牛顿运动定律讲义高一
高中物理必修1课件第4章牛顿运动定律第1节牛顿第一定律
有力的作用,物体就静要止
在一个地方
力不是 维持 物体运动的原因
如果运动中的物体没有受到力的作用,它将继续 以同一速度
沿同一直线运动,既不停下来也不 偏离原来的方向
二、理想实验的魅力 1.伽利略理想实验:让小球沿斜面从静止状态开始向下运动,小球将“冲” 上另一斜面,如果没有摩擦,小球将上升到原来 的高度.减小第二个斜面 的倾角,小球在这个斜面上仍将达到同一 高度,但它要运动得远些.继续 减小第二个斜面的倾角,球达到同一高度时就会离得更远 .若将第二个 斜面放平,球将永远运动下去. 2.结论:力不是 维持 物体运动的原因. 想一想 有人认为伽利略的斜面实验为理想实验,无法在实验中验证,故不 能揭示自然规律.该说法是否正确? 答案:该说法是错误的.伽利略的理想斜面实验反映了一种物理思想,它建 立在可靠的事实基础上,抓住主要因素,忽略次要因素,从而深刻揭示了自 然规律.
(教师备用) 例1-1:(多选)关于牛顿第一定律,下面说法中正确的是( AD ) A.牛顿第一定律反映了物体不受外力作用时物体的运动规律 B.运动物体速率不变时可能不受力 C.不受外力作用的物体一定做匀速直线运动 D.运动的物体状态发生变化时,物体必定受到外力的作用
〚核心点拨〛解答该题时应把握牛顿第一定律的三层含义: (1)不受外力时物体的运动状态. (2)受外力时物体的运动状态. (3)速度与运动状态变化的关系.
答案:1.× 2.√ 3.√ 4.× 5.√ 6.×
课堂探究
要点一 对牛顿第一定律的理解 【问题导学】
核心导学·要点探究
答案:(1)沿斜面向下,小车做加速运动;水平面上时合力方向向左,做减速 运动;说明力改变物体的运动状态.
(2)三图中,由上到下小车沿水平面运动距离逐渐变远,原因是小车受到 的阻力逐渐减小,可以猜想,如果水平面光滑,小车将做什么运动? 答案:(2)一直运动下去.
高一物理必修课件第四章牛顿运动定律的应用
汇报人:XX 20XX-01-23
目录
• 牛顿运动定律概述 • 牛顿运动定律在力学中的应用 • 牛顿运动定律在曲线运动中的应用 • 牛顿运动定律在碰撞和动量守恒中的应用 • 牛顿运动定律在万有引力与航天中的应用
01
牛顿运动定律概述
牛顿第一定律
定律内容:任何物体都要保持匀速直线运动或静止状态 ,直到外力迫使它改变运动状态为止。
物体所受合外力的方向与速度方向不在同一 直线上。
曲线运动的轨迹特点
物体做曲线运动时,其轨迹向合外力方向弯 曲,且位于速度方向和合外力方向所构成的 平面内。
曲线运动的性质
曲线运动是变速运动,具有加速度,且加速 度的方向与速度方向不在同一直线上。
曲线运动中的牛顿运动定律
01
牛顿第一定律在曲线运动中的应用
万有引力定律的适用范围
适用于两质点间的相互作用,当两物体间的距离远大于物 体本身的大小时,此公式也近似适用。
天体运动的描述
天体运动的基本形式
包括匀速圆周运动和椭圆运动等。
天体运动的描述参数
如轨道半径、周期、线速度、角速度、向心加速度等。
开普勒三定律
描述了行星绕太阳运动的轨道、速度和周期等规律。
航天器中的牛顿运动定律
物体在不受外力作用时,将保持静止状态或匀速直线运动状态。在曲线
运动中,物体所受合外力不为零,因此物体的运动状态将发生改变。
02 03
牛顿第二定律在曲线运动中的应用
物体的加速度与所受合外力成正比,与物体质量成反比。在曲线运动中 ,物体所受合外力不为零,因此物体具有加速度,且加速度的方向与合 外力的方向相同。
根据牛顿第二定律 F=ma,计算研究 对象的加速度。
高一级物理培优班牛顿运动定律总结ppt课件.ppt
求下列情况下,两绳的拉力:(1)加速度
a1=g/3 (2)加速度a2=2g/3
B
解析:平衡态(a=0)受力
θ
分析如图1 。
T1
A
O
θ
T2 图1 mg
(2)a由0逐渐增大的过程中,开始阶 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
段,因m 在竖直方向的加速度为0,θ T1
图3
当物体具有斜向上的运动趋势时,受力分析
如图3所示,N2sin300+ f2 cos300=ma0
N2 cos300=mg + f2 sin300
f 2 =μN2 a 02=8.232m/s2 故3.528m/s2≤a≤8.232m/s2
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
角不变,T1不变,那么,加速度增大
F0
(即合外力增大),OA绳承受的拉
图2
mg
力T2必减小。当T2=0时,m存在一个
加速度a0,如图2所示,物体所受的合
外力是T1的水平分力。当a>a0时,a增 大,T2=0(OA绳处于松弛状态), T1在竖直方向的分量不变,而其水平
α T1
图3
mg
方向的分量必增加(因 合外力增大),
tan mg g
ma a
arctang
a
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
④独立性 :是指作用在物体上的每个力都将 独立的产生各自的加速度,合外力的加速度 即是这些加速度的矢量和。 例4质量为m的人站在自动扶梯上,扶梯正以 加速度a向上作减速运动,a与水平方向的夹
《第四章牛顿运动定律》人教版高中物理(必修一)单元课件
D.这个实验直接得出了牛顿第一定律
返回
第1节:牛顿第一定律
5.一颗弹珠在水外力都消失,那么它将( )
C
牛顿 A.立即停止运动
运动
谢谢观看!
B.沿竖直方向匀速直线运动
提示:由牛顿第一
C.沿水平方向匀速直线运动 D.做曲线运动往下掉
定律可知,运动的 物体在不受任何外 力时将沿原来的方
向做匀速直线运动。
返回
第2节:探究加速度、力、质量的关系
2 实验:探究加速度与力、质量
牛顿 运动
谢 谢的关观系 看 !
