对顶角的性质,设a,b所在直线所夹的锐角是∠α,由对顶角相等,得到∠3=∠2=100°,再根据∠α+∠1+∠3=180°,求得∠α=180°-70°-100°=10°,因此本题选B.{分值}4{章节:[1-11-2]与三角形有关的角}{考点:三角形内角和定理}{类别:常考题}{难度:2-简单}{题目}6.(2019•绍兴T6)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()α3A . -1B . 0C . 3D . 4{答案}C{解析}本题考查了用待定系数法求一次函数解析式;设经过(1,4),(2,7)两点的直线解析式为y =kx +b ,∴⎩⎨⎧4=k +b ,7=2k +b .∴⎩⎨⎧k =3,b =1,∴y =3x +1,将点(a ,10)代入解析式,则a =3;因此本题选C . {分值}4{章节:[1-19-2-2]一次函数}{考点:待定系数法求一次函数的解析式} {类别:常考题} {难度:2-简单}{题目}7.(2019•绍兴T7)在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x +3)(x -5),则这个变换可以是( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移8个单位 D .向右平移8个单位{答案}4{解析}本题考查了二次函数图象与几何变换,y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16);y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),因此本题选B . {分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数图象的平移} {类别:思想方法}{类别:常考题} {难度:2-简单}{题目}8.(2019•绍兴T8)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°,若BC =22,则⌒BC 的长为( )A .πB . 2πC .2πD . 22π{答案}A{解析}本题考查了弧长的计算和圆周角定理,如图,连接OB 、OC ,由三角形内角和定理,求得∠A =180°-∠B -∠C =180°-65°-70°=45°,∴∠BOC =2∠BAC =2×45°=90°,∴OB =BC2=222=2,∴⌒BC 的长90×π×2180=π,因此本题选A .{分值}4{章节:[1-24-4]弧长和扇形面积} {考点:圆周角定理} {考点:弧长的计算}{章节:[1-24-4]弧长和扇形面积} {类别:常考题} {难度:3-中等难度}{题目}9.(2019•绍兴T9)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( ) A .先变大后变小 B .先变小后变大 C .一直变大 D .保持不变{答案} D{解析}本题考查了相似三角形的性质,由题意,得∠BCD =∠ECF =90°,∴∠BCE =∠DCF ,又∵∠CBE =∠CFD =90°,∴△CBE ∽△CFD ,∴CE CD =CBCF ,∴CE ⋅CF =CB ⋅CD ,即矩形ECFG 的面积=正方形ABCD 的面积,因此本题选D . {分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {类别:常考题} {难度:3-中等难度}{题目}10.(2019•绍兴T10)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( ) A .245B .325C .123417D .203417{答案} A{解析}本题考查了勾股定理的应用,解决此题的突破点在于根据题意得到关系式:长方体中水的容积=倾斜后底面积为ADCB 的四棱柱的体积,列方程,得到DE 的长,如图,设DE =x ,则AD =8-x,12(8-x +8)×3×3=3×3×6,解得x =4.∴DE =4.在Rt △DEC 中,CD =DE 2+EC 2=42+32=5,过点C 作CH ⊥BF 于点H ,则由△CBH ∽△CDE ,得到CH CE =CB CD ,即CH 3=85,∴CH =245,因此本题选A . {分值}4{章节:[1-27-1-3]相似三角形应用举例} {考点:勾股定理的应用} {考点:相似三角形的应用} {考点:几何选择压轴}{类别:思想方法}{类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题5分,合计30分.{题目}11.(2019•绍兴T11)因式分解:x 2-1= .{答案}(x +1)(x -1){解析}本题考查了用平方差公式分解因式,根据平方差公式,有x 2-1=x 2-12=(x +1)(x -1). {分值}5{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019•绍兴T12)不等式3x -2≥4的解为 . {答案} x ≥2.{解析}本题考查了解一元一次不等式,先移项得,3x ≥4+2,再合并同类项得,3x ≥6,把x 的系数化为1得,x ≥2. {分值}5{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式}ED C BAHF{类别:常考题} {难度:1-最简单}{题目}13.(2019•绍兴T13)我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 .{答案}4{解析}本题考查了幻方的特点,数的对称性是解题的关键.根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m =15-8-3=4. {分值}5{章节:[1-1-3-1]有理数的加法} {考点:有理数加法的实际应用} {类别:数学文化} {难度:2-简单}{题目}14.(2019•绍兴T14)如图,在直线AP 上方有一个正方形ABCD ,∠PAD =30°,以点B为圆心,AB 为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 .{答案}45°或15°.{解析}本题考查了以正方形为背景的角度计算,正确画出图形是解题的关键.如图,∵四边形ABCD 是正方形,∴∠BAD =90°,∵∠PAD =30°,∴∠BAM =60°,又∵BA =BM ,∴△ABM 是等边三角形.当点E 在直线PA 的上方时,点E 与点B 重合,显然∠ADE =∠ADB =45°;当点E 在直线PA 的下方时,∠BDE =180°-∠BME =180°-2×60°=60°,∴∠ADE =∠BDE -∠ADB =60°-45°=15°,因此答案为45°或15°.{分值}5{章节:[1-18-2-3] 正方形} {考点:等边三角形的判定} {考点:正方形的性质} {考点:几何综合} {类别:发现探究} {类别:易错题} {难度:3-中等难度}{题目}15.(2019•绍兴T15)如图,矩形ABCD 的顶点A ,C 都在曲线y =kx (常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .{答案}y =35x .{解析}本题考查了反比例函数中几何图形问题,设C (5,k 5),A (k 3,3),则A (k 3,k5);设直线BD 的函数表达式为y =ax +b ,则⎩⎪⎨⎪⎧k 3a +b =k 5,5a +b =3,解得⎩⎪⎨⎪⎧a =35,b =0, 因此直线BD 的函数表达式是y =35x .{分值}5{章节:[1-26-1]反比例函数的图像和性质} {考点:矩形的性质}{考点:待定系数法求一次函数的解析式} {考点:双曲线与几何图形的综合} {类别:常考题} {难度:3-中等难度}{题目}16.(2019•绍兴T16)把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 .{答案}10或6+22或8+22.{解析}本题考查了图形的剪拼,抓住图形的特征是解题的关键,如下图,共有3种周长不同的拼法,拼成的四边形的周长分别为10或6+22或8+22.E{分值}5{章节:[1-18-2-3] 正方形} {考点:勾股定理的应用} {考点:图形的剪拼} {考点:几何填空压轴} {类别:发现探究} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共8小题,合计80分.{题目}17.(2019•绍兴T17(1))(1)计算:4sin 60°+(π-2)0-(-12)-2-12.{解析}本题考查了实数的运算,根据实数运算法则直接解答.{答案}解:原式=4×32+1-4-23=-3.{分值}4{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题} {考点:正弦}{考点:简单的实数运算}{题目}17.(2019•绍兴T17(2))(2)x 为何值时,两个代数式x 2+1,4x +1的值相等? {解析}本题考查了一元二次方程的解法,由题意得到x 2+1=4x +1,利用因式分解法解方程即可.{答案}解:由题意,得x 2+1=4x +1,x 2-4x =0,x (x -4)=0,x 1=0,x 2=4. {分值}4{章节:[1-21-2-3] 因式分解法} {难度:2-简单} {类别:常考题}{考点:解一元二次方程-因式分解法}{题目}18.(2019•绍兴T18)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.{解析}本题考查了一次函数的应用,解题的关键:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.{答案}解: (1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060-35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得⎩⎨⎧150k +b =35,200k +b =10,∴⎩⎨⎧k =-0.5,b =100,∴y =-0.5x +110. 当x =180时,y =-0.5×180+110=20.答:当150≤x ≤200时,函数表达式为y =-0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时. {分值}8{章节:[1-19-4]课题学习 选择方案} {难度:2-简单} {类别:常考题}{考点:待定系数法求一次函数的解析式} {考点:分段函数的应用}{题目}19.(2019•绍兴T19)小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法. {解析}本题考查了条形统计图、折线统计图、算术平均数,抓住图中信息是解题的关键.(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信息和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.{答案}解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪这5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)一类:结合已知的两个统计图的信息及体育运动实际,如:集训时间不是越多越好,集训时间过长,可能会造成劳累,导致成绩下滑.二类:结合已知的两个统计图的信息,如:集训时间为10天或14天时,成绩最好.三类:根据已知的两个统计图中的其中一个统计图的信息,如:集训时间每期都增加.{分值}8{章节:[1-20-1-1]平均数}{难度:2-简单}{类别:常考题}{考点:条形统计图}{考点:折线统计图}{考点:算术平均数}{题目}20.(2019•绍兴T20)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:2≈1.41,3≈1.73){解析}本题考查了解直角三角形的应用,解题的关键是添加常用辅助线,构造直角三角形解决问题.(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H,则四边形PCHG是矩形,求出DF,再求出DF-DE即可解决问题.{答案}解:(1)如图2中,作BO⊥DE,垂足为O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°-90°=60°,∴OD=BD•sin60°=40•sin60°=203(cm),∴DF=OD+OE=OD+AB=203+5≈39.6(cm).(2)下降了.如图3,过点D作DF⊥l于F,过点C作CP⊥DF于P,过点B作BG⊥DF于G,过点C作CH⊥BG 于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,又∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=103(cm),DP=CD sin45°=102(cm),∴DF=DP+PG+GF=DP+CH+AB=102+10+5(cm),∴下降高度:DE-DF=203+5-102-103-5=103-102≈3.2(cm).{分值}8{章节:[1-28-2-1]特殊角}{难度:3-中等难度}{类别:高度原创}{类别:常考题}{考点:解直角三角形的应用—测高测距离}{题目}21.(2019•绍兴T21)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.{解析}本题考查了切线的性质及应用,添加过切点的半径是常用辅助线.(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长;本题答案不唯一.{答案}解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)本题答案不唯一,如:添加∠DCB =30°,求AC 的长.解:∵AB 为直径,∴∠ACB =90°,∵∠ACO +∠OCB =90°,∠OCB +∠DCB =90°,∴∠ACO =∠DCB ,∵∠ACO =∠A ,∴∠A =∠DCB =30°,在Rt △ACB 中,BC =12AB =1, ∴AC =3BC =3.{分值}10{章节:[1-24-2-2]直线和圆的位置关系}{难度:3-中等难度}{类别:常考题}{考点:圆周角定理}{考点:切线的性质}{题目}22.(2019•绍兴T22)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.{解析}本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;(1)①若所截矩形材料的一条边是BC ,过点C 作CF ⊥AE 于F ,得出S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出△CHF 为等腰三角形,得出AE =FG =6,HG =BC =5,BG =CH =FH ,求出BG =CH =FH =FG -HG =1,AG =AB -BG =5,得出S 2=AE •AG =6×5=30;(2)在CD 上取点F ,过点F 作FM ⊥AB 于M ,FN ⊥AE 于N ,过点C 作CG ⊥FM 于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出△CGF 为等腰三角形,得出MG =BC =5,BM =CG ,FG =DG ,设AM =x ,则BM =6-x ,FM =GM +FG =GM +CG =BC +BM =11-x ,得出S =AM ×FM =x (1-x )-x 2+11x ,由二次函数的性质即可得出结果.{答案}解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM×FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.{分值}12{章节:[1-22-3]实际问题与二次函数}{难度:3-中等难度}{类别:高度原创}{考点:矩形的性质}{考点:与平行四边形有关的面积问题}{考点:二次函数与平行四边形综合}{题目}23.(2019•绍兴T23)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM =10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.{解析}本题是四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识.(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.{答案}解:(1)①AM=AD+DM=40,或AM=AD-DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∴AM=202或(AM=-202舍去).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=1010或(AM=-1010舍去).综上所述,满足条件的AM的值为202或1010.(2)如图2中,连接CD1.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=302,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1=CD22+D1D22=306,∵∠BAC=∠D2AD1=90°,∴∠BAC-∠CAD2=∠D2AD1-∠CAD2,∴∠BAD2=∠CAD1,又∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=306.{分值}12{章节:[1-17-1]勾股定理}{难度:4-较高难度}{类别:发现探究}{考点:勾股定理}{考点:全等三角形的判定SAS}{考点:几何综合}{题目}24.(2019•绍兴T24)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN ∶EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a ∶b 的值.{解析}本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,是一道几何综合题.(1)作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .证明△FHE ≌△MQN (ASA ),即可解决问题.(2)由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME .由k =3,MP =EF =3PE ,推出MN PM =EF PE =3,推出PN PM =PF PE=2,由△PNF ∽△PME ,推出NF ME =PN PM=2,ME ∥NF ,设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.{答案}解:(1)如图1中,作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH =AB ,MQ =BC ,∵AB =CB ,∴EH =MQ ,∵EF ⊥MN ,∴∠EON =90°,∵∠ECN =90°,∴∠MNQ +∠CEO =180°,∠FEH +∠CEO =180°,∴∠FEH =∠MNQ ,∵∠EHF =∠MQN =90°,∴△FHE ≌△MQN (ASA ),∴MN =EF ,∴k =MN ∶EF =1.(2)∵a ∶b =1∶2,∴b =2a ,由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,∴当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME . ∵k =3,MP =EF =3PE ,∴MN PM =EF PE =3,∴PN PM =PF PE=2, ∵∠FPN =∠EPM ,∴△PNF ∽△PME ,∴NF ME =PN PM=2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH ⊥BD 于H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH =23m ,DH =10m ,∴a b =AB AD =FH HD =35. ②如图3中,当点N 与C 重合,作EH ⊥MN 于H .则PH =m ,HE =3m ,∴HC =PH +PC =13m ,∴tan ∠HCE =MB BC =HE HC =313, ∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD ,∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD MB =FC ME =2,∴a b =CD BD =2MB BC =2313, 综上所述,a ∶b 的值为35或2313. {分值}14{章节:[1-28-1-2]解直角三角形}{难度:5-高难度}{类别:发现探究}{考点:矩形的性质}{考点:相似三角形的性质}{考点:其他二次函数综合题}{考点:几何综合}。

