二次函数的应用(经典) PPT

合集下载

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

《二次函数的应用》优秀PPT课件下载

《二次函数的应用》优秀PPT课件下载

直线x=-4
坐标是
是 -1
.当x= -4 时,函数有最 大 值,
5.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点坐标 是 (2 ,1).当x= 2 时,函数有最 小 值,是 1 .
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调 查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时, 销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助 分析,销售单价是多少时,可以获利最多?
22.5 二次函数的应用
1.让学生进一步熟悉,点坐标和线段之间的转化. 2.让学生学会用二次函数的知识解决有关的实际问题.
3.掌握数学建模的思想,体会到数学来源于生活,又服务
于生活.
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 的对称轴是 直线x=h
b 直线x 2a
4ac b 2 4a
25 之和的最小值是 2 (或12.5)
cm2.
3.(兰州·中考) 如图,小明的父亲在
相距2米的两棵树间拴了一根绳子,给小 明做了一个简易的秋千.拴绳子的地方距
地面高都是2.5米,绳子自然下垂呈抛物
线状,身高1米的小明距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最 低点距地面的距离为 0.5 米.
,它
,顶点坐标是_________. (h,k) 抛物线 ,它 ,顶点坐标是___________. 低 点,函数
b 4ac b 2 2a , 4a
2.二次函数y=ax2+bx+c的图象是一条 的对称轴是
当a>0时,抛物线开口向 上 ,有最
有最 小 值,是
向 下 ,有最

二次函数的简单应用PPT

二次函数的简单应用PPT

经济学中收益与成本分析
总收益与总成本模型
01
在经济学中,总收益和总成本往往可以表示为产量的二次函数,
通过分析这些函数可以找出最大利润点。
边际收益与边际成本
02
利用二次函数的导数表示边际收益和边际成本,进而分析企业
的盈利状况。
价格与需求关系
03
在某些情况下,价格与需求之间的关系可以近似为二次函数,
通过分析这种关系可以制定合适的定价策略。
运动学问题中速度与时间关系
1 2
匀加速直线运动
根据匀加速直线运动的速度与时间关系,构建二 次函数模型求解位移、速度等参数。
竖直上抛运动
利用竖直上抛运动的速度、时间和高度之间的关 系,建立二次函数模型分析运动过程。
3
曲线运动中的速度与时间关系
在某些曲线运动中,速度与时间的关系可以近似 为二次函数,从而进行求解和分析。
在给定速度、距离等条件下,通过二次函数模型求解使得时间最短 的运动方案。
06 总结与展望
二次函数简单应用知识点总结
二次函数的对称轴
$x = -frac{b}{2a}$。
二次函数的判别式
$Delta = b^2 - 4ac$,用于 判断二次方程的根的情况。
二次函数的一般形式
$f(x) = ax^2 + bx + c$,其 中 $a neq 0$。
周长问题
对于某些特定形状的几何图形(如抛物线型、椭圆型等),可以通过二次函数表示其周长 ,并讨论周长的性质和最值问题。
综合应用
结合多种几何图形和二次函数的性质,可以解决更复杂的面积、周长等问题,如最优布局 、路径规划等实际问题。
05 二次函数在优化问题中的 应用

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

二次函数的应用ppt课件

二次函数的应用ppt课件

∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册


00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);

6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B

(
)
2
2

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

二次函数的应用经典ppt课件

二次函数的应用经典ppt课件
轴两个交点坐标求。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
二次函数的交点式
已知二次函数的图象与x轴交于(-2,0)和 (1,0)两点,又通过点(3,-5), 求这个二次函数的解析式。 当x为何值时,函数有最值?最值是多少?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
专题一: 待定系数法确定二次函数
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
最值应用题——运动观点
在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发, 沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B
的表达式的区别与联系,你发现了什么?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

二次函数的应用(公开课)精选PPT

二次函数的应用(公开课)精选PPT

度如何表示?
AD 40X 30 40
3 AD (40x)
4
M
(2)设矩形的面积为y,求y与x的函数关系式 D
C
30cm
并直接写出x的取值范围? 当x取何值时,y的最大值是多少?

A
B
N
40cm
y3(4 0x)x3(x2)0 230(0 0 < x < 40)
4
4
∴当x=20时,y的最大值是300
19
QB=x cm
则 y=1/2 x(8-2x)
P
= -(x - 2)2 + 4
(0<x<4)
C
Q
B
所以,当P、Q同时运动2秒后ΔPBQ的面积y最
大 最大面积是 4 cm2
25
一、学前准备
2、观察下列图形,指出如何求出阴影部分的面积
交点三角形