返回
第2节:探究加速度、力、质量的关系
【思考与交流】
1.用大小不同的力去推小车,哪一个速度变化
谢 谢 观 看 ! 得快? 力大的
牛顿
运动 2.用相同的力去推空车和满载的车,哪一个速
D.它是以实验事实为基础,通过推理、想象而总结
出来的
返回
第1节:牛顿第一定律
2.下列说法中错误的是( ) D A.正在运动的物体,如果所受的外力同时消失,将沿直线继续运动
谢 谢 观 看 ! 牛顿 B.原来静止的物体,只有受到力的作用才会运动起来
运动
C.原来静止的物体,不受外力作用仍保持静止 D.原来静止的物体,如果所受的外力突然同时消失,将停止运动
运动
准确性,可多选几个计数点,采用逐差法计算加速度。
返回
第2节:探究加速度、力、质量的关系
【实验步骤】 1.用天平测出小车和砝码的总质量M,
谢 谢 观 看 ! 小盘和砝码的总质量m,把数值记录下
牛顿
运动 来。 2.按如图所示把实验器材安装好,只 是不把悬挂小盘的细绳系在车上,即 不给小车施加牵引力。
A.由牛顿第一定律可知,物体在任何情况下始终处于静
牛顿运动定律讲义(教师逐字稿)高清PDF版
牛顿运动定律讲义(学霸版)课程简介:PPT(第1页):今天我们要学习的内容是牛顿运动定律,牛顿运动定律这块内容一直就是我们高中阶段的重点和难点,那么今天让我们一起来提升它。
PPT(第2页):牛顿运动定律是高中阶段最重要的内容之一,对后面的知识点掌握有非常重要的影响,要注意,牛顿运动定律中知识模块的组成,牛顿运动定律主要组成部分为牛顿以第一定律、牛顿第二定律和牛顿第三定律,每块知识点都需要先掌握定义,然后通过模型去巩固应用,来让我们正式开始体验它。
PPT(第3页):主要内容和原来的板块一样,同样分为梳理知识体系和解决经典问题实例。
PPT(第4页):我们先看知识体系梳理,这部分也是我们经常说起的部分,物理是科学学科,一定要把知识梳理成体系和框架,科学是一张网。
PPT(第5页):我们先来看一下知识体系框架,牛顿运动定律主要组成部分是三个,分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
PPT(第6页):先来看一下牛顿第一定律。
内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态;意义:(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(2)指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
惯性:(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。
(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
(3)普遍性:惯性是物体的固有属性,一切物体都有惯性。
与物体的运动情况和受力情况无关。
PPT(第7页):再来看一下牛顿第三定律,牛顿第三定律是我们要特别注意的内容,因为容易忽略。
首先我们来看一下内容:1.作用力和反作用力:两个物体之间的作用总是相互的。
一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力。
物体间相互作用的这一对力,通常叫做作用力和反作用力。
牛顿第三定律(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
高中物理必修一同步专题讲义:11 A牛顿运动定律的应用 基础版(教师版)
牛顿运动定律的应用知识点:牛顿运动定律的应用一、牛顿第二定律的作用牛顿第二定律确定了运动和力的关系:加速度的大小与物体所受合力的大小成正比,与物体的质量成反比;加速度的方向与物体受到的合力的方向相同.二、两类基本问题1.从受力确定运动情况如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况.2.从运动情况确定受力如果已知物体的运动情况,根据运动学规律求出物体的加速度,结合受力分析,再根据牛顿第二定律求出力.技巧点拨一、从受力确定运动情况1.从受力确定运动情况的基本思路分析物体的受力情况,求出物体所受的合外力,由牛顿第二定律求出物体的加速度;再由运动学公式及物体运动的初始条件确定物体的运动情况.流程图如下:已知物体受力情况―――→由F =ma 求得a ――――――――→=v 0+at=v 0t +12at 22-v 02=2ax 求得x 、v 0、v 、t2.从受力确定运动情况的解题步骤(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力分析图.(2)根据力的合成与分解,求合力的大小和方向.(3)根据牛顿第二定律列方程,求加速度.(4)结合物体运动的初始条件,选择运动学公式,求运动学量——任意时刻的位移和速度,以及运动时间等.二、从运动情况确定受力1.从运动情况确定受力的基本思路分析物体的运动情况,由运动学公式求出物体的加速度,再由牛顿第二定律求出物体所受的合外力;再分析物体的受力,求出物体受到的作用力.流程图如下:已知物体运动情况―――――→由运动学公式求得a ――――→由F =ma 确定物体受力2.从运动情况确定受力的解题步骤(1)确定研究对象,对物体进行受力分析和运动分析,并画出物体的受力示意图.(2)选择合适的运动学公式,求出物体的加速度.(3)根据牛顿第二定律列方程,求出物体所受的合力.(4)选择合适的力的合成与分解的方法,由合力和已知力求出待求的力.三、多过程问题分析1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系、时间关系等.2.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.例题精练1.(吴忠期末)如图所示,滑块沿光滑斜面加速下滑。
最新高一物理第三章-牛顿运动定律课件教学讲义PPT
• 【学生练习2】质量为10kg的物体静止 在水平地面上, 物体跟地面的动摩擦因 数为0.2,用一个50N的水平推力推动物 体前进, 10s后撤去推力. 则物体最后静 止处距离出发点多远? (10m/s2)
• 【学生练习3】质量为4kg的木块放在水 平桌面上,当用10N的水平力推它时,木 块做匀速直线运动,现用20N和水平方向 成30°角的向上拉力拉它,木块的加速 度为多少?
• 考点一 惯性的概念
• 惯性是物体的固有属性,与物体的 运动情况及受力情况无关.质量是惯性大 小的唯一量度.
• (1)当物体不受外力或所受外力的 合力为零时,惯性表现为维持原来的静 止或匀速直线运动状态不变.
• (2)当物体受到外力作用而做变速 运动时,物体同样表现为具有惯性.