浙江省杭州市2019年中考数学一轮复习(含答案)第一章数与式第四节因式分解同步测试13

浙江省杭州市2019年中考数学一轮复习(含答案)第一章数与式第四节因式分解同步测试13

第四节因式分解姓名: ________班级:________用时:______分钟1 、( 2019·改编题) 将以下多项式因式分解,结果中不含有因式a+ 1的是()A、a2-1B、a2+aC、a2+a-2D、(a +2) 2-2(a +2) +12、( 2018·湖南邵阳中考) 将多项式x-x3因式分解正确的选项是()A、x(x2-1) B 、x(1 -x2)C、x(x+1)(x-1)D、x(1+x)(1-x)3、( 2018·山东东营中考)分解因、4 、 ( 2018·浙江杭州中考 ) 因式分解: (a ______________________________式:- b) 2x3--(b4xy2- a)==5 、 ( 2018·湖南株洲中考 ) 因式分解: a2(a - b) - 4(a - b) =、6、( 2018·吉林中考 ) 若 a+b=4,ab=1,则 a2b+ab2=______.7、( 2018·江苏苏州中考 ) 若 a+b=4, a-b=1,则 (a +1) 2-(b -1) 2的值为________、8、因式分解: (x 2-6) 2-6(x 2-6) +9.22+6mn.9、( 2019·浙江金华模拟 ) 分解因式: m-25+9n10、计算: 1252-50×125+ 252=( )A、100B、150C、10 000D、22 50011、已知a,b,c 是△ ABC的三边长,且知足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是 ( )A、等腰三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形12、( 2016·湖北宜昌中考 ) 小强是一位密码编译喜好者,在他的密码手册中,有这样一条信息: a-b, x-y,x+y,a+b,x2-y2,a2-b2分别对应以下六个字:昌、爱、我、宜、游、美,现将(x 2-y2)a 2-(x 2-y2)b 2因式分解,结果呈现的密码信息可能是 ( )A、我爱美B、宜昌游C、爱我宜昌D、美我宜昌13、假如多项式x2+px+12 能够分解成两个一次因式的积,那么整数p 的值可取多少个()A、4B、5C、6D、814、已知 a=2 002x +2 003 ,b=2 002x +2 004 ,c=2 002x +2 005 ,则多项式 a2+b2+c2-ab-bc-ca 的值为 ( )A、0B、1C、2D、315、( 2018·湖北天门模拟 ) 已知 ab=2,a-2b=- 3,则 a3 b-4a2b2+4ab3的值为________、16 、 ( 2018·天津模拟 ) 分解因式 (xy - 1) 2- (x + y - 2xy)(2 - x - y) =、17、如图,将一张矩形纸板依据图中虚线裁剪成九块,此中有两块是边长都为m的大正方形,两块是边长都为n 的小正方形,五块是长为m,宽为 n 的全等小矩形,且 m>n,( 以上长度单位:cm)(1)察看图形,能够发现代数式22能够因式分解为 ________;2m+5mn+2n(2)若每块小矩形的面积为 1022cm,四个正方形的面积和为58 cm,试求图中所有裁剪线 ( 虚线部分 ) 长之和、18、认真阅读下边例题,解答问题:例题,已知二次三项式x2-4x+m有一个因式是 (x +3) ,求另一个因式以及m的值、解:设另一个因式为 (x +n) ,得 x2-4x+m=(x +3)(x +n) ,则x2-4x+m=x2+(n +3)x +3n.n+3=- 4,∴m=3n,解得 n=- 7,m=- 21,∴另一个因式为 (x -7) ,m的值为- 21.问题:模仿以上方法解答下边问题:已知二次三项式 3x2+5x-m有一个因式是 (3x -1) ,求另一个因式以及m的值、19、在当今“互联网+”的时代,密码与我们的生活已经密切相连,密不行分,而诸如“ 123456”、诞辰等简单密码又简单被破解,所以利用简单方法产生一组简单记忆的密码就很有必需了、有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2-x-2 因式分解的结果为 (x -1)(x +1)(x +2) ,当 x=18 时, x-1=17,x+1=19,x+2=20,此时能够获得数字密码171920.(1) 依据上述方法,当x=21,y=7 时,关于多项式x3-xy2分解因式后能够形成哪些数字密码? ( 写出三个 )(2)若一个直角三角形的周长是 24,斜边长为 10,此中两条直角边分别为 x,y,求出一个由多项式x3y+xy3分解因式后获得的密码 ( 只要一个即可 ) ;(3)若多项式 x3+(m-3n)x 2-nx-21 因式分解后,利用此题的方法,当 x=27 时能够获得此中一个密码为242834,求 m,n 的值、参照答案【基础训练】1、C 2.D 3.x(x +2y)(x -2y)4、(a -b)(a -b+1)5、(a -b)(a +2)(a -2) 6.4 7.128、解:原式= (x 2-6-3) 2=(x 2-9) 2=(x +3) 2(x -3) 2.9、解:原式= (m2+6mn+9n2) -25=(m+3n) 2-25=(m+3n+5)(m+3n-5) 、【拔高训练】10、C 11.C 12.C 13.C14.D2217、解: (1)(m +2n)(2m+n)(2) 依题意得 2m2+2n2=58,mn=10.22∴m+n =29.222∵(m+n) =m+2mn+n ,∴(m+n) 2=29+20=49.∵m+n>0,∴m+n=7,∴图中全部裁剪线 ( 虚线部分 ) 长之和为 42 cm.18、解:设另一个因式为 (x +n) ,则3x2+5x-m=(3x -1)(x +n) 、则3x2+5x-m=3x2+(3n -1)x -n.3n-1=5,∴-n=- m,解得 n=2,m=2,∴另一个因式为 (x +2) ,m的值为 2.【培优训练】19 解: (1)x 3-xy2=x(x -y)(x +y) ,当x=21,y=7 时,x-y=14,x+y=28,可得数字密码是 211428,也能够是 212814,142128;x+y=14,(2)由题意得x2+y2=100,解得xy=48,而 x3 y+xy3=xy(x 2+y2) ,所以可得数字密码为 48100.(3)由题意得 x3+(m-3n)x 2-nx-21=(x -3)(x +1)(x +7) ,∵(x -3)(x +1)(x +7)=x3+5x2-17x-21,32∴x+(m-3n)x -nx-21=x3+5x2-17x-21,m-3n=5,m=56,∴解得n=17,n=17.故 m,n 的值分别是 56,17.。

浙江省各市2019年中考数学分类解析 专题2:代数式和因式分解

浙江省各市2019年中考数学分类解析 专题2:代数式和因式分解

浙江11市2019年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(2019浙江杭州3分)下列计算正确的是【】A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【答案】D。

【考点】整式的混合运算,积的乘方和幂的乘方,整式的乘法,同底数幂的乘法和除法。

【分析】根据整式的混合运算法则对各选项分别进行计算,即可判断:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、223m3m3m13m1÷=(﹣)(﹣),故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确。