点三 角 形
选择坐标轴上的边作为底边
26
二、重点知识
SAB CSAB DSCBD
H
F 6 =-2x2 + 16x
A
E
=-2(x-4)2 + 32
B
(0<x<6) 1 0 所以当x=4时,花园的最大面积为3222
2、探究活动: 已知有一张边长为10cm的正三角形纸板,
若要从中剪一个面积最大的矩形纸板, 应怎样剪?最大面积为多少?
Aห้องสมุดไป่ตู้
D BK
E
FC
23
如图,在ΔABC中,AB=8cm,BC=6cm,
活动一:
(1)将二次函数 y= -2x2-4x+8 化为顶点式。
y= -2(x+1)2+10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用
专题二: 数形结合法
简单的应用(学会画图)
已知二次函数的图象与x轴交于A(-2,0),B(3, 0)两点,且函数有最大值2。 求二次函数的解析式; 设此二次函数图象顶点为P,求△ABP的面积
在直角坐标系中,点A在y轴的正半轴上,点B在x轴的 负半轴上,点C在x轴的正半轴上,AC=5,BC=4, cos∠ACB=3/5。 求A、B、C三点坐标; 若二次函数图象经过A、B、C三点,求其解析式; 求二次函数的对称轴和顶点坐标
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
C
最值应用题——面积最大
• 用一块宽为1.2m的长方形铁板弯起两边
做一个水槽,水槽的横断面为底角120º的
等腰梯形。要使水槽的横断面积最大,它
的侧面AB应该是多长?
D
A
B
C
最值应用题——路程问题
已知二次函数的图象与x轴交于A(-2,0), B(3,0)两点,且函数有最大值2。 求二次函数的解析式; 设此二次函数图象顶点为P,求△ABP的面积
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
思维小憩:
用待定系数法求二次函数的解析式,什么时 候使用顶点式y=a(x-x1) (x-x2)比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
快艇和轮船分别从A地和C地同时出发,各沿 着所指方向航行(如图所示),快艇和轮船 的速度分别是每小时40km和每小时16km。 已知AC=145km,经过多少时间,快艇和 轮船之间的距离最短?(图中AC⊥CD)
145km
C
A
D
最值应用题——销售问题
某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加 盈利,尽快减少库存,商场决定采取适当的 降价措施。经调查发现,如果每件衬衫每降 价1元,商场平均每天可多售出2件。
二次函数的应用(经典)
专题一: 待定系数法确定二次函数
无坚不摧:一般式
已知二次函数的图象经过A(-1,6), B(1,2),C(2,3)三点,
求这个二次函数的解析式; 求出A、B、C关于x轴对称的点的坐标并求
出经过这三点的二次函数解析式; 求出A、B、C关于y轴对称的点的坐标并求
出经过这三点的二次函数解析式; 在同一坐标系内画出这三个二次函数图象; 分析这三条抛物线的对称关系,并观察它们
知道顶点坐标或函数的最值时
比较顶点式和一般式的优劣
一般式:通用,但计算量大 顶点式:简单,但有条件限制
使用顶点式需要多少个条件?
顶点坐标再加上一个其它点的坐标; 对称轴再加上两个其它点的坐标; 其实,顶点式同样需要三个条件才能求。
灵活方便:交点式
已知二次函数的图象与x轴交于(-2,0)和 (1,0)两点,又通过点(3,-5), 求这个二次函数的解析式。 当x为何值时,函数有最值?最值是多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
知道二次函数图象和x轴的两个交点的坐标时
使用交点式需要多少个条件?
两个交点坐标再加上一个其它条件 其实,交点式同样需要三个条件才能求
求函数最值点和最值的若干方法:
直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合和x
轴两个交点坐标求。
二次函数的交点式
已知二次函数的图象与x轴交于(-2,0)和 (1,0)两点,又通过点(3,-5), 求这个二次函数的解析式。 当x为何值时,函数有最值?最值是多少?
的表达式的区别与联系,你发现了什么?
思维小憩:
用待定系数法求二次函数的解析式,设出 一般式y=ax2+bx+c是绝对通用的办法。
因为有三个待定系数,所以要求有三个已 知点坐标。
一般地,函数y=f(x)的图象关于x轴对称 的图象的解析式是y=-f(x)
一般地,函数y=f(x)的图象关于y轴对称 的图象的解析式是y=f(-x)
二次函数的应用
专题三: 二次函数的最值应用题
二次函数最值的理论
你能说明为什x么当 b 时,函数的最值是 2a
y4acb2 呢?此时是最大最 值小 还值 是呢? 4a
求函数y=(m+1)x2-2(m+1)x-m的最值。 其中m为常数且m≠-1。
最值应用题——面积最大
某工厂为了存放材料,需要围一个周长 160米的矩形场地,问矩形的长和宽各取 多少米,才能使存放场地的面积最大。
(1)若商场平均每天要盈利1200元,每件 衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
最值应用题——运动观点
在矩形ABCD中,AB=6cm,BC=12cm,点P从点
A出发,沿AB边向点B以1cm/秒的速度移动,同时,
点Q从点B出发沿BC边向点C以2cm/秒的速度移动。
Байду номын сангаас
如果P、Q两点在分别到达B、C两点后就停止移动,回
相关文档
最新文档