• 考点二 对牛顿第二定律的理解 • (1)牛顿第二定律反映了加速度与
• A.mg/3
B.2mg
C.mg
D.4mg/3
• 【例2】如图所示,一物块位于光滑水 平桌面上,用一大小为F、方向如图所 示的力去推它,使它以加速度a向右运动.
若保持力的方向不变而增大力的大小,
则( )
• 【例3】如图所示,在倾角为α的固定光 滑斜面上,有一用绳子拴着的长木板, 木板上站着一只猫.已知木板的质量是猫 质量的2倍.当绳子突然断开时,猫立即 沿着板向上跑,以保持其相对斜面的位 置不变.则此时木板沿斜面下滑的加速度 为多少
• 三、牛顿第三定律 1.定律内容:两个物体之间的作用力和反作
用力总是大小相等、方向相反,作用在一条直 线上.
2.对于一对作用力、反作用力的关系,除牛 顿第三定律反映的“等大、反向、共线”的关 系外,还应注意以下几点:
(1)同性质:一对作用力、反作用力必定 是同种性质的力;
高中物理牛顿运动定律讲义
高中物理牛顿运动定律讲义16.牛顿第一定律、惯性。
*实验推导---伽利略理想实验。
内容---(1)一切物体都有惯性;(2)力是改变物体运动状态的原因。
惯性---定义:物体具有保持原来运动状态的性质。
大小:只与质量有关。
质量大则惯性大;质量小则惯性小。
应用:先说明物体原来的运动状态,再说明突发现象,然后说明物体由于惯性------。
17.牛顿第二定律、质量、圆周运动的向心力。
*实验---(1)掌握变量控制方法;(2)确定和加速度有关的物理量;(3)当质量一定时,a ∝F ;(4)当外力一定时,a ∝m-1推导---a = kF/m 力的单位---牛顿的规定使得k = 1 。
则 F = ma描述---(1)语言:_______________________________________________________.(2)数学表达式:F合= ma(3) 图像方法:当质量一定时,当外力一定时,因果关系---外因是力,内因是质量,结果是加速度。
加速度与合外力的关系:(1)同方向,(2)同瞬时,(3)正比例,(4)同物体。
使用步骤------(1)确定研究对象;(2)运动分析及受力分析建立坐标系;(3)列方程:主方程Fx=ma Fy=0辅助方程例如f = μF N 等等(4)求解方程并检验。
18.牛顿第三定律。
*内容:_____________________________________________________________附加:同性质、同瞬时。
与二力平衡的关系:区别主要在于不同物体、不同性质。
应用:万有引力定律及动量守恒定律的推导。
19.牛顿力学的适用范围---宏观、低速、惯性系。
20.牛顿定律的应用。
*思路:以加速度为桥梁同时联系运动学和力学。
21.万有引力定律的应用、人造地球卫星的运动(限于圆轨道)。
*推导---太阳和地球之间的引力提供地球绕太阳做匀速率圆周运动的向心力;向心力用带有周期的公式来描述;得出:引力与地球的质量成正比,与距离的平方成反比。
高一物理必修1 牛顿第一运动定律 ppt
课堂训练
3、关于牛顿第一定律,下述中正确的是( ) A.由于宇宙没有不受力的物体,因此牛顿第一定律只是理想的定律并不具有实际意义 B.牛顿第一定律揭示了一切物体都具有惯性 C.牛顿第一定律说明力是改变物体惯性的原因 D.牛顿第一定律告诉我们力是改变物体运动状态的原因
运动学:在力学中,只研究物体怎样运动而不涉及运动和力的关系的分科,叫运动学。
动力学:在力学中,研究运动和力的关系的分科,叫动力学。
动力学的奠基人是: 牛顿(Newton England)
4.1 牛顿第一定律
第四章 牛顿运动定律
一、历史回顾
亚里士多德
必须有力作用在物体上, 物体才能运动 没有力的作用, 物体就要停下来
练一练
B
实验完全理想ຫໍສະໝຸດ 情况是难以实现的,但是我们可以在气垫导轨上做一个近似的实验。
利用光电门和电子计数器可以测出,滑块在运动过程中速度几乎不变
除非物体受到外力的作用,物体将永远保持其静止或运动状态,永远不会使自己沿曲线运动,而只保持在直线上运动。
3、笛卡儿观点:
思考与讨论
在一密封的车厢内,你有办法判定车厢是处于静止状态还是匀速直线运动状态吗? 有办法判定车厢是否有加速度吗? 能判断加速度的方向吗?