故选D。

2.(2019浙江湖州3分)计算2a-a,正确的结果是【】A.-2a3 B.1 C.2 D.a【答案】D。

【考点】合并同类项。

【分析】根据合并同类项的运算法则计算作出判断:2a-a= a。

故选D。

3.(2019浙江湖州3分)要使分式1x有意义,x的取值范围满足【】A.x=0 B.x≠0 C.x>0 D.x<0 【答案】B。

【考点】分式有意义的条件。

【分析】根据分式分母不为0的条件,要使1x在实数范围内有意义,必须x≠0。

故选B。

4.(2019浙江嘉兴、舟山4分)若分式x1x+2-的值为0,则【】A. x=﹣2 B.x=0 C.x=1或2 D. x=1 【答案】D。

【考点】分式的值为零的条件。

【分析】∵分式x1x+2-的值为0,∴x1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。

故选D。

5. (2019浙江丽水、金华3分)计算3a•(2b)的结果是【】A.3ab B.6a C.6ab D.5ab【答案】C。

【考点】单项式乘单项式。

【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:3a•(2b)=3·2a•b=6ab.故选C。

【真题】2019年浙江省杭州市中考数学试卷含解析答案

【真题】2019年浙江省杭州市中考数学试卷含解析答案

浙江省杭州市2019年中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.1.计算下列各式,值最小的是(计算下列各式,值最小的是(计算下列各式,值最小的是() A. A. 2×0+12×0+12×0+1-9 -9 -9 B. B. 2+0×12+0×12+0×1-9 -9 -9 C. C. 2+0-2+0-2+0-1×91×91×9 D. D. 2+0+1-9 2+0+1-9 【答案】 A【考点】有理数的加减乘除混合运算有理数的加减乘除混合运算 【解析】【解答】解:【解答】解:A.A.A.∵原式∵原式∵原式=0+1-9=-8=0+1-9=-8=0+1-9=-8,, B.B.∵原式∵原式∵原式=2+0-9=-7=2+0-9=-7=2+0-9=-7,, C.C.∵原式∵原式∵原式=2+0-9=-7=2+0-9=-7=2+0-9=-7,, D.D.∵原式∵原式∵原式=2+1-9=-6=2+1-9=-6=2+1-9=-6,, ∵-8-8<<-7-7<<-6-6,, ∴值最小的是∴值最小的是-8. -8. 故答案为:故答案为:A. A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案. .2.2.在平面直角坐标系中,点在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则(轴对称,则( ) A. A. m=3m=3m=3,,n=2 n=2 B. B. m=-3m=-3m=-3,,n=2 n=2 C. C. m=3m=3m=3,,n=2 n=2 B.m=-2B.m=-2,,n=3 【答案】 B【考点】关于坐标轴对称的点的坐标特征关于坐标轴对称的点的坐标特征【解析】【解答】解:∵【解答】解:∵A A (m ,2)与B (3,n )关于y 轴对称,轴对称,∴m=-3m=-3,,n=2. 故答案为:故答案为:B. B.【分析】关于y 轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案. . 3.3.如图,如图,如图,P P 为⊙为⊙O O 外一点,外一点,PA PA PA,,PB 分别切⊙分别切⊙O O 于A ,B 两点,若PA=3PA=3,则,则PB=PB=(( )A. A. 2 2 2B. 3 3C. 4 4D. D. 5 5 【答案】 B【考点】切线长定理切线长定理【解析】【解答】解:∵【解答】解:∵PA PA PA、、PB 分别为⊙分别为⊙O O 的切线,的切线, ∴PA=PB PA=PB,, 又∵又∵PA=3PA=3PA=3,, ∴PB=3. 故答案为:故答案为:B. B.【分析】根据切线长定理可得PA=PB PA=PB,结合题意可得答案,结合题意可得答案,结合题意可得答案. .4.4.已知九年级某班已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树棵树..设e 男生有人,则( ) A. A. 2x+32x+32x+3((72-x 72-x))=30 =30 B. B. 3x+23x+23x+2((72-x 72-x))=30 =30 C. C. 2x+32x+32x+3((30-x 30-x))=72 =72 D. D. 3x+23x+23x+2((30-x 30-x))=72 【答案】 D【考点】一元一次方程的其他应用一元一次方程的其他应用 【解析】【解答】解:依题可得,【解答】解:依题可得, 3x+23x+2((30-x 30-x))=72. 故答案为:故答案为:D. D.【分析】男生种树棵数【分析】男生种树棵数++女生种树棵数女生种树棵数=72=72=72,依此列出一元一次方程即可,依此列出一元一次方程即可,依此列出一元一次方程即可. .5.5.点点同学对数据点点同学对数据2626,,3636,,3636,,4646,5■,,5■,,5■,5252进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是(到了,则计算结果与被涂污数字无关的是() A. A. 平均数平均数平均数 B. B. 中位中位数 C. C. 方方差 D. D. 标准差标准差标准差 【答案】 B【考点】中位数中位数【解析】【解答】解:依题可得,【解答】解:依题可得, 这组数据的中位数为:这组数据的中位数为:=41=41,,∴计算结果与被涂污数字无关的是中位数∴计算结果与被涂污数字无关的是中位数. . 故答案为:故答案为:B. B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案. .6.6.如图,在△如图,在△如图,在△ABC ABC 中,点D ,E 分别在AB 和AC 边上,边上,DE DE DE∥∥BC BC,,M 为BC 边上一点(不与点B 、C 重合),连接AM 交DE 于点N ,则(,则()A.B. C.D.【答案】 C【考点】平行线分线段成比例平行线分线段成比例 【解析】【解答】解:【解答】解:A.A.A.∵∵DE DE∥∥BC BC,, ∴ , , ∴ , ,∵ ≠ , ∴≠,故错误,故错误,A A 不符合题意;不符合题意; B.B.∵∵DE DE∥∥BC BC,, ∴ , , ∴ , ,∵≠,∴ ≠ ,故错误,故错误,B B 不符合题意;不符合题意; C.C.∵∵DE DE∥∥BC BC,, ∴ , ,∴=,故正确,故正确,C C 符合题意;符合题意; D.D.∵∵DE DE∥∥BC BC,,∴ , ,∴ = , 即=,故错误,故错误,D D 不符合题意;不符合题意; 故答案为:故答案为:C. C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案. .7.7.在△在△在△ABC ABC 中,若一个内角等于另两个内角的差,则(中,若一个内角等于另两个内角的差,则( ) A. A. 必有一个内角等于必有一个内角等于30°30° B. B. 必有一个内角等于45°45° C. C. 必有一个内角等于必有一个内角等于60°60° D. D. 必有一个内角等于90°90° 【答案】 D【考点】三角形内角和定理三角形内角和定理 【解析】【解答】解:设△【解答】解:设△ABC ABC 的三个内角分别为A 、B 、C ,依题可得,,依题可得, A=B-C ①,①,又∵A+B+C=180°②,又∵A+B+C=180°②, ②-①得:①得: 2B=180°,2B=180°, ∴B=90°,∴B=90°,∴△∴△ABC ABC 必有一个内角等于90°.90°. 故答案为:故答案为:D. D.【分析】根据题意列出等式A=B-C A=B-C①,再由三角形内角和定理得①,再由三角形内角和定理得A+B+C=180°②,由②A+B+C=180°②,由②--①可得B=90°,B=90°,由此即由此即可得出答案可得出答案. .8.8.已知一次函数已知一次函数y 1=ax+b 和y 2=bx+a =bx+a(a≠b),函数(a≠b),函数y 1和y 2的图象可能是(的图象可能是()A ABC B CD 【答案】 A【考点】一次函数图象、性质与系数的关系一次函数图象、性质与系数的关系【解析】【解答】解:【解答】解:A.A.A.∵∵y 1=ax+b 图像过一、二、三象限,图像过一、二、三象限, ∴a >0,b >0,又∵又∵y y 2=bx+a 图像过一、二、三象限,图像过一、二、三象限, ∴b >0,a 0,a>>0, 故正确,故正确,A A 符合题意;符合题意;B.B.∵∵y 1=ax+b 图像过一、二、三象限,图像过一、二、三象限, ∴a >0,b >0,又∵又∵y y 2=bx+a 图像过一、二、四象限,图像过一、二、四象限, ∴b <0,a 0,a>>0,故矛盾,故矛盾,B B 不符合题意;不符合题意;C.C.∵∵y 1=ax+b 图像过一、二、四象限,图像过一、二、四象限, ∴a <0,b >0,又∵又∵y y 2=bx+a 图像过一、二、四象限,图像过一、二、四象限,∴b <0,a 0,a>>0, 故矛盾,故矛盾,C C 不符合题意;不符合题意;D.D.∵∵y 1=ax+b 图像过二、三、四象限,图像过二、三、四象限, ∴a <0,b <0,又∵又∵y y 2=bx+a 图像过一、三、四象限,图像过一、三、四象限, ∴b >0,a 0,a<<0,故矛盾,故矛盾,D D 不符合题意;不符合题意; 故答案为:故答案为:A. A.【分析】根据一次函数图像与系数的关系:【分析】根据一次函数图像与系数的关系:k k >0,b >0时,图像经过一、二、三象限;时,图像经过一、二、三象限;k k >0,b <0时,图像经过一、三、四象限;经过一、三、四象限;k k <0,b <0时,图像经过二、三、四象限;时,图像经过二、三、四象限;k k >0,b >0时,图像经过一、二、四象限;依此逐一分析即可得出答案依此逐一分析即可得出答案. .9.9.如图,如图,一块矩形木板ABCD 斜靠在墙边(OC OC⊥⊥OB OB,,点A ,B ,C ,D ,O 在同一平面内).已知AB=a AB=a,,AD=b AD=b,,∠BCO=x BCO=x,,则点A 到OC 的距离等于(的距离等于()A. A. asinx+bsinx asinx+bsinx asinx+bsinxB. B. acosx+bcosx acosx+bcosx acosx+bcosxC. C. asinx+bcosx. asinx+bcosx. asinx+bcosx.D. D. acosx+bsinx acosx+bsinx 【答案】 D【考点】解直角三角形的应用解直角三角形的应用【解析】【解答】解:作AG AG⊥⊥OC 交OC 于点G ,交BC 于点H ,如图,,如图,∵四边形ABCD 为矩形,为矩形,AD=b AD=b AD=b,, ∴∠ABH=90°,∴∠ABH=90°,AD=BC=b AD=BC=b AD=BC=b,, ∵OB OB⊥⊥OC OC,, ∴∠O=90°,∴∠O=90°,又∵∠又∵∠HCG+HCG+HCG+∠GHC=90°,∠∠GHC=90°,∠∠GHC=90°,∠AHB+AHB+AHB+∠BAH=90°,∠∠BAH=90°,∠∠BAH=90°,∠GHC=GHC=GHC=∠∠AHB AHB,∠,∠,∠BC0=x BC0=x BC0=x,, ∴∠∴∠HCG=HCG=HCG=∠∠BAH=x BAH=x,, 在Rt Rt△△ABH 中,中, ∵cos cos∠∠BAH=cosx= ,AB=a AB=a,,∴AH=,∵tan tan∠∠BAH=tanx= , ∴BH=a·tanx,∴BH=a·tanx,∴CH=BC-BH=b-CH=BC-BH=b-a·tanx,a·tanx,a·tanx, 在Rt Rt△△CGH 中,中,∵sin sin∠∠HCG=sinx= ,∴GH=GH=((b-b-a·tanx)·sinx=bsinx a·tanx)·sinx=bsinx a·tanx)·sinx=bsinx-atanxsinx -atanxsinx -atanxsinx,, ∴AG=AH+HG= +bsinx-atanxsinx +bsinx-atanxsinx,,=+bsinx-,=bsinx+acosx. 故答案为:故答案为:D. D.【分析】作AG AG⊥⊥OC 交OC 于点G ,交BC 于点H ,由矩形性质得∠ABH=90°,,由矩形性质得∠ABH=90°,AD=BC=b AD=BC=b AD=BC=b,根据等角的余角相等得,根据等角的余角相等得∠HCG=HCG=∠∠BAH=x BAH=x,在,在Rt Rt△△ABH 中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx=得BH=a·tanx,从而可得CH 长,在Rt Rt△△CGH 中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx GH=bsinx-atanxsinx,由,由AG=AH+HG 计算即可得出答案计算即可得出答案. .10.10.在平面直角坐标系中,在平面直角坐标系中,已知a≠b,设函数y=(x+a x+a))(x+b x+b))的图象与x 轴有M 个交点,函数y=(ax+1ax+1))(bx+1bx+1))的图象与x 轴有N 个交点,则(个交点,则() A. A. M=N-1M=N-1或M=N+1 M=N+1 B. B. M=N-1M=N-1或M=N+2 M=N+2 C. C. M=N M=N 或M=N+1 M=N+1 D. D. M=N M=N 或M=N-1 【答案】 C【考点】二次函数图象与坐标轴的交点问题二次函数图象与坐标轴的交点问题 【解析】【解答】解:∵【解答】解:∵y=y=y=((x+a x+a)()()(x+b x+b x+b),),),∴函数图像与x 轴交点坐标为轴交点坐标为 :(:(-a -a -a,,0),(),(-b -b -b,,0),), 又∵又∵y=y=y=((ax+1ax+1)()()(bx+1bx+1bx+1),),),∴函数图像与x 轴交点坐标为轴交点坐标为 :(:(- - ,0),(),(- - ,0),), ∵a≠b,∵a≠b, ∴M=N M=N,或,或M=N+1. 故答案为:故答案为:C. C.【分析】根据函数解析式分别得出图像与x 轴的交点坐标,根据题意a≠b 分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案出两个交点个数之间的关系式,从而得出答案. .二、填空题:本大题有6个小题,每小题4分,共24分, 11.11.因式分解:因式分解:因式分解:1-x 1-x 2=________. 【答案】 (1+x 1+x)()()(1-x 1-x 1-x)) 【考点】因式分解﹣运用公式法因式分解﹣运用公式法 【解析】【解答】解:∵原式【解答】解:∵原式==(1+x 1+x)()()(1-x 1-x 1-x)).故答案为:(故答案为:(1+x 1+x 1+x)()()(1-x 1-x 1-x)).【分析】根据因式分解的方法——公式法因式分解即可得出答案【分析】根据因式分解的方法——公式法因式分解即可得出答案. . 12.12.某计算机程序第一次算得某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m+n 个数据的平均数等于的平均数等于________________________。

2019年浙江省中考数学试卷(附答案与解析)

2019年浙江省中考数学试卷(附答案与解析)