思考题
作业
1、完成课后《问题与练习》 2、作业本P62-P63
9、静夜四无邻,荒居旧业贫。。*** 10、雨中黄叶树,灯下白头人。。**** 11、以我独沈久,愧君相见频。。***** 12、故人江海别,几度隔山川。。**** 13、乍见翻疑梦,相悲各问年。。***** 14、他乡生白发,旧国见青山。。**** 15、比不了得就不比,得不到的就不要。。。***** 16、行动出成果,工作出财富。。*** 17、做前,能够环视四周;做时,你只能或者最好沿着以脚为起点的射线向前。。**** 9、没有失败,只有暂时停止成功!。*** 10、很多事情努力了未必有结果,但是不努力却什么改变也没有。。**** 11、成功就是日复一日那一点点小小努力的积累。。***** 12、世间成事,不求其绝对圆满,留一份不足,可得无限完美。。**** 13、不知香积寺,数里入云峰。。***** 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。**** 15、楚塞三湘接,荆门九派通。。。***** 16、少年十五二十时,步行夺得胡马骑。。*** 17、空山新雨后,天气晚来秋。。**** 9、杨柳散和风,青山澹吾虑。。*** 10、阅读一切好书如同和过去最杰出的人谈话。**** 11、越是没有本领的就越加自命不凡。***** 12、越是无能的人,越喜欢挑剔别人的错儿。**** 13、知人者智,自知者明。胜人者有力,自胜者强。***** 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。**** 15、最具挑战性的挑战莫过于提升自我。。***** 16、业余生活要有意义,不要越轨。*** 17、一个人即使已登上顶峰,也仍要自强不息。****
《牛顿第一定律》 讲义
《牛顿第一定律》讲义一、牛顿第一定律的发现历程在探索物理学的漫长道路上,牛顿第一定律的发现是一个具有里程碑意义的事件。
这一定律并非凭空出现,而是在前人的研究基础上,经过牛顿的深入思考和总结得出的。
早在古希腊时期,哲学家亚里士多德就对物体的运动进行了思考和研究。
他认为,物体的运动需要力来维持,如果没有力的作用,物体就会停止运动。
这种观点在很长一段时间内被人们所接受,但随着科学的不断发展,人们逐渐发现了其中的问题。
到了中世纪,一些学者开始对亚里士多德的观点提出质疑。
然而,由于当时的实验条件和科学方法的限制,并没有取得实质性的突破。
直到 17 世纪,伽利略通过一系列巧妙的实验和观察,对物体的运动有了新的认识。
他发现,当一个物体在水平面上运动时,如果表面足够光滑,物体将会一直运动下去,而不需要外力的持续作用。
伽利略的工作为牛顿第一定律的发现奠定了重要的基础。
最终,牛顿在前人的研究成果之上,进行了更加深入的思考和总结,提出了牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
二、牛顿第一定律的内容解读牛顿第一定律包含了两个重要的方面:1、物体具有保持匀速直线运动状态或静止状态的性质,这种性质被称为惯性。
惯性是物体的固有属性,它的大小只与物体的质量有关,质量越大,惯性越大。
例如,一辆重型卡车比一辆小型汽车更难改变其运动状态,就是因为重型卡车的质量大,惯性大。
2、力是改变物体运动状态的原因。
如果物体原本处于匀速直线运动状态或静止状态,当有力作用在它上面时,它的运动状态就会发生改变。
例如,推动一辆静止的自行车,车就会开始运动;拉住正在行驶的汽车,车就会逐渐减速直至停止。
需要注意的是,牛顿第一定律所描述的“匀速直线运动状态或静止状态”是一种理想状态,在现实生活中,由于摩擦力等阻力的存在,很难找到完全不受力的物体。
但是,通过合理的推理和实验,我们可以理解和应用这一定律。
三、牛顿第一定律的实验验证为了验证牛顿第一定律,我们可以进行一些简单的实验。
(精品讲义)新高一物理衔接课程 第13讲 牛顿运动定律
第13讲牛顿运动定律一、牛顿第一定律、惯性1.牛顿第一定律:一切物体总保持________ 状态或________状态,除非作用在它上面的力迫使它改变这种状态.2.惯性的定义:一切物体都有保持________ 状态或________状态的性质.3.惯性的量度:_______是物体惯性大小的唯一量度.二、牛顿第二定律1.内容:物体加速度的大小跟______成正比,跟物体的______成反比,加速度的方向跟______的方向相同.2.公式:F=ma.3.物理意义:它表明了力是改变物体________的原因,不是________物体运动的原因.三、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小________,方向________,作用在________.2.表达式:F甲对乙=-F乙对甲,负号表示________.3.意义:揭示了相互作用力的关系.四、牛顿定律的适用范围1.牛顿第二定律只适用于______参考系(相对地面______或__________的参考系).2.牛顿第二定律只适用于______物体(相对于分子、原子)、______运动(远小于光速)的情况.思考与练习:1. 惯性就是惯性力(X )2. 惯性是物体固有的属性,一切物体都具有惯性(V )3. 质量大的物体惯性大,质量小的物体惯性小(V )4. 静止的物体惯性大,运动的物体惯性小(X )5.牛顿第一定律是牛顿第二定律F = 0时的特例(X )6.牛顿第一定律和牛顿第二定律都是实验定律(X )伽利略的理想斜面实验合理外推7.你能区别一对平衡力和一对相互作用力吗?8. 下列对运动的认识不正确的是( 答案:A)A.亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动B.伽利略认为力不是维持物体速度的原因C.牛顿认为力的真正效应是改变物体的速度,而不仅仅是使之运动D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去9.在地球赤道上的A处静止放置一个小物体.现在设想地球对小物体的万有引力突然消失,则在数小时内,小物体相对A点处的地面来说,将(答案:C )A.水平向东飞去B.原地不动,物体对地面的压力消失C.向上并渐偏向西方飞去D.向上并渐偏向东方飞去E.一直垂直向上飞去解析:如果地球对小物体的万有引力突然消失,小物体不受力,由于惯性将沿切线AC方向飞出,做匀速直线运动.设经过时间t到达B点.同一时间内A点处地面将转到A′处,如图所示.由于A点的线速度等于小物体的速度,故AB=AA′.