第2页(共24页)123如图的几何体由六个相同的小正方体搭成,它的主视图是()4C .0.42D .0.15,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在()第5题图C .30︒D .70︒10)在同一直线上,则a 的值等于()C .3D .4()()53x x +-=经变换后得到抛物线(3)(5)y x x =+-,()B .向右平移2个单位D .向右平移8个单位65︒=,70C ∠︒=.若BC =则»BC的长为()第8题图C .2πD .E ,以EC 为边作矩形ECFG ,且边FG 过点D .在ECFG 的面积()第9题图B .先变小后变大毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3第4页(共24页)C .一直变大D .10.如图1,长、宽均为3,高为8面高为6意图,则图2中水面高度为图1第10题图A .245B .325C卷Ⅱ二、填空题(本大题有6小题,每小题5分,共3011.因式分解:21x -=.12.不等式324x-≥的解为.13.所表示的数是.第13题图14.如图,在直线AP 上方有一个正方形ABCD ,∠半径作弧,与AP 交于点A ,M ,分别以点A ,M 交于点E ,连结ED ,则ADE ∠的度数为.题14题图C 都在曲线ky x =(常数0k >,0x >)上,若顶点D的函数表达式是.第15题图分割成如图的四块,其中点O 为正方形的中心,点.用这四块纸片拼成与此正方形不全等的四边形MNPQ ,则四边形MNPQ 的周长是.第16题图17~20小题每小题8分,第21小题10分,第22,14分,共80分.解答需写出必要的文字说明、演算212-⎛⎫--- ⎪⎝⎭21x +,41x +的值相等?数学试卷第5页(共第6页(共24页)18.路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为0150x ≤≤时,求1(2)当150200x ≤≤时,求y 关于x 蓄电池的剩余电量.19.小明、小聪参加了100 m 跑的5期集训,时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5(2底座的高AB 为5cm ,长度均为20cm 的连杆.BCD 成平角,150ABC ∠︒=,如图2,求连杆端点D C 逆时针旋转,使165BCD ∠︒=,如图3,问此时0.1cm ,参考数据:2 1.41≈,3 1.73≈)图2图3第20题图AB 的长为2,过点C 的切线交AB 的延长线于点D ..30D ∠︒=,求AD 的长.请你解答.AD 的长30A ∠︒=,连结OC ,就可以证明ACB V 与DCO V ,并解答.第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7第8页(共24页)22.有一块形状如图的五边形余料ABCDE ,AB =135C ∠︒=,90E ∠︒>并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE (2)能否截出比(1最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM ②当A ,D ,M (2)若摆动臂AD 顺时针旋转90°,点D 2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1a ,BCb =,点M ,N 分别在边AB ,CD 上,点E ,FEF 交于点P ,记k MN EF =:.EF ⊥时,求k 的值..60MPE ∠︒=,3MP EF PE ==时,求:a b 第24题图数学试卷第9页(共第10页(共24页)浙江省绍兴市2019卷Ⅰ一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B【解析】科学记数法的表示形式为10na ⨯值时,要看把原数变成a 数相同.当原数绝对值1>时,n 解:数字126000000科学记数法可表示为81.2610⨯故选:B.【考点】科学计数法3.【答案】A个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率,根据三角形内角和定理计算,得到答案.1801007010︒︒︒︒=--=,180°再将点(,10)a 代入解析式即可;y kx b +=,;.,顶点坐标是(1,16)--.(1,16)-.2个单位长度得到抛物线(3)(5)y x x =+-,数学试卷第1112页(共24页)8.【答案】A【解析】连接OB ,OC .首先证明OBC △解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒∴90BOC ︒∠=∴BC =∴2OB OC ==∴»BC的长为2902360ππ⋅⋅=,故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△,∴CF CDCB CE=,∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,BG 于F ,由CDE BCF △∽△的比例线段5=,数学试卷第13页(共第14页(共24页)解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“解:根据“上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP ∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP ∴AE M '△为等边三角形,∴60E AM ∠'=︒,︒,,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,BD 的解析式.,35n k n +=+=,解得350m n ⎧=⎪⎨⎪=⎩,数学试卷第15第16页(共24页)16.【答案】6+或10或8+解:如图所示:图1的周长为1236+++=+;图2的周长为141410+++=;图3的周长为358++=+故四边形MNPQ 的周长是6+或10或8+故答案为:6+或10或8+三、解答题17.【答案】解:(1)原式341432=⨯+--=-.(2)2141x x +=+,240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+因式分解18.【答案】解:(115066035=-千米;,(200,10)代入,20=,0.5110y x =-+,当汽车已行驶180千米时,蓄.35千瓦时时汽车已行驶了150千米,据x 的函数表达式,再把180x =代入即可求出当汽车已.5710142056++++=(天),11.7611.6111.5311.62)511.68++++÷=(秒),5次测试的平均成绩是11.68秒;4期出现,建议集训时间定为14天.5期的集训共有多少天和小聪5次测试的平均.DE ⊥于O .数学试卷第17页(共第18页(共24页)图2∵90OEA BOE BAE∠=∠=∠=︒,∴四边形ABOE是矩形,∴90OBA=︒∠,∴1509060DBO∠=︒-︒=︒,∴sin60OD BD︒=⋅=,∴539.6(cm)DF OD OE OD AB=+=+=≈.(2)作DF l⊥于F,CP DF⊥于P,BG DF⊥于是矩形,图3∵60CBH∠=︒,90CHB∠=︒,∴30BCH∠=︒,∵165BCD∠=︒,45DCP∠=︒,∴sin60CH BC︒=⋅=,sin45DP CD︒=⋅∴DF DP PG GF DP CH AB=++=++=5 3.2(cm)-=.DE于O.解直角三角形求出OD即可解决问题.P,BG DF⊥于G,CH BG⊥于H.则四边形PCHG-DE即可解决问题.90DCB+∠=︒90OCD∠=︒,再根据含30度的直角2,然后计算OA OD+即可;的长,利用圆周角定理得到90ACB∠=︒,再证明数学试卷第19第20页(共24页)30A DCB∠=∠=︒,然后根据含3022.【答案】(1)①若所截矩形材料的一条边是BC 过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN ⊥则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1图2图3BC ,过点C 作CF AE ⊥于F ,得出,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过AEFG 为矩形,四边形BCHG 为矩形,证出CHF △6FG ==,5HG BC ==,BG CH FH ==,求出1=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=;FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥四边形BCGM 为矩形,证出CGF △为等腰三角形,CG ,FG DG =,设AM x =,则6BM x =-,11BC BM x=+=-,得出211x x +,由二次函数的性质即可得出结果.40DM +=,或20.AM AD DM =-=22223010800DM -=-=,.22230101000DM +=+=,.或.数学试卷第21页(共第22页(共24页)由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12302D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴221212306CD CD D D =+=∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS V V ≌,∴21306BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,Q ,设EF 交MN 于点O .1+80CEO ∠=︒, ,k 的值最大,最大值,k 的值最小,最小值为5.第24页(共24页)∴3MN EFPM PE==,∴2PN PFPM PE==,∵FPN EPM∠=∠,∴PNF PMEV V∽,∴2NF PNME PM==,//NFME设2PE m=,则4PF m=,6MP m=,12NP m=,①如图2中,当点N与点D重合时,点M恰好与B图2∵60MPE FPH∠=∠=︒,∴2PH m=,FH=,10PH m=,∴35a AB FHb AD HD===②如图3中,当点N与C重合,作EH MN⊥于H.图3∴13HC PH PC m=+=,∴tan13MB HEHCEBC HC∠=--,∵ME FC∥,∴MEB FCB CFD∠=∠=∠,MQ CD⊥于Q,设EF交MN于点O.证明.,当MN的长取最大时,EF取最短,此的最短时,EF的值取最大,此时k的值最小,3PE=,推出=3MN EFPM PE-,推出2PN PFPM PE==,2PNPM==,ME NF∥,设2PE m=,则4PF m=,2中,当点N与点D重合时,点N与C重合,分别求解即可.数学试卷第23。

用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

4.3用乘法公式分解因式第2课时用完全平方公式分解因式基础过关全练知识点1完全平方式1.若关于x的多项式x2-4x+a(其中a是常数)是完全平方式,则a的值是()A.2B.-2C.4D.-42.【新独家原创】若关于x的多项式x2+mx+n是完全平方式,则m,n 的值可能是()A.-1,14B.12,14C.14,-14D.-14,143.下列各式中,与2x2-6x的和是完全平方式的是()A.x+9B.3C.9D.9-x2知识点2用完全平方公式分解因式4.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+15.(2022浙江杭州余杭期末)下列因式分解正确的是()A.x2+y2=(x+y)2B.x2+2xy+y2=(x-y)2C.x2+x=x(x-1)D.x2-y2=(x+y)(x-y)6.(2022贵州黔东南中考)分解因式:2 022x2-4 044x+2 022=.7.【一题多变】(2022黑龙江绥化中考)分解因式: (m+n)2-6(m+n)+9=.[变式] 分解因式:19-13(a+b)+14(a+b)2= . 8.【教材变式·P108T5变式】因式分解:(1)m 2-4mn+4n 2; (2)-a+2a 2-a 3;(3)4+12(a-b)+9(a-b)2; (4)(x 2+4)2-16x 2.9.(2021浙江杭州余杭模拟)给出三个多项式:①a 2+3ab-2b 2;②b 2-3ab;③ab+6b 2.请任意选择两个多项式进行加法运算,并把结果分解因式.知识点3 简便运算10.用简便方法计算: 1012+198×101+992.能力提升全练11.下列因式分解正确的是( ) A.ab+ac+a=a(b+c)B.a 2-4b 2=(a+4b)(a-4b)C.9a 2+6a+1=3a(3a+2)D.a 2-4ab+4b 2=(a-2b)212.(2022浙江绍兴柯桥期中,7,)若x 2+2(k+1)x+4是完全平方式,则k 的值为( ) A.1 B.-3 C.-1或3 D.1或-313.把(a+b)2-4(a 2-b 2)+4(a-b)2因式分解为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)214.若ab=2,b-a=3,则-a 3b+2a 2b 2-ab 3的值为 .15.因式分解:a 2-b 2-x 2+y 2-2ay+2bx= .16.【新独家原创】下列单项式:①3x;②-5x;③-154;④-1516x 2;⑤-3x 中,加上x 2-x+4后成为一个完全平方式的有 .(填序号)17.【作差法比大小】已知P=2x2+4y+13,Q=x2-y2+6x-1,试比较P,Q的大小.18.【学科素养·运算能力】(2022浙江杭州外国语学校期中,22,)配方法是一种重要的解决问题的数学方法,它不仅可以将一个看似不能分解的多项式因式分解,还能解决一些与非负数有关的问题或代数式最大值、最小值的问题.请用配方法解决以下问题.(1)试说明:无论x,y取何值,多项式x2+y2-4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足-a2+5a+b-3=0,求a+b的最小值.素养探究全练19.【运算能力】我们知道(x+a)(x+b)=x2+(a+b)x+ab,若将该式从右到左使用,就可得到用“十字相乘法”因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)分解因式:x2+6x+8=(x+)(x+);(2)请用上述方法解方程:x2-3x-4=0.答案全解全析基础过关全练1.C ∵关于x 的多项式x 2-4x+a(其中a 是常数)是完全平方式,∴a=4,故选C.2.A 当m=-1,n=14时,x 2+mx+n=x 2-x+14=(x −12)2,故选A. 3.D (2x 2-6x)+(9-x 2)=2x 2-6x+9-x 2=x 2-6x+9.故选D.4.C 1-4a+4a 2=(1-2a)2,故选C.5.D x 2+y 2不能分解,故A 错误;x 2+2xy+y 2=(x+y)2,故B 错误; x 2+x=x(x+1),故C 错误;x 2-y 2=(x+y)(x-y),故D 正确.故选D.6.答案 2 022(x-1)2解析 原式=2 022(x 2-2x+1)=2 022(x-1)2.7.答案 (m+n-3)2解析 原式=(m+n)2-2·(m+n)·3+32=(m+n-3)2.[变式] 答案 (13−12a −12b)2解析 原式=[13−12(a +b)]2=(13−12a −12b)2. 8.解析 (1)原式=m 2-2·m·2n+(2n)2=(m-2n)2.(2)原式=-a(a 2-2a+1)=-a(a 2-2·a·1+12)=-a(a-1)2.(3)原式=22+2·2·3(a-b)+[3(a-b)]2=[2+3(a-b)]2=(2+3a-3b)2.(4)原式=(x 2+4)2-(4x)2=(x 2+4+4x)(x 2+4-4x)=(x 2+4x+4)(x 2-4x+4)=(x+2)2(x-2)2.9.解析答案不唯一,写出以下任意一个即可.①+②得a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).①+③得a2+3ab-2b2+ab+6b2=a2+4ab+4b2=(a+2b)2.②+③得b2-3ab+ab+6b2=7b2-2ab=b(7b-2a).10.解析1012+198×101+992=1012+2×99×101+992=(101+99)2=2002=40 000.能力提升全练11.D ab+ac+a=a(b+c+1),故A错误;a2-4b2=(a+2b)(a-2b),故B错误; 9a2+6a+1=(3a+1)2,故C错误;a2-4ab+4b2=(a-2b)2,故D正确.故选D.12.D∵x2±2·x·2+22=(x±2)2,∴k+1=±2,∴k=1或-3,故选D.13.C(a+b)2-4(a2-b2)+4(a-b)2=(a+b)2-2×2(a+b)(a-b)+[2(a-b)]2=(a+b-2a+2b)2=(3b-a)2.14.答案-18解析当ab=2,b-a=3时,-a3b+2a2b2-ab3=-ab(a2-2ab+b2)=-ab(b-a)2= -2×32=-18.15.答案(a-y+b-x)(a-y-b+x)解析a2-b2-x2+y2-2ay+2bx=(a2-2ay+y2)-(b2-2bx+x2)=(a-y)2-(b-x)2=(a-y+b-x)(a-y-b+x).16.答案③④⑤解析 ①3x+x 2-x+4=x 2+2x+4,不是完全平方式;②-5x+x 2-x+4=x 2-6x+4,不是完全平方式;③-154+x 2-x+4=x 2-x+14=(x −12)2,是完全平方式; ④-1516x 2+x 2-x+4=116x 2-x+4=(14x −2)2,是完全平方式; ⑤-3x+x 2-x+4=x 2-4x+4=(x-2)2,是完全平方式.综上,满足条件的有③④⑤.故答案为③④⑤.17.解析 ∵P=2x 2+4y+13,Q=x 2-y 2+6x-1,∴P-Q=(2x 2+4y+13)-(x 2-y 2+6x-1)=2x 2+4y+13-x 2+y 2-6x+1=x 2-6x+9+y 2+4y+4+1=(x-3)2+(y+2)2+1>0,∴P>Q.18.解析 (1)x 2+y 2-4x+2y+6=x 2-4x+4+y 2+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1>0,∴无论x,y 取何值,多项式x 2+y 2-4x+2y+6的值总为正数.(2)a 4+a 2+1=a 4+2a 2+1-a 2=(a 2+1)2-a 2=(a 2+a+1)(a 2-a+1).(3)∵-a 2+5a+b-3=0,∴b=a 2-5a+3,∴a+b=a 2-4a+3=(a-2)2-1,∴当a=2时,a+b 有最小值,为-1,∴a+b的最小值为-1.素养探究全练19.解析(1)2;4或4;2.(2)因为x2-3x-4=x2+(1-4)x+1×(-4)=(x-4)·(x+1)=0,所以x-4=0或x+1=0, 所以x=4或x=-1.。