小物体相对于A点处(已转到A′处了)的地面来说,将向上并渐偏向西方飞去.10.吊扇通过吊杆悬挂在屋顶,设吊扇的重力为G,当吊扇正常转动时,吊杆对吊扇的拉力为F,则下列说法正确的是(答案:C)A.F=G B.F>G C.F<G D.无法确定11.如图,一个楔形物体M放在固定的粗糙的斜面上,上面成水平,在水平面上放一光滑小球m,楔形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是( 答案:B )A.沿斜面向下的直线B.竖直向下的直线C.无规则曲线D.抛物线解析:小球碰到斜面前水平方向上不受力,故水平方向上的运动状态不会改变,小球的轨迹应是竖直向下的直线,故选项B正确.12.平直轨道上匀速向右行驶的封闭车厢内,悬挂着一个带滴管的盛油容器,滴管口正对车厢地板上的O 点,如图,当滴管依次滴下三滴油时,设这三滴油都落在车厢的地板上,则下列说法正确的是(答案:D) A.这三滴油依次落在OA之间,而且后一滴比前一滴离O点远些B.这三滴油依次落在OA之间,而且后一滴比前一滴离O点近些C.这三滴油依次落在OA之间同一位置上D.这三滴油依次落在O点上13.在一辆表面光滑的小车上,有质量分别为m1、m2的两个小球(m1>m2)随车一起匀速运动,当车突然停止时,如不考虑其他阻力,设车足够长,则两个小球(答案:B)A.一定相碰B.一定不相碰C.不一定相碰D.难以确定是否相碰,因为不知小车的运动方向解析:两球随车一起匀速运动时,两球速度相同.当车停止运动时,由于小车表面是光滑的,两球在水平方向不受力的作用,两球将保持原来的运动状态,即保持原来的速度,故两球不会相碰.14. 如图,汽车正在水平向右行驶,一轻杆的上端固定在车的顶部,另一端固定一个质量为m的小球,杆与竖直方向的夹角为θ.杆对球的弹力方向( 答案:C)A.不可能竖直向上B.不可能斜向左上方C.可能斜向右上方,但不一定沿杆D.一定沿杆且与竖直方向夹角为θ15.两倾斜滑杆上分别套有AB两个圆环,圆环上分别用细线悬吊着一个物体,如图.当它们都沿滑杆向下滑动时,A的悬线与滑杆垂直,B的悬线竖直向下,则(答案:AD)A.A圆环与滑杆无摩擦力B.B圆环与滑杆无摩擦力C.A圆环做的是匀速运动D.B圆环做的是匀速运动16.如图,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其他外力及空气阻力,则其中一个质量为m的土豆A受其他土豆对它的总作用力的大小是(答案:C)A. mgB. μmgC.D.解析:a=μg.土豆A它们的合力为ma,F==17.物块A1、A2、B1、B2的质量均为m,A1、A2用刚性轻杆连接,B1、B2用轻质弹簧连接.两个装置都放在水平的支托物上,处于平衡状态,如图所示.今突然迅速地撤去支托物,让物块下落.在除去支托物的瞬间,A1、A2受到的合力分别为f1和f2,B1、B2受到的合力分别为F1和F2.则( 答案:B)A.f=0,f2=2mg,F1=0,F2=2mg B.f1=mg,f2=mg,F1=0,F2=2mgC.f1=0,f2=2mg,F1=mg,F2=mg D.f1=mg,f2=mg,F1=mg,F2=mg解析:除去支托物瞬间,A1、A2与钢性轻杆接触处的形变立即消失,f1=mg,f2=mg,由于瞬间弹簧形变来不及改变,弹簧对B1向上的弹力和对B2向下的弹力仍为mg,故F1=0,F2=2mg.18.一个物体在多个力的作用下处于静止状态,如果仅使其中一个力的大小逐渐减小到零,然后又从零逐渐恢复到原来的大小(此力的方向始终未变),在这一过程中其余各力均不变.那么,下列各图中能正确描述该过程中物体速度变化情况的是( 答案:D )A B C D解析:可以认为物体受到一个力F 1和其他力的合力F 2的共同作用处于平衡状态,两力等大反向.F 2始终不变,当F 1先减小后增大时,物体受到的合力和加速度先增大后减小,加速度方向始终与速度方向一致,做加速运动,在v -t 图象上,图线的斜率先增大后减小,速度越来越大。
牛顿运动定律的应用(19张PPT)课件 2024-2025学年高一物理人教版(2019)必修第一册
作者编号:43002
新课讲解
1
从受力确定运动情况
如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,
再通过运动学的规律确定物体的运动情况。
受力情况决定运动情况
a
F合
F
m
a
运动学
公式
运动情况
(v,x,t ?)
Fx = max
F = ma
Fy = may
作者编号:43002
玩滑梯是小孩子非常喜欢的活动,
在欢乐的笑声中,培养了他们勇敢
的品质。小孩沿着滑梯从顶端滑到
底端的速度与哪些因素有关?
作者编号:43002
学习目标
1、能结合物体的运动情况进行受力分析。
2、知道动力学的两类问题,理解加速度是解决两类动力学问题的桥梁。
3、掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学
Ff (图 4.5-3)。设冰壶的质量为 m ,以冰壶运动方向为正方向建立
一维坐标系,滑动摩擦力 Ff 的方向与运动方向相反,则
Ff = - µ1FN = - µ1mg
根据牛顿第二定律,冰壶的加速度为
Ff
1mg
a1
1 g 0.02 10 m / s 2
m
m
加速度为负值,方向跟 x 轴正方向相反
v102 = v02 + 2a1x10
冰壶后一段运动的加速度为
a2 =- µ2 g =- 0.02×0.9×10 m/s2 =- 0.18 m/s2
滑行 10 m 后为匀减速直线运动,由 v2-v102=2a2 x2 ,v=0,得
v102
v02 2a1 x10
x2
4.5牛顿运动定律的应用(解析版)高一物理知识讲学卓越讲义(新教材人教版必修第一册)
2020-2021学年高一物理卓越同步讲义(新教材人教A版必修第一册)第四章运动和力的关系4.5 牛顿运动定律的应用一.知识点归纳知识点一已知物体的受力求运动情况1.由物体的受力情况确定其运动的思路物体受力情况→牛顿第二定律→加速度a→运动学公式→物体运动情况2.解题步骤(1)确定研究对象,对研究对象进行受力分析和运动分析,并画出物体的受力示意图;(2)根据力的合成与分解的方法,求出物体所受的合外力(包括大小和方向);(3)根据牛顿第二定律列方程,求出物体的加速度;(4)结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量.知识点二已知物体的运动情况求受力1.基本思路分析物体的运动情况,由运动学公式求出物体的加速度,再由牛顿第二定律求出物体所受的合外力,进而可以求出物体所受的其他力,流程图如下所示:2.解题的一般步骤(1)确定研究对象,对研究对象进行受力分析和运动分析,并画出物体的受力示意图.(2)选择合适的运动学公式,求出物体的加速度.(3)根据牛顿第二定律列方程,求出物体所受的合力. (4)根据力的合成与分解的方法,由合力和已知力求出未知力.二、题型分析题型一 从受力确定运动情况【例1】(2019-2020学年·浙江湖州高一期中)滑冰车是儿童喜欢的冰上娱乐项目之一,如图所示为小明妈妈正与小明在冰上游戏,小明与冰车的总质量是40 kg ,冰车与冰面之间的动摩擦因数为0.05,在某次游戏中,假设小明妈妈对冰车施加了40 N 的水平推力,使冰车从静止开始运动10 s 后,停止施加力的作用,使冰车自由滑行(假设运动过程中冰车始终沿直线运动,小明始终没有施加力的作用).求:(1)冰车的最大速率;(2)冰车在整个运动过程中滑行总位移的大小. 【答案】(1)5 m/s (2)50 m【解析】(1)以冰车及小明为研究对象,由牛顿第二定律得F -μmg =ma 1① v m =a 1t ①由①①式得v m =5 m/s.(2)冰车匀加速运动过程中有x 1=12a 1t 2①冰车自由滑行时有μmg =ma 2① v 2m =2a 2x 2① 又x =x 1+x 2①由①①①①式得x =50 m.【总结提升】从受力确定运动情况应注意的三个方面(1)方程的形式:牛顿第二定律F =ma ,体现了力是产生加速度的原因.应用时方程式的等号左右应该体现出前因后果的形式,切记不要写成F -ma =0的形式,这样形式的方程失去了物理意义.(2)正方向的选取:通常选取加速度方向为正方向,与正方向同向的力取正值,与正方向反向的力取负值. (3)求解:F 、m 、a 采用国际单位制单位,解题时写出方程式和相应的文字说明,必要时对结果进行讨论. 【变式】.一个人从静止开始沿山坡向下滑雪(如图所示),山坡的倾角θ=30°,滑雪板与雪地的动摩擦因数是0.04,人不用雪杖,求5 s 内滑下的路程和5 s 末的速度大小.(g 取10 m/s 2)【答案】58.2 m 23.3 m/s【解析】以人(包括滑雪板)为研究对象,受力情况如图所示.将重力mg 沿垂直于山坡方向和沿山坡方向分解,据平衡条件和牛顿第二定律列方程 F N -mg cos θ=0① mg sin θ-F f =ma ① 又因为F f =μF N ①由①①①可得:a =g (sin θ-μcos θ)故x =12at 2=12g (sin θ-μcos θ)t 2=12×10×⎝⎛⎭⎫12-0.04×32×52 m =58.2 mv =at =10×⎝⎛⎭⎫12-0.04×32×5 m/s =23.3 m/s题型二 等时圆模型【例2】如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,每根杆上套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为0),用t 1、t 2、t 3依次表示各滑环到达d 所用的时间,则( )A .t 1<t 2<t 3B .t 1>t 2>t 3C .t 3>t 1>t 2D .t 1=t 2=t 3【答案】D【解析】小滑环下滑过程中受重力和杆的弹力作用,下滑的加速度可认为是由重力沿细杆方向的分力产生的, 设细杆与竖直方向夹角为θ,由牛顿第二定律知 mg cos θ=ma ①设圆心为O ,半径为R ,由几何关系得,滑环由开始运动至d 点的位移为x =2R cos θ① 由运动学公式得x =12at 2①由①①①式联立解得t =2R g小滑环下滑的时间与细杆的倾斜情况无关,故t 1=t 2=t 3.【模型构建】等时圆模型例图【变式】1.如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A .2①1B .1①1 C.3①1 D .1①3【答案】B.【解析】:设光滑斜槽轨道与竖直面的夹角为θ,则重物下滑时的加速度为a =g cos θ,由几何关系,斜槽轨道的长度s =2(R +r )cos θ,由运动学公式s =12at 2,得t =2s a= 2×2(R +r )cos θg cos θ=2R +rg,即所用时间t 与倾角θ无关,所以t 1=t 2,B 项正确.题型三 已知物体的运动情况求受力【例3】(2019-2020学年·佛山高一检测)在科技创新活动中,小华同学根据磁铁同性相斥原理设计了用机器人操作的磁力运输车(如图甲所示).在光滑水平面AB 上(如图乙所示),机器人用大小不变的电磁力F 推动质量为m =1 kg 的小滑块从A 点由静止开始做匀加速直线运动.小滑块到达B 点时机器人撤去电磁力F ,小滑块冲上光滑斜面(设经过B 点前后速率不变),最高能到达C 点.机器人用速度传感器测量小滑块在ABC 过程的瞬时速度大小并记录如下.求:(1)(2)斜面的倾角α的大小. 【答案】(1)2 N (2)30°【解析】(1)小滑块从A 到B 过程中:a 1=Δv 1Δt 1=2 m/s 2由牛顿第二定律得:F =ma 1=2 N. (2)小滑块从B 到C 过程中加速度大小: a 2=Δv 2Δt 2=5 m/s 2由牛顿第二定律得: mg sin α=ma 2 则α=30°.【归纳总结】从运动情况确定受力应注意的三个方面(1)由运动学规律求加速度,要特别注意加速度的方向,从而确定合外力的方向,不能将速度的方向和加速度的方向混淆.(2)题目中所求的可能是合力,也可能是某一特定的力,一般要先求出合力的大小、方向,再根据力的合成与分解求解.(3)已知运动情况确定受力情况,关键是对研究对象进行正确的受力分析,先根据运动学公式求出加速度,再根据牛顿第二定律求力.【变式】战士拉车胎进行100 m 赛跑训练体能.车胎的质量m =8.5 kg ,战士拉车胎的绳子与水平方向的夹角为θ=37°,车胎与地面间的动摩擦因数μ=0.7.某次比赛中,一名战士拉着车胎从静止开始全力奔跑,跑出20 m 达到最大速度(这一过程可看作匀加速直线运动),然后以最大速度匀速跑到终点,共用时15 s .重力加速度g =10 m/s 2,sin37°=0.6,cos37°=0.8.求:(1)战士加速所用的时间t 1和达到的最大速度大小v ; (2)战士匀加速运动阶段绳子对车胎的拉力大小F . 