专题02整式及因式分解--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

专题02整式及因式分解--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题02整式及因式分解一.选择题(共13小题)1.(2021•台州)下列运算中,正确的是()A.a2+a=a3B.(﹣ab)2=﹣ab2C.a5÷a2=a3D.a5・a2=a10【分析】根据整式的加减运算法则以及乘法运算法则即可求出答案.【详解】解:A、a2与a不是同类项,不能合并,故A不符合题意,B、原式=a2b2,故B不符合题意.C、原式=a3,故C符合题意.D、原式=a7,故D不符合题意.故选:C.2.(2021•丽水)计算(﹣a)2•a4的结果是()A.a6B.﹣a6C.a8D.﹣a8【分析】先化简为同底数幂的乘法,然后根据同底数幂的乘法法则计算即可.【详解】解:原式=a2•a4=a6,故选:A.3.(2021•宁波)计算a3•(﹣a)的结果是()A.a2B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.4.(2021•杭州)因式分解:1﹣4y2=()A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)【分析】直接利用平方差公式分解因式得出答案.【详解】解:1﹣4y2=1﹣(2y)2=(1﹣2y)(1+2y).故选:A.5.(2021•金华)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【分析】设商品原标价为a,然后分别计算每种调价方案后的售价,进行比较求解.【详解】解:设商品原标价为a元,A.先打九五折,再打九五折的售价为:0.95×0.95a=0.9025a;B.先提价50%,再打六折的售价为:(1+50%)×0.6a=0.9a;C.先提价30%,再降价30%的售价为:(1+30%)(1﹣30%)a=0.91a;D.先提价25%,再降价25%的售价为:(1+25%)(1﹣25%)a=0.9375a,∵0.9a<0.9025a<0.91a<0.9375a,∴B选项的调价方案调价后售价最低,故选:B.6.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。

人教版九年级数学下册2019年浙江省杭州市中考数学试卷及答案解析

人教版九年级数学下册2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)(2019•杭州)计算下列各式,值最小的是()A.2019++-+-⨯D.2019⨯+-B.2019+⨯-C.20192.(3分)(2019•杭州)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则( )A.3n=D.2n=-m=,3m=-,3n=C.2m=,2n=B.3m=-,23.(3分)(2019•杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PA=,则(PB=)A.2B.3C.4D.54.(3分)(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.23(72)30+-=x x+-=B.32(72)30x xC.23(30)72+-=x xx x+-=D.32(30)725.(3分)(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是() A.平均数B.中位数C.方差D.标准差6.(3分)(2019•杭州)如图,在ABCDE BC,M∆中,点D,E分别在AB和AC上,//为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=7.(3分)(2019•杭州)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒8.(3分)(2019•杭州)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .9.(3分)(2019•杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.(3分)(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+ C .M N =或1M N =+D .M N =或1M N =-二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)(2019•杭州)因式分解:21x-=.12.(4分)(2019•杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n+个数据的平均数等于.13.(4分)(2019•杭州)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于2cm(结果精确到个位).14.(4分)(2019•杭州)在直角三角形ABC中,若2AB AC=,则cos C=.15.(4分)(2019•杭州)某函数满足当自变量1x=时,函数值0y=,当自变量0x=时,函数值1y=,写出一个满足条件的函数表达式.16.(4分)(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A'点,D点的对称点为D'点,若90FPG∠=︒,△A EP'的面积为4,△D PH'的面积为1,则矩形ABCD的面积等于.三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)(2019•杭州)化简:242142xx x----圆圆的解答如下:22242142(2)(4)242xx x x x xx x--=-+--=-+--圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组 2- 2 3- 1- 4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.19.(8分)(2019•杭州)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.20.(10分)(2019•杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.21.(10分)(2019•杭州)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.22.(12分)(2019•杭州)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 23.(12分)(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA .(1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2019++-⨯+-B.2019+-⨯D.2019+⨯-C.2019【考点】1G:有理数的混合运算【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:.20198A⨯+-=-,B.20197+⨯-=-+-⨯=-C.20197D.20196++-=-,故选:A.2.(3分)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3m=,2m=-,3n=-m=,3n=D.2n=B.3m=-,2n=C.2【考点】5P:关于x轴、y轴对称的点的坐标【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:Q点(,2)A m与点(3,)B n关于y轴对称,n=.∴=-,2m3故选:B.3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PB=PA=,则( )A.2B.3C.4D.5【考点】MC :切线的性质【分析】连接OA 、OB 、OP ,根据切线的性质得出OA PA ⊥,OB PB ⊥,然后证得Rt AOP Rt BOP ∆≅∆,即可求得3PB PA ==.【解答】解:连接OA 、OB 、OP ,PA Q ,PB 分别切圆O 于A ,B 两点,OA PA ∴⊥,OB PB ⊥,在Rt AOP ∆和Rt BOP ∆中, OA OBOP OP =⎧⎨=⎩, Rt AOP Rt BOP(HL)∴∆≅∆, 3PB PA ∴==,故选:B .4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .23(72)30x x +-= B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=【考点】89:由实际问题抽象出一元一次方程【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案. 【解答】解:设男生有x 人,则女生(30)x -人,根据题意可得: 32(30)72x x +-=.故选:D .5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差【考点】1W :算术平均数;4W :中位数;7W :方差;8W :标准差 【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=【考点】9S :相似三角形的判定与性质 【分析】先证明ADN ABM ∆∆∽得到DN AN BM AM =,再证明ANE AMC ∆∆∽得到NE ANMC AM=,则DN NEBM MC=,从而可对各选项进行判断. 【解答】解://DN BM Q , ADN ABM ∴∆∆∽,∴DN ANBM AM=, //NE MC Q , ANE AMC ∴∆∆∽,∴NE ANMC AM =, ∴DN NEBM MC=. 故选:C .7.(3分)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒【考点】7K :三角形内角和定理【分析】根据三角形内角和定理得出180A B C ∠+∠+∠=︒,把C A B ∠=∠+∠代入求出C ∠即可.【解答】解:180A B C ∠+∠+∠=︒Q ,C A B ∠=∠+∠, 2180C ∴∠=︒, 90C ∴∠=︒,ABC ∴∆是直角三角形,故选:D .8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【考点】3F :一次函数的图象【分析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.【解答】解:A 、由①可知:0a >,0b >.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:0a <,0b >.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:0a <,0b >.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:0a <,0b <,∴直线②经过二、三、四象限,故D 错误.故选:A .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【考点】9T :解直角三角形的应用-坡度坡角问题;LB :矩形的性质【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离,本题得以解决.【解答】解:作AE OC ⊥于点E ,作AF OB ⊥于点F , Q 四边形ABCD 是矩形,90ABC ∴∠=︒,ABC AEC ∠=∠Q ,BCO x ∠=, EAB x ∴∠=, FBA x ∴∠=, AB a =Q ,AD b =,cos sin FO FB BO a x b x ∴=+=+g g ,故选:D .10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+ C .M N =或1M N =+D .M N =或1M N =-【考点】HA :抛物线与x 轴的交点【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.【解答】解:2()()()1y x a x b x a b x =++=+++Q ,∴△22()4()0a b ab a b =+-=->,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,Q 函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠Q ,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+; 综上可知,M N =或1M N =+. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= (1)(1)x x -+ . 【考点】54:因式分解-运用公式法【分析】根据平方差公式可以将题目中的式子进行因式分解. 【解答】解:21(1)(1)x x x -=-+Q , 故答案为:(1)(1)x x -+.12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 mx nym n++ . 【考点】2W :加权平均数【分析】直接利用已知表示出两组数据的总和,进而求出平均数.【解答】解:Q 某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于:mx nym n++. 故答案为:mx nym n++. 13.(4分)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 2cm (结果精确到个位).【考点】1H :近似数和有效数字;MP :圆锥的计算【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个冰淇淋外壳的侧面积21231236113()2cm ππ=⨯⨯⨯=≈.故答案为113.14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C = 或 . 【考点】1T :锐角三角函数的定义【分析】讨论:若90B ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC ,然后根据余弦的定义求cos C 的值;若90A ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值.【解答】解:若90B ∠=︒,设AB x =,则2AC x =,所以BC =,所以cos BC C AC ==;若90A ∠=︒,设AB x =,则2AC x =,所以BC ,所以cosAC C BC ===综上所述,cos C .. 15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 1y x =-+ .【考点】4G :反比例函数的性质;6F :正比例函数的性质;5F :一次函数的性质;3H :二次函数的性质【分析】根据题意写出一个一次函数即可. 【解答】解:设该函数的解析式为y kx b =+,Q 函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,∴01k b b +=⎧⎨=⎩解得:11k b =-⎧⎨=⎩,所以函数的解析式为1y x =-+, 故答案为:1y x =-+.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 2(535)+ .【考点】LB :矩形的性质;PB :翻折变换(折叠问题)【分析】设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,因为△A EP '的面积为4,△D PH '的面积为1,推出4A E D H '=',设D H a '=,则4A E a '=,由△A EP '∽△D PH ',推出D H PD PA EA ''='',推出4a xx a=,可得2x a =,再利用三角形的面积公式求出a 即可解决问题.【解答】解:Q 四边形ABC 是矩形, AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==, Q △A EP '的面积为4,△D PH '的面积为1,4A E D H ∴'=',设D H a '=,则4A E a '=,Q △A EP '∽△D PH ',∴D H PD PA EA ''='', ∴4a xx a=, 224x a ∴=,2x a ∴=或2a -(舍弃), 2PA PD a ∴'='=,Q1212a a =g g , 1a ∴=, 2x ∴=,2AB CD ∴==,PE =PH ,415AD ∴=+=+,∴矩形ABCD 的面积2(5=+.故答案为2(5+三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案. 【考点】6B :分式的加减法【分析】直接将分式进行通分,进而化简得出答案. 【解答】解:圆圆的解答错误, 正确解法:242142x x x ---- 42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+ 24244(2)(2)x x x x x ---+=-+ 22(2)(2)x x x x -=-+ 2xx =-+. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表数据 甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【考点】1W :算术平均数;VD :折线统计图;7W :方差 【分析】(1)利用描点法画出折线图即可. (2)利用方差公式计算即可判断.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦Q 甲. (2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙, 22S S ∴=乙甲.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.【考点】KG :线段垂直平分线的性质;KH :等腰三角形的性质【分析】(1)根据线段垂直平分线的性质可知PA PB =,根据等腰三角形的性质可得B BAP ∠=∠,根据三角形的外角性质即可证得2APC B =∠;(2)根据题意可知BA BQ=,根据等腰三角形的性质可得BAQ BQA∠=∠,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:Q线段AB的垂直平分线与BC边交于点P,PA PB∴=,B BAP∴∠=∠,APC B BAP∠=∠+∠Q,2APC B∴∠=∠;(2)根据题意可知BA BQ=,BAQ BQA∴∠=∠,3AQC B∠=∠Q,AQC B BAQ∠=∠+∠,2BQA B∴∠=∠,180BAQ BQA B∠+∠+∠=︒Q,5180B∴∠=︒,36B∴∠=︒.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【考点】GA:反比例函数的应用【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)480vt =Q ,且全程速度限定为不超过120千米/小时, v ∴关于t 的函数表达式为:480v t=,(04)t 剟. (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将6t =代入480v t =得80v =;将245t =代入480v t=得100v =. ∴小汽车行驶速度v 的范围为:80100v 剟.②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将72t =代入480v t =得9601207v =>千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.【考点】LB :矩形的性质;LE :正方形的性质【分析】(1)设出正方形CEFG 的边长,然后根据12S S =,即可求得线段CE 的长; (2)根据(1)中的结果可以题目中的条件,可以分别计算出HD 和HG 的长,即可证明结论成立.【解答】解:(1)设正方形CEFG 的边长为a , Q 正方形ABCD 的边长为1,1DE a ∴=-, 12S S =Q ,21(1)a a ∴=⨯-,解得,112a =(舍去),212a =-,即线段CE 12-; (2)证明:Q 点H 为BC 边的中点,1BC =, 0.5CH ∴=,DH ∴,0.5CH =Q ,12CG =,HG ∴ HD HG ∴=.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 【考点】HA :抛物线与x 轴的交点;3H :二次函数的性质;7H :二次函数的最值;5H :二次函数图象上点的坐标特征【分析】(1)将(0,0),(1,0)代入12()()y x x x x =--求出函数解析式即可求解; (2)对称轴为122x x x +=,当122x x x +=时,212()4x x y -=-是函数的最小值;(3)将已知两点代入求出12m x x =,12121n x x x x =--+,再表示出22121111[()][()]2424mn x x =--+--+,由已知1201x x <<<,可求出211110()244x --+剟,221110()244x --+剟,即可求解. 【解答】解:(1)当0x =时,0y =;当1x =时,0y =;∴二次函数经过点(0,0),(1,0),10x ∴=,21x =,2(1)y x x x x ∴==-=-, 当12x =时,14y =-, ∴乙说点的不对; (2)对称轴为122x x x +=, 当122x x x +=时,212()4x x y -=-是函数的最小值; (3)二次函数的图象经过(0,)m 和(1,)n 两点,12m x x ∴=,12121n x x x x =--+,22121111[()][()]2424mn x x ∴=--+--+ 1201x x <<<Q ,211110()244x ∴--+剟,221110()244x --+剟, 1016mn ∴<<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA .(1)若60BAC ∠=︒,①求证:12OD OA =. ②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.【考点】MR :圆的综合题【分析】(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,即可求解;②BC 长度为定值,ABC ∆面积的最大值,要求BC 边上的高最大,即可求解;(2)11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,而1802180AOD COD AOC mx nx mx mx nx ∠=∠+∠=︒--+=︒+-,即可求解.【解答】解:(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,30OBC ∴∠=︒,1122OD OB OA ∴==;②BC Q 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=,ABC ∆面积的最大值113332sin 60222BC AD OB =⨯⨯=⨯︒⨯=;(2)如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=,则11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,22AOC ABC mx ∠=∠=Q ,1802180AOD COD AOC mx nx mx mx nx ∴∠=∠+∠=︒--+=︒+-,∴∠=︒-,AOD x Q,1802=OE OD即:1801802︒+-=︒-,mx nx x化简得:20-+=.m n。

中考数学《因式分解》专题复习试卷(含答案)

中考数学《因式分解》专题复习试卷(含答案)

2018-2019学年初三数学专题复习因式分解一、单选题1.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y22.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+93.多项式6x3y2﹣3x2y2+12x2y3的公因式为()A. 3xyB. ﹣3x2yC. 3xy2D. 3x2y24.下列四个多项式,哪一个是2X2+5X-3的因式?()A. 2x-1B. 2x-3C. x-1D. x-35.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. 6ab=2a.3b6.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A. 962×95+962×5=962×(95+5)=962×100=96200B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D. 962×95+962×5=91390+4810=962007.把代数式xy2﹣9x分解因式,结果正确的是()A. x(y2﹣9)B. x(y+3)2C. x(y+3)(y﹣3)D. x(y+9)(y﹣9)8.计算(﹣2)2002+(﹣2)2001所得的正确结果是()A. 22001B. ﹣22001C. 1D. 29.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y)D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x210.下列多项式中,能用提取公因式法分解因式的是()A. x2﹣yB. x2+2xC. x2+y2D. x2﹣xy+y211.下列由左边到右边的变形,属于分解因式的变形是()A. ab+ac+d=a(b+c)+dB. a2﹣1=(a+1)(a﹣1)C. 12ab2c=3ab•4bcD. (a+1)(a﹣1)=a2﹣112.分解因式(a2+1)2﹣4a2,结果正确的是()A. (a2+1+2a)(a2+1﹣2a)B. (a2﹣2a+1)2C. (a﹣1)4D. (a+1)2(a﹣1)213.把x2﹣xy2分解因式,结果正确的是()A. (x+xy)(x﹣xy)B. x(x2﹣y2)C. x(x﹣y2)D. x(x﹣y)(x+y)14.下列各式中,从左到右的变形是分解因式的是()A. x2﹣2=(x+1)(x﹣1)﹣1B. (x﹣3)(x+2)=x2﹣x+6C. a2﹣4=(a+2)(a﹣2)D. ma+mb+mc=m(a+b)+mc15.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x16.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题17.分解因式:a2+ab=________.18.分解因式:a2﹣9=________.19.将多项式x2y-2xy2+y3分解因式的结果是________.20.因式分解:2x2﹣18=________.21.已知m2+m﹣1=0,则m3+2m2+2017=________.三、计算题22.因式分解:(1);(2)23.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.24.因式分解:3ab2+6ab+3a.25.把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)26.把下列各式分解因式:(1);(2).四、解答题27.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.28.﹣x2+7x﹣10.五、综合题29.把下列各式因式分解(1)﹣36aby+12abx﹣6ab(2)9x2﹣12x+4;(3)4x2﹣9y2(4)3x3﹣12x2y+12xy2.30.因式分解:(1)5mx2﹣10mxy+5my2(2)x2(a﹣1)+y2(1﹣a)答案解析部分一、单选题1.【答案】B【解析】【解答】解:﹣6x3y2﹣3x2y+12x2y2=﹣3x2y(2xy+1﹣4y)故选:B.【分析】根据公因式的确定方法:①系数取最大公约数,②字母取公共的字母③指数取最小的,可得到答案;2.【答案】D【解析】【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】A、a2+(-b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故错误;D、-x2+9能用平方差公式分解因式,故正确.故选D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.3.【答案】D【解析】【解答】解:6x3y2﹣3x2y2+12x2y3的公因式为3x2y2.故选:D.【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.4.【答案】A【解析】【分析】利用十字相乘法将2x2+5x-3分解为(2x-1)(x+3),即可得出符合要求的答案.【解答】∵2x2+5x-3=(2x-1)(x+3),2x-1与x+3是多项式的因式,故选:A.【点评】此题主要考查了因式分解的应用,正确的将多项式因式分解是解决问题的关键.5.【答案】C【解析】【解答】解:A. 的右边不是积的形式,不是因式分解;故选项错误;B. 是多项式乘法,不是因式分解;故选项错误;C. 运用平方差公式因式分解,故选项正确;D. 不是把多项式化成整式积的形式,故选项错误.故选C.6.【答案】A【解析】【解答】解:计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故答案为:A.【分析】通过观察式子,两个加数项中分别存在一个962,所以采取的简便方法为提取公因式法,将962提出公因式,进行接下来的计算即可。

2019年中考数学总复习 第一章 数与式 第三节 整式与因式分解好题随堂演练

2019年中考数学总复习 第一章 数与式 第三节 整式与因式分解好题随堂演练
第一章 数与式
好题随堂演练 1.(2017·济宁)单项式 9x y 与 4x y 是同类项,则 m+n 的值是( A.2 B.3 C.4
3 m 3 2 n
x-x 因式分解正确的是( A.x(x -1) C.x(x+1)(x-1)
2
B.x(1-x ) D.x(1+x)(1-x) )
2
D.-2(a-1) =-2a+1
2
8.先化简,再求值:(2a-1) -2(a+1)(a-1)-a(a-2),其中 a= 2+1.
参考答案 1.D 2.D 3.B 4.C 5.D
2
6.D 7.A
2 2
8.解:原式=4a -4a+1-2a +2-a +2a =a -2a+3 =(a-1) +2, 当 a= 2+1 时,原式=( 2+1-1) +2=4.
2
3.(2018·武汉)计算(a-2)(a+3)的结果是( A.a -6 C.a +6
2 2
B.a +a-6 D.a -a+6
4 2
2
4.(2018·泸州)下列计算,结果等于 a 的是( A.a+3a B.a -a
x 2
)
2
C.(a )
y
2 2
D.a ÷a
2x-3y
8
5.(2018·威海)已知 5 =3,5 =2,则 5 A. 3 4 B.1 C. 2 3
1
2 2 2
固 班 与 迁 马 司 时 朝 庆 嘉 清 离 距 现 我 18等 大 了 隔 间 们 它 实 其 出 袂 联 像 好 部 两 这 来 看 日 0今 约 各 去 相 东 西 属 一 92) 公 ( 四 元 永 和 在 事 中 狱 死 系 关 的 宪 窦 戚 外 与 因 者 而 未 书 固 班 。 年 末 帝 武 汉 于 成 完 , 》 记 史 《 作 迁 马 司 础 基 多 规 活 生 到 响 影 受 读 辑 逻 施 团 集 庞 从 眼 着 此 据 根 都 良 贤 策 官 校 、 士 博 五 置 权 政 时 持 支 学 倡 提 认 承 地 白 坦 正 统 种 立 树 了 而 目 以 并 指 别 特 要 里 我 术 儒 尊 独 百 斥 罢 议 建 舒 仲 董 用 武 于 键 关 其 化 变 度 幅 大 境 环 会 社 处 所 想 思 中 90年 前 元 公 入 出 当 相 间 文 行 材 取 在 们 他 使 也 这 好 癖 性 个 位 两 代 断 通 是 且 况 同 不 旨 宗 固 班 已 山 名 藏 和 ” 言 之 家 一 成 “ 称 自 迁 马 司 。 彩 色 的 国 有 过 看 帝 皇 经 则 书 汉 , 作 著 人 私 为 》 记 史 《 了 同 谓 制 限 统 正 过 经 已 就 场 立 这 德 道 家 于 源 说 也 容 悦 女 用 己 知 为 士 奉 崇 所 照 写 实 真 当 应 ” 誉 曲 乡 长 才 之 羁 负 少 “ 他 息 气 儒 腐 无 迹 形 拘 不 漓 淋 快 爽 风 人 个 义 主 漫 浪 种 着 带 者 作 到 会 体 以 即 处 五 三 阅 翻 意 随 》 记 史 《 开 打 们 我 日 今 可 。 徒 信 的 子 孔 公 周 是 称 自 , 样 一 固 班 和 迁 马 司 子 君 像 反 较 相 与 惜 怜 令 路 末 雄 英 其 色 角 爱 可 憨 浑 却 躁 暴 虽 个 一 成 把 中 文 ) 载 为 格 降 能 只 楚 伪 酋 称 必 代 后 ( 前 之 在 列 排 纪 本 而 头 对 死 邦 刘 祖 汉 是 羽 项 且 并 。 ” 辟 邪 “ 的 说 所 舒 仲 董 于 近 已 人 无 若 旁 泣 歌 又 , 筑 击 酒 饮 离 渐 高 和 轲 荆 写 里 》 记 史 《 料 资 化 文 下 或 派 正 非 缕 再 不 却 朔 方 东 虽 里 书 固 班 。 子 样 的 面 剖 会 社 个 整 现 呈 教 三 流 九 及 涉 谓 可 策 龟 和 者 日 稽 滑 有 还 , 外 之 传 列 客 刺 了 除 》 记 史 《 ” 蔽 所 贫 贱 羞 利 势 崇 殖 货 述 雄 奸 进 士 处 退 侠 游 序 经 六 后 而 老 黄 先 则 道 大 论 人 圣 于 缪 颇 非 是 又 “ 他 评 批 中 内 传 有 里 》 书 汉 《 。 责 指 的 固 班 到 受 就 迁 马 司 , 此 如 其 因 也 高 赵 官 宦 入 亥 胡 世 面 因 贬 坑 焚 虽 始 己 妲 姒 褒 城 倾 苗 工 共 尤 蚩 既 愚 而 韦 吕 尝 和 轲 荆 客 刺 流 一 起 白 膑 孙 都 非 韩 翟 墨 申 鞅 商 老 仁 同 管 渊 颜 与 只 也 孟 无 再 即 外 尼 仲 殿 公 周 帝 五 皇 四 圣 得 内 九 三 分 区 下 按 则 原 恶 昭 善 显 者 由 止 为 亡 秦 至 等 君 国 秋 春 子 弟 门 孔 语 论 巢 、 氏 娲 女 如 中 奇 传 括 包 名 代 193位 有 列 里 。 人 今 古 十 二 卷 》 书 汉 《 乃 物 产 后 之 ” 术 儒 尊 独 家 百 斥 罢 “ 于 属 是 上 史 历 在 品 作 他 出 看 们 我 使 最 , 想 思 统 正 的 固 班 现 表 以 足 不 还 方 地 些 这 了 泼 活 动 生 实 殊 百 乏 缺 针 ” 道 载 “ 向 趋 更 必 统 传 学 端 三 十 二 开 汉 由 径 》 记 《 没 则 否 作 写 前 之 固 班 令 台 兰 迁 马 司 公 史 太 有 得 好 气 运 书 读 国 算 总 凑 紧 团 集 官 文 持 维 在 目 其 造 所 人 后 还 样 面 方 多 板 呆 些 那 。 格 性 真 徒 门 他 和 子 孔 是 定 一 不 并 泥 拘 的 家 儒 中 念 观 俗 世 出 想 推 以 可 也 们 我 , 此 因 是 项 一 思 意 文 原 合 符 解 理 列 下 , 述 表 的 书 汉 和 》 记 史 《 于 1.关 180。 约 差 相 代 东 西 属 一 四 元 永 和 书 , 年 末 帝 武 汉 于 成 完 》 记 史 A.《 。 确 准 和 谨 严 更 比 要 上 修 编 在 此 因 彩 色 的 国 有 带 过 看 帝 皇 经 则 书 汉 而 , 作 著 人 私 为 》 记 史 B.《 。 代 断 通 是 记 史 了 定 决 就 这 , 同 不 大 很 有 》 书 汉 《 作 固 班 和 旨 宗 山 名 藏 ” 言 之 家 一 成 “ 的 迁 马 C.司 。 因 原 要 重 异 差 格 风 书 和 》 记 史 《 是 也 这 同 不 则 固 班 而 响 影 此 受 未 并 想 思 的 迁 马 司 术 儒 尊 独 家 百 斥 罢 , 议 建 之 舒 仲 董 用 帝 武 D.汉 是 项 一 的 思 意 文 原 合 符 不 , 析 分 和 解 理 列 2.下 中 作 创 》 书 汉 《 现 呈 响 影 受 固 班 。 权 政 时 当 持 支 想 思 国 帝 统 种 一 立 树 于 在 正 真 其 的 目 为 以 是 不 并 , 儒 尊 之 舒 仲 A.董 。 义 主 漫 浪 种 一 着 带 显 明 风 文 书 汉 》 记 史 《 得 使 异 差 大 巨 的 质 气 人 个 者 作 是 但 , 想 思 家 儒 同 认 都 固 班 和 迁 马 B.司 。 现 出 能 可 不 是 中 这 前 之 祖 高 列 排 纪 本 里 , 显 明 异 差 上 度 态 的 羽 项 待 对 在 书 汉 和 》 记 史 C.《 。 念 观 合 符 不 录 少 较 想 思 统 正 方 官 持 秉 书 汉 而 ) 卜 占 ( 者 日 如 , 等 色 各 流 九 教 三 及 涉 物 人 的 里 》 记 史 D.《 是 项 一 的 确 正 不 析 分 和 解 理 列 下 , 容 内 文 原 据 3.根 。 道 之 悖 有 念 观 叙 记 史 为 认 他 , ” 人 圣 于 缪 颇 非 是 “ 法 看 的 对 了 达 表 中 》 传 迁 马 •司 书 汉 《 在 固 A.班 。 度 态 术 儒 尊 独 强 极 了 现 无 再 即 后 之 尼 仲 四 者 ” 圣 上 “ 得 中 内 , 则 九 等 三 为 分 物 史 历 把 念 观 统 正 方 官 照 按 表 人 今 古 十 二 卷 的 里 》 书 汉 B.《 。 实 真 他 是 不 并 些 这 籍 典 史 历 后 以 ” 术 儒 尊 独 “ 朝 汉 于 出 半 多 , 象 形 徒 门 其 及 子 孔 的 到 看 所 在 现 们 C.我 。 现 出 能 不 是 书 汉 在 述 描 样 这 子 君 伪 像 反 邦 刘 比 相 之 与 , 象 形 雄 英 路 末 的 爱 可 憨 浑 又 却 躁 暴 虽 个 一 成 画 刻 羽 项 把 中 》 记 史 D.《 1.D2B3C 】 案 答 【 】 析 解 【 。 果 因 加 C强 无 法 说 的 ” 确 准 谨 严 为 更 记 史 比 要 上 修 编 B“ ; 后 之 此 成 》 书 《 年 四 元 永 帝 和 汉 在 是 中 狱 于 死 固 班 知 可 文 原 据 根 , A项 : 析 分 题 1.试 。 较 响 影 想 思 家 儒 统 正 方 官 受 固 班 , 因 原 要 主 是 不 并 ” 异 差 大 极 的 质 气 人 个 “ 断 判 以 可 意 文 据 根 : 析 分 题 2.试 。 情 性 真 的 徒 门 其 及 子 孔 定 不 ” 想 推 “ 是 者 作 知 可 段 一 后 最 据 根 , 对 绝 于 过 法 说 C项 : 析 分 题 3.试