【答案】(1)5 s 8 m/s (2)59.92 N【解析】(1)匀加速阶段位移为x 1=0+v2t 1匀速阶段位移为x 2=100-x 1=v (15-t 1) 联立解得:v =8 m/s ,t 1=5 s(2)由速度公式v =at 1 得:a =v t 1=85 m/s 2=1.6 m/s 2车胎受力如图,并正交分解: 在x 方向有:F cos37°-f =ma 在y 方向有:N +F sin37°-mg =0 且f =μN代入数据联立解得:F =59.92 N三.课堂检测1.质量为1 kg 的质点,受水平恒力作用,由静止开始做匀加速直线运动,它在t 秒内的位移为x m ,则合力F 的大小为( ) A.2x t 2 B.2x2t -1 C.2x 2t +1 D.2x t -1【答案】A【解析】由运动情况可求得质点的加速度a =2x t 2 m/s 2,则合力F =ma =2xt2 N ,故A 项对.2.(多选)如图1所示,在粗糙水平面上,物块A在水平向右的外力F的作用下做直线运动,其v-t图像如图2所示,下列判断不正确的是()A.在0~1 s内,外力F不断增大且大于摩擦力B.在1~3 s内,外力F的大小恒定且等于摩擦力C.在3~4 s内,外力F不断减小且大于摩擦力D.在3~4 s内,外力F不断减小且小于摩擦力【答案】AC【解析】由题图2可知,在0~1 s内,物块做匀加速直线运动,根据牛顿第二定律,F-f=ma,合外力不变,由于摩擦力不变,所以外力F不变且大于摩擦力,故A错误.在1~3 s内,物块匀速运动,外力F等于摩擦力,故B正确.根据3~4 s内速度图线的变化规律可知,物块加速度反向且增大,说明外力F小于摩擦力,根据牛顿第二定律可知,f-F=ma′,外力F在不断减小,C错误,D正确.故选AC.3.(2019-2020学年·江苏高一月考)2018年10月23日,港珠澳大桥正式开通.建造大桥过程中最困难的莫过于沉管隧道的沉放和精确安装,每节沉管隧道重约G=8×108 N,相当于一艘中型航母的重量.通过缆绳送沉管到海底,若把该沉管的向下沉放过程看成是先加速运动后减速运动,且沉管仅受重力和缆绳的拉力,则拉力的变化过程可能正确的是()【答案】C.【解析】:设沉管加速的加速度为a1,减速的加速度为a2,加速过程由牛顿第二定律得:G-F1=ma1,得:F1=G-ma1,F1<G;减速过程由牛顿第二定律得:F2-G=ma2,得:F2=G+ma2,F2>G,故A、B、D 错误,C正确.4.(多选)如图,在车内用绳AB与绳BC拴住一个小球,其中绳BC水平.若原来的静止状态变为向右加速直线运动,小球仍相对小车静止,则下列说法正确的是()A.AB绳拉力不变B.AB绳拉力变大C.BC绳拉力变大D.BC绳拉力不变【答案】AC.【解析】:对球B受力分析,受重力、BC绳子的拉力F2,AB绳子的拉力F1,如图根据牛顿第二定律,水平方向F2-F1sin θ=ma,竖直方向F1cos θ-G=0,解得F1=Gcos θ,F2=G tan θ+ma 因静止时加速度为零,故向右加速后,AB绳子的拉力不变,BC绳子的拉力变大.5.(2019-2020学年·浙江期中)我国现在服役的第一艘航母“辽宁号”的舰载机采用的是滑跃起飞方式,即飞机依靠自身发动机从静止开始到滑跃起飞,滑跃仰角为θ.其起飞跑道可视为由长度L1=180 m的水平跑道和长度L2=20 m倾斜跑道两部分组成,水平跑道和倾斜跑道末端的高度差h=2 m,如图所示.已知质量m=2×104 kg的舰载机的喷气发动机的总推力大小恒为F=1.2×105N,方向始终与速度方向相同,若飞机起飞过程中受到的阻力大小恒为飞机重力的0.15,飞机质量视为不变,并把飞机看成质点,航母处于静止状态.(1)求飞机在水平跑道运动的时间;(2)求飞机在倾斜跑道上的加速度大小.【答案】:(1)4 5 s (2)3.5 m/s 2【解析】:(1)设飞机在水平跑道的加速度大小为a 1,由牛顿第二定律得F 1-f =ma 1解得a 1=4.5 m/s 2由匀加速直线运动公式L 1=12at 2 解得t =4 5 s.(2)设沿斜面方向的加速度大小为a 2,在倾斜跑道上对飞机受力分析,由牛顿第二定律得F -f -mg sin θ=ma 2,其中sin θ=h L 2解得a 2=3.5 m/s 2.四、课后提升作业1.(2019-2020学年·贵州遵义高一期末)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心,已知在同一时刻:a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道分别沿AM 、BM 运动到M 点;c 球由C 点自由下落到M 点.则( )A .a 球最先到达M 点B .c 球最先到达M 点C .b 球最先到达M 点D .b 球和c 球都可能最先到达M【答案】B.【解析】:c 球从圆心C 处由静止开始沿CM 做自由落体运动,R =12gt 2c ,t c =2R g ;a 球沿AM 做匀加速直线运动,a a =g sin 45°=22g ,x a =R cos 45°=2R ,x a =12a a t 2a ,t a =4R g ;b 球沿BM 做匀加速直线运动,a b =g sin 60°=32g ,x b =R cos 60°=2R ,x b =12a b t 2b ,t b =83R 3g;由上可知,t b >t a >t c .2.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍【答案】B.【解析】:由自由落体v 2=2gH ,缓冲减速v 2=2ah ,由牛顿第二定律F -mg =ma ,解得F =mg ⎝⎛⎭⎫1+H h =5mg ,故B 正确.3.为了使雨滴能尽快地淌离房顶,要设计好房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么如图所示的四种情况中符合要求的是( )【答案】C.【解析】:设屋檐的底角为θ,底边长为2L (不变).雨滴做初速度为零的匀加速直线运动,根据牛顿第二定律得加速度a =mg sin θm =g sin θ,位移大小x =12at 2,而x =L cos θ,2sin θcos θ=sin 2θ,联立以上各式得t = 4L g sin 2θ.当θ=45°时,sin 2θ=1为最大值,时间t 最短,故选项C 正确. 4.(多选)如图所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为 0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(取g =10 m/s 2)( )A .物体经10 s 速度减为零B .物体经2 s 速度减为零C .物体速度减为零后将保持静止D .物体速度减为零后将向右运动【答案】BC. 【解析】:水平方向上物体受到向右的恒力和滑动摩擦力的作用,做匀减速直线运动.滑动摩擦力大小为F f=μF N =μmg =3 N .故a =F +F f m =5 m/s 2,方向向右,物体减速到0所需时间为t =v 0a=2 s ,故B 正确,A 错误;减速到零后F <F f ,物体处于静止状态,故C 正确,D 错误.5.(多选)从某一星球表面做火箭实验.已知竖直升空的实验火箭质量为15 kg ,发动机推动力为恒力.实验火箭升空后发动机因故障突然关闭,如图所示是实验火箭从升空到落回星球表面的速度随时间变化的图象,不计空气阻力,则由图象可判断( )A .该实验火箭在星球表面达到的最大高度为320 mB .该实验火箭在星球表面达到的最大高度为480 mC .该星球表面的重力加速度为2.5 m/s 2D .发动机的推动力F 为37.50 N【答案】BC.【解析】:火箭所能达到的最大高度h m =12×24×40 m =480 m ,故A 错误,B 正确;该星球表面的重力加速度g 星=4016 m/s 2=2.5 m/s 2,故C 正确;火箭升空时:a =408m/s 2=5 m/s 2,故推动力F =mg 星+ma =112.5 N ,故D 错误.6.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A .7 m/sB .14 m/sC .10 m/sD .20 m/s【答案】B.【解析】:设汽车刹车后滑动的加速度大小为a ,由牛顿第二定律μmg =ma ,解得a =μg .由匀变速直线运动的速度位移关系式v 20=2ax ,可得汽车刹车前的速度为v 0=2ax =2μgx =2×0.7×10×14 m/s =14 m/s ,因此B 正确.7.(2019-2020学年·太原期末)在设计游乐场中“激流勇进”的倾斜滑道时,小组同学将划艇在倾斜滑道上的运动视为由静止开始的无摩擦滑动,已知倾斜滑道在水平面上的投影长度L 是一定的,而高度可以调节,则( )A .滑道倾角越大,划艇下滑时间越短B .划艇下滑时间与倾角无关C .划艇下滑的最短时间为2L g D .划艇下滑的最短时间为 2L g 【答案】C.【解析】:设滑道的倾角为θ,则滑道的长度为:x =L cos θ,由牛顿第二定律知划艇下滑的加速度为:a =g sin θ,由位移公式得:x =12at 2;联立解得:t =2L g sin 2θ,可知下滑时间与倾角有关,当θ=45°时,下滑的时间最短,最短时间为2L g . 8.(2019-2020·江苏扬州高一期中)如图所示,钢铁构件A 、B 叠放在卡车的水平底板上,卡车底板和B 间动摩擦因数为μ1,A 、B 间动摩擦因数为μ2,μ1>μ2卡车刹车的最大加速度为a ,a >μ1g ,可以认为最大静摩擦力与滑动摩擦力大小相等,卡车沿平直公路行驶途中遇到紧急情况时,要求其刹车后s 0距离内能安全停下,则卡车行驶的速度不能超过( )A.2as 0B.2μ1gs 0C.2μ2gs 0D.(μ1+μ2)gs 0【答案】C.【解析】:设A 的质量为m ,卡车以最大加速度运动时,A 与B 保持相对静止,对构件A 由牛顿第二定律得f 1=ma 1≤μ2mg ,解得a 1≤μ2g ,同理,可知B 的最大加速度a 2≤μ1g ;由于μ1>μ2,则a 1<a 2≤μ1g <a ,可知要求其刹车后在s 0距离内能安全停下,则车的最大加速度等于a 1,所以车的最大速度v m =2μ2gs 0,故A 、B 、D 错误,C 正确.9.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F推第1块木块使它们共同加速运动时,下列说法中正确的是()A.由右向左,两块木块之间的相互作用力依次变小B.由右向左,两块木块之间的相互作用力依次变大C.第2块木块与第3块木块之间的弹力大小为0.6FD.第3块木块与第4块木块之间的弹力大小为0.6F【答案】BC.【解析】:取整体为研究对象,由牛顿第二定律得F-5μmg=5ma.再选取1、2两块木块为研究对象,由牛顿第二定律得F-2μmg-F N=2ma,两式联立解得F N=0.6F,进一步分析可得,从右向左,木块间的相互作用力是依次变大的,选项B、C正确.10.(2019-2020学年·江西吉安高一诊断)绷紧的传送带长L=32 m,铁块与带间动摩擦因数μ=0.1,g=10 m/s2,下列正确的是()A.若皮带静止,A处小铁块以v0=10 m/s向B运动,则铁块到达B处的速度为6 m/sB.若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,铁块到达B处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B处的速度为8 m/s【答案】ABD.【解析】:若传送带不动,物体做匀减速直线运动,根据牛顿第二定律得,匀减速直线运动的加速度大小a =μg=1 m/s2,根据v2B-v20=-2aL,解得:v B=6 m/s,故A正确;若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,物块滑上传送带做匀减速直线运动,到达B点的速度大小一定等于6 m/s,故B正确;若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块先向右做匀加速运动,加速到4 m/s 经历的位移x=v22a=422×1m=8 m<32 m,之后随皮带一起做匀速运动,C错误;若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,若铁块一直向右做匀加速运动,铁块到达B处的速度:v B=2aL=2×1×32 m/s=8 m/s<10 m/s,则铁块到达B处的速度为8 m/s,故D正确.11.如图所示,质量m=2 kg的物体静止在水平面上,物体与水平面间的滑动摩擦力大小等于它们之间弹力的0.25倍.现对物体施加一个大小F =8 N ,与水平方向夹角θ=37°的斜向上的拉力.求物体在拉力作用下5 s 内通过的位移.(sin37°=0.6,cos37°=0.8,取g =10 m/s 2)【答案】16.25 m【解析】物体受到四个力的作用,如图所示,建立直角坐标系并分解力F .根据牛顿第二定律,x 、y 两个方向分别列方程F cos θ-F f =ma ①F sin θ+F