2019年浙江省(杭州、湖州)中考数学试题及答案解析(共2套 附答案)之一

2019年浙江省(杭州、湖州)中考数学试题及答案解析(共2套 附答案)之一

480
24
480
得 v=80;将 t= 代入 v=
得 v=100.

5

∴小汽车行驶速度 v 的范围为:80≤v≤100.
②方方不能在当天 11 点 30 分前到达 B 地.理由如下:
∴m=﹣3,n=2.
故选:B.
3.
(3 分)如图,P 为圆 O 外一点,PA,PB 分别切圆 O 于 A,B 两点,若 PA=3,则 PB=(
A.2
B.3
【解答】解:连接 OA、OB、OP,
∵PA,PB 分别切圆 O 于 A,B 两点,
C.4
D.5

∴OA⊥PA,OB⊥PB,
在 Rt△AOP 和 Rt△BOP 中,
圆圆的解答正确吗?如果不正确,写出正确的答案.
【解答】解:圆圆的解答错误,
正确解法:
4
2 −4

4
2
−2
−1
2(+2)
(−2)(+2)
= (−2)(+2) − (−2)(+2) − (−2)(+2)
=
4−2−4−2 +4
(−2)(+2)
=
2−2
(−2)(+2)
(2)①甲 =50+乙.
②S 甲 2=S 乙 2.
1
理由:∵S 甲 2= 5[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.
1
S 乙 2= 5[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,

2019年浙江省杭州市中考数学试卷和答案解析

2019年浙江省杭州市中考数学试卷和答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)(2019•杭州)计算下列各式,值最小的是()A.2019++-⨯+-B.2019+-⨯D.2019+⨯-C.20192.(3分)(2019•杭州)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则( )A.3n=D.2n=-m=,3m=-,3m=-,2m=,2n=B.3n=C.23.(3分)(2019•杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PB=)PA=,则(3A.2 B.3 C.4 D.54.(3分)(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.23(72)30+-=x x+-=B.32(72)30x xC.23(30)72+-=x xx x+-=D.32(30)725.(3分)(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是() A.平均数B.中位数C.方差D.标准差6.(3分)(2019•杭州)如图,在ABCDE BC,M∆中,点D,E分别在AB和AC上,//为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=7.(3分)(2019•杭州)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒8.(3分)(2019•杭州)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .9.(3分)(2019•杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.(3分)(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+ C .M N =或1M N =+D .M N =或1M N =-二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)(2019•杭州)因式分解:21x -= .12.(4分)(2019•杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 .13.(4分)(2019•杭州)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 2cm (结果精确到个位). 14.(4分)(2019•杭州)在直角三角形ABC 中,若2AB AC =,则cos C = . 15.(4分)(2019•杭州)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 .16.(4分)(2019•杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)(2019•杭州)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 1 2 3 4 5甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.19.(8分)(2019•杭州)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.20.(10分)(2019•杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.21.(10分)(2019•杭州)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.22.(12分)(2019•杭州)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 23.(12分)(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA .(1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2019++-⨯+-B.2019+-⨯D.2019+⨯-C.2019【考点】1G:有理数的混合运算【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:.20198A⨯+-=-,B.20197+⨯-=-+-⨯=-C.20197D.20196++-=-,故选:A.2.(3分)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3n=D.2n=-m=-,3m=,3n=C.2n=B.3m=,2m=-,2【考点】5P:关于x轴、y轴对称的点的坐标【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点(,2)A m与点(3,)B n关于y轴对称,∴=-,2n=.m3故选:B.3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PB=PA=,则( )A.2 B.3 C.4 D.5【考点】MC :切线的性质【分析】连接OA 、OB 、OP ,根据切线的性质得出OA PA ⊥,OB PB ⊥,然后证得Rt AOP Rt BOP ∆≅∆,即可求得3PB PA ==.【解答】解:连接OA 、OB 、OP ,PA ,PB 分别切圆O 于A ,B 两点,OA PA ∴⊥,OB PB ⊥,在Rt AOP ∆和Rt BOP ∆中, OA OBOP OP =⎧⎨=⎩, Rt AOP Rt BOP(HL)∴∆≅∆, 3PB PA ∴==,故选:B .4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .23(72)30x x +-= B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=【考点】89:由实际问题抽象出一元一次方程【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案. 【解答】解:设男生有x 人,则女生(30)x -人,根据题意可得: 32(30)72x x +-=.故选:D .5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差【考点】1W :算术平均数;4W :中位数;7W :方差;8W :标准差 【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A .AD ANAN AE=B .BD MNMN CE=C .DN NEBM MC=D .DN NEMC BM=【考点】9S :相似三角形的判定与性质 【分析】先证明ADN ABM ∆∆∽得到DN AN BM AM =,再证明ANE AMC ∆∆∽得到NE ANMC AM=,则DN NEBM MC=,从而可对各选项进行判断. 【解答】解://DN BM , ADN ABM ∴∆∆∽,∴DN ANBM AM=, //NE MC , ANE AMC ∴∆∆∽,∴NE ANMC AM =, ∴DN NEBM MC=. 故选:C .7.(3分)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒【考点】7K :三角形内角和定理【分析】根据三角形内角和定理得出180A B C ∠+∠+∠=︒,把C A B ∠=∠+∠代入求出C ∠即可.【解答】解:180A B C ∠+∠+∠=︒,C A B ∠=∠+∠, 2180C ∴∠=︒, 90C ∴∠=︒,ABC ∴∆是直角三角形,故选:D .8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【考点】3F :一次函数的图象【分析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.【解答】解:A 、由①可知:0a >,0b >.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:0a <,0b >.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:0a <,0b >.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:0a <,0b <,∴直线②经过二、三、四象限,故D 错误.故选:A .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【考点】9T :解直角三角形的应用-坡度坡角问题;LB :矩形的性质【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离,本题得以解决.【解答】解:作AE OC ⊥于点E ,作AF OB ⊥于点F , 四边形ABCD 是矩形, 90ABC ∴∠=︒,ABC AEC ∠=∠,BCO x ∠=, EAB x ∴∠=, FBA x ∴∠=, AB a =,AD b =,cos sin FO FB BO a x b x ∴=+=+,故选:D .10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+ C .M N =或1M N =+D .M N =或1M N =-【考点】HA :抛物线与x 轴的交点【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.【解答】解:2()()()1y x a x b x a b x =++=+++,∴△22()4()0a b ab a b =+-=->,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+; 综上可知,M N =或1M N =+. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= (1)(1)x x -+ . 【考点】54:因式分解-运用公式法【分析】根据平方差公式可以将题目中的式子进行因式分解. 【解答】解:21(1)(1)x x x -=-+, 故答案为:(1)(1)x x -+.12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 mx nym n++ . 【考点】2W :加权平均数【分析】直接利用已知表示出两组数据的总和,进而求出平均数.【解答】解:某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于:mx nym n++. 故答案为:mx nym n++. 13.(4分)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 2cm (结果精确到个位). 【考点】1H :近似数和有效数字;MP :圆锥的计算【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个冰淇淋外壳的侧面积21231236113()2cm ππ=⨯⨯⨯=≈.故答案为113.14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C = 或 . 【考点】1T :锐角三角函数的定义【分析】讨论:若90B ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC ,然后根据余弦的定义求cos C 的值;若90A ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值.【解答】解:若90B ∠=︒,设AB x =,则2AC x =,所以BC =,所以cos BC C AC ==;若90A ∠=︒,设AB x =,则2AC x =,所以BC ,所以cosAC C BC ===综上所述,cos C .. 15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 1y x =-+ .【考点】4G :反比例函数的性质;6F :正比例函数的性质;5F :一次函数的性质;3H :二次函数的性质【分析】根据题意写出一个一次函数即可. 【解答】解:设该函数的解析式为y kx b =+,函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =, ∴01k b b +=⎧⎨=⎩解得:11k b =-⎧⎨=⎩,所以函数的解析式为1y x =-+, 故答案为:1y x =-+.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 2(535)+ .【考点】LB :矩形的性质;PB :翻折变换(折叠问题)【分析】设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,因为△A EP '的面积为4,△D PH '的面积为1,推出4A E D H '=',设D H a '=,则4A E a '=,由△A EP '∽△D PH ',推出D H PD PA EA ''='',推出4a xx a=,可得2x a =,再利用三角形的面积公式求出a 即可解决问题.【解答】解:四边形ABC 是矩形, AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==, △A EP '的面积为4,△D PH '的面积为1,4A E D H ∴'=',设D H a '=,则4A E a '=,△A EP '∽△D PH ',∴D H PD PA EA ''='', ∴4a xx a=, 224x a ∴=,2x a ∴=或2a -(舍弃), 2PA PD a ∴'='=,1212a a =, 1a ∴=, 2x ∴=,2AB CD ∴==,PE =PH ,415AD ∴=+=+,∴矩形ABCD 的面积2(5=+.故答案为2(5+三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案. 【考点】6B :分式的加减法【分析】直接将分式进行通分,进而化简得出答案. 【解答】解:圆圆的解答错误, 正确解法:242142x x x ---- 42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+ 24244(2)(2)x x x x x ---+=-+ 22(2)(2)x x x x -=-+ 2xx =-+. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表数据 甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【考点】1W :算术平均数;VD :折线统计图;7W :方差 【分析】(1)利用描点法画出折线图即可. (2)利用方差公式计算即可判断.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦甲. (2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙, 22S S ∴=乙甲.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠. (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.【考点】KG :线段垂直平分线的性质;KH :等腰三角形的性质【分析】(1)根据线段垂直平分线的性质可知PA PB =,根据等腰三角形的性质可得B BAP ∠=∠,根据三角形的外角性质即可证得2APC B =∠;(2)根据题意可知BA BQ=,根据等腰三角形的性质可得BAQ BQA∠=∠,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:线段AB的垂直平分线与BC边交于点P,PA PB∴=,B BAP∴∠=∠,APC B BAP∠=∠+∠,2APC B∴∠=∠;(2)根据题意可知BA BQ=,BAQ BQA∴∠=∠,3AQC B∠=∠,AQC B BAQ∠=∠+∠,2BQA B∴∠=∠,180BAQ BQA B∠+∠+∠=︒,5180B∴∠=︒,36B∴∠=︒.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【考点】GA:反比例函数的应用【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)480vt =,且全程速度限定为不超过120千米/小时, v ∴关于t 的函数表达式为:480v t=,(04)t . (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将6t =代入480v t =得80v =;将245t =代入480v t=得100v =. ∴小汽车行驶速度v 的范围为:80100v .②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将72t =代入480v t =得9601207v =>千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.【考点】LB :矩形的性质;LE :正方形的性质【分析】(1)设出正方形CEFG 的边长,然后根据12S S =,即可求得线段CE 的长; (2)根据(1)中的结果可以题目中的条件,可以分别计算出HD 和HG 的长,即可证明结论成立.【解答】解:(1)设正方形CEFG 的边长为a , 正方形ABCD 的边长为1, 1DE a ∴=-, 12S S =,21(1)a a ∴=⨯-,解得,112a =(舍去),212a =-,即线段CE 12-; (2)证明:点H 为BC 边的中点,1BC =, 0.5CH ∴=,25052DH ∴=,0.5CH =,12CG =,HG ∴ HD HG ∴=.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示). (3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 【考点】HA :抛物线与x 轴的交点;3H :二次函数的性质;7H :二次函数的最值;5H :二次函数图象上点的坐标特征【分析】(1)将(0,0),(1,0)代入12()()y x x x x =--求出函数解析式即可求解; (2)对称轴为122x x x +=,当122x x x +=时,212()4x x y -=-是函数的最小值;(3)将已知两点代入求出12m x x =,12121n x x x x =--+,再表示出22121111[()][()]2424mn x x =--+--+,由已知1201x x <<<,可求出211110()244x --+,221110()244x --+,即可求解. 【解答】解:(1)当0x =时,0y =;当1x =时,0y =;∴二次函数经过点(0,0),(1,0),10x ∴=,21x =,2(1)y x x x x ∴==-=-, 当12x =时,14y =-, ∴乙说点的不对; (2)对称轴为122x x x +=, 当122x x x +=时,212()4x x y -=-是函数的最小值; (3)二次函数的图象经过(0,)m 和(1,)n 两点,12m x x ∴=,12121n x x x x =--+,22121111[()][()]2424mn x x ∴=--+--+ 1201x x <<<,211110()244x ∴--+,221110()244x --+, 1016mn ∴<<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA .(1)若60BAC ∠=︒,①求证:12OD OA =. ②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.【考点】MR :圆的综合题【分析】(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,即可求解;②BC 长度为定值,ABC ∆面积的最大值,要求BC 边上的高最大,即可求解;(2)11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,而1802180AOD COD AOC mx nx mx mx nx ∠=∠+∠=︒--+=︒+-,即可求解.【解答】解:(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒, 30OBC ∴∠=︒,1122OD OB OA ∴==; ②BC 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=, ABC ∆面积的最大值113332sin 602224BC AD OB =⨯⨯=⨯︒⨯=; (2)如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=,则11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠, 22AOC ABC mx ∠=∠=,1802180AOD COD AOC mx nx mx mx nx ∴∠=∠+∠=︒--+=︒+-,∴∠=︒-,AOD x =,1802 OE OD即:1801802︒+-=︒-,mx nx x化简得:20-+=.m n。

中考数学《因式分解》专题训练(附带答案)

中考数学《因式分解》专题训练(附带答案)

中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。

2019年浙江省杭州市初中毕业升学文化考试数学试卷及详细解答

2019年浙江省杭州市初中毕业升学文化考试数学试卷及详细解答

2019年浙江省杭州市初中毕业升学文化考试数学试卷及详细解答C必有一个内角等于60°D无法确定【考点】:三角形内角解析】:设这个角为x,则另外两个角分别为2x和3x,因为三角形内角和为180°,所以5x=180°,x=36°。

因此,另外两个角分别为72°和108°,其中72°+36°=108°,符合题意。

故选A。

8.已知函数f(x)=2x-3,则f(3x-1)的值为()A6x-5B6x-6C3x-5D3x-6【考点】:函数解析】:将3x-1代入函数f(x)中,得f(3x-1)=2(3x-1)-3=6x-5.故选A。

9.如图,把一张长方形纸片沿着虚线折叠,使得点A落到BC上,点D落到EF上,点B落到GH上,则点C落到()AEFBHECGHD【考点】:平面几何解析】:通过折叠,可以发现BC与EF重合,而GH与AE重合,因此C和D重合,落在EF上。

故选D。

10.如图,已知ABCD为矩形,E为BC的中点,F为CD 的中点,连接AF交BE于点G,则()AG=GB=GF=EF=BC/4AG=GB=GF=EF=BC/2AG=GB=GF=EF=BCAG=GB=GF=EF=2BC【考点】:平面几何解析】:由于E和F分别为BC和CD的中点,因此BE=CF=BC/2.又因为AF与BE相交于G,所以AG=GB=GF=EF=BC/4.故选A。

答题卷姓名:___________________准考证号:______________________一、选择题(每小题3分,共30分)1.________________2.________________3.________________4.________________5.________________6.________________7.________________8.________________ 9.________________ 10._______________二、填空题(每小题4分,共20分)1.已知函数f(x)=2x+3,则f(2x-1)的值为_______________。

2019年浙江杭州中考数学试卷及详细答案解析(word版)

2019年浙江杭州中考数学试卷及详细答案解析(word版)

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2=.12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C=.15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)化简:4xx2−4−2x−2−1圆圆的解答如下:4x x2−4−2x−2−1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9【解答】解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5【解答】解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM【解答】解:∵DN∥BM,∴△ADN∽△ABM,∴DNBM =AN AM,∵NE∥MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NE MC.故选:C.7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【解答】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x【解答】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1【解答】解:∵y =(x +a )(x +b )=x 2+(a +b )x +1, ∴△=(a +b )2﹣4ab =(a ﹣b )2>0,∴函数y =(x +a )(x +b )的图象与x 轴有2个交点, ∴M =2,∵函数y =(ax +1)(bx +1)=abx 2+(a +b )x +1,∴当ab ≠0时,△=(a +b )2﹣4ab =(a ﹣b )2>0,函数y =(ax +1)(bx +1)的图象与x 轴有2个交点,即N =2,此时M =N ;当ab =0时,不妨令a =0,∵a ≠b ,∴b ≠0,函数y =(ax +1)(bx +1)=bx +1为一次函数,与x 轴有一个交点,即N =1,此时M =N +1; 综上可知,M =N 或M =N +1. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:1﹣x 2= (1﹣x )(1+x ) . 【解答】解:∵1﹣x 2=(1﹣x )(1+x ), 故答案为:(1﹣x )(1+x ).12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于mx+ny m+n.【解答】解:∵某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于:mx+ny m+n.故答案为:mx+ny m+n.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 cm 2(结果精确到个位).【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.14.(4分)在直角三角形ABC 中,若2AB =AC ,则cos C =√32或2√55. 【解答】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2−x 2=√3x ,所以cos C =BC AC =√3x 2x =√32; 若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cos C =ACBC =2x √5x=2√55; 综上所述,cos C 的值为√32或2√55. 故答案为√32或2√55. 15.(4分)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1 . 【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点,若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 2(5+3√5) .【解答】解:∵四边形ABC 是矩形, ∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:P A ′=AB =x ,PD ′=CD =x , ∵△A ′EP 的面积为4,△D ′PH 的面积为1, ∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a , ∵△A ′EP ∽△D ′PH , ∴D′H PA′=PD′EA′,∴a x=x 4a,∴x 2=4a 2,∴x =2a 或﹣2a (舍弃), ∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1, ∴x =2,∴AB =CD =2,PE =√22+42=2√5,PH =√12+22=√5, ∴AD =4+2√5+√5+1=5+3√5, ∴矩形ABCD 的面积=2(5+3√5). 故答案为2(5+3√5)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:4x x 2−4−2x−2−1圆圆的解答如下:4x x 2−4−2x−2−1=4x ﹣2(x +2)﹣(x 2﹣4)=﹣x 2+2x圆圆的解答正确吗?如果不正确,写出正确的答案. 【解答】解:圆圆的解答错误, 正确解法:4x x 2−4−2x−2−1=4x(x−2)(x+2)−2(x+2)(x−2)(x+2)−(x−2)(x+2)(x−2)(x+2)=4x−2x−4−x 2+4(x−2)(x+2)=2x−x 2(x−2)(x+2) =−x x+2. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 12345甲组 48 52 47 49 54 乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系. ②甲,乙两组数据的方差分别为S 甲2,S 乙2,比较S 甲2与S 乙2的大小,并说明理由. 【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x甲=50+x乙.②S甲2=S乙2.理由:∵S甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC =∠B +∠BAP , ∴∠APC =2∠B ;(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°, ∴5∠B =180°, ∴∠B =36°.20.(10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t ,(0≤t ≤4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .【解答】解:(1)设正方形CEFG 的边长为a , ∵正方形ABCD 的边长为1, ∴DE =1﹣a , ∵S 1=S 2,∴a 2=1×(1﹣a ),解得,a 1=−√52−12(舍去),a 2=√52−12, 即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1, ∴CH =0.5,∴DH =√12+0.52=√52, ∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .22.(12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x =12时,y =−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116.【解答】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=12时,y=−14,∴乙说点的不对;(2)对称轴为x=x1+x2 2,当x=x1+x22时,y=−(x1−x2)24是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[−(x1−12)2+14][−(x2−12)2+14]∵0<x1<x2<1,∴0≤−(x1−12)2+14≤14,0≤−(x2−12)2+14≤14,∴0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【解答】解:(1)①连接OB、OC,则∠BOD=12BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学精品复习资料
课后练习3因式分解
A组
1.把x2y-2y2x+y3分解因式正确的是()
A.y(x2-2xy+y2)
B.x2y-y2(2x-y)
C.y(x-y)2
D.y(x+y)2
2.(2015·宜宾)把代数式3x3-12x2+12x分解因式,结果正确的是()
A.3x(x2-4x+4) B.3x(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2 3.(2016·台湾)多项式77x2-13x-30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()
A.0 B.10 C.12 D.22
4.若A=101×9996×10005,B=10004×9997×101,则A-B之值为()
A.101B.-101C.808D.-808
5.(1)(2017·丽水)分解因式:m2+2m=____________________.
(2)(2017·湖州)把多项式x2-3x因式分解,正确的结果是____________________.
(3)(2016·舟山)因式分解:a2-9=.
(4)(2016·台州)因式分解:x2-6x+9=.
6.(2016·杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).
7.分解因式:
(1)(2015·黄冈)x3-2x2+x;
(2)(2015·深圳)3a2-3b2;
(3)am2-4an2;
(4)(2015·绵阳)x2y-3y(实数范围内因式分解).
8.已知:a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;
(2)a2+b2.
B组
9.已知(19x-31)(13x-17)-(13x-17)(11x-23)可因式分解成(ax+b)(8x+c),其中a、b、c均为整数,则a+b+c=()
A.-12B.-32C.38D.72
10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()
A .等腰三角形
B .直角三角形
C .等腰三角形或直角三角形
D .等腰直角三角形
11.(3x +2)(-x 6+3x 5)+(3x +2)(-2x 6+x 5)+(x +1)(3x 6-4x 5)与下列哪一个式子相同
( )
A .(3x 6-4x 5)(2x +1)
B .(3x 6-4x 5)(2x +3)
C .-(3x 6-4x 5)(2x +1)
D .-(3x 6-4x 5)(2x +3)
12.(2016·台湾)已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x 2-4,乙与丙相乘为x 2+15x -34,则甲与丙相加的结果与下列哪一个式子相同?( )
A .2x +19
B .2x -19
C .2x +15
D .2x -15
13.分解因式:()a +2()a -2+3a = .
14.多项式ax 2-a 与多项式x 2-2x +1的公因式是 .
15.(2017·郯城模拟)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是____________________.
第15题图
C 组
16.(2015·杭州市下城区模拟)若z =3x (3y -x )-(4x -3y )(x +3y ).
(1)若x ,y 均为整数,求证:当x 是3的倍数时,z 能被9整除;
(2)若y =x +1,求z 的最小值.
参考答案
课后练习3 因式分解
A 组
1.C 2.D 3.C 4.D
5.(1)m (m +2) (2)x (x -3) (3)(a +3)(a -3) (4)(x -3)2
6.-1
7.(1)x (x -1)2. (2)3(a +b )(a -b ). (3)a (m +2n )(m -2n ). (4)y (x +3)(x -3).
8.(1)6 (2)5
B 组
9.A 10.C 11.C 12.A 13.(a -1)(a +4)
14.x -1 15.2m +3
C 组
16.(1)z =3x (3y -x )-(4x -3y )(x +3y )=9xy -3x 2-(4x 2+9xy -9y 2)=9xy -3x 2-4x 2-9xy +9y 2=-7x 2+9y 2,∵x 是3的倍数,∴z 能被9整除. (2)当y =x +1时,则z =-7x 2+9(x +1)2=2x 2+18x +9=2
⎝⎛⎭⎫x +922-632,∵2⎝⎛⎭⎫x +922≥0,∴z 的最小值是-632.。

相关文档
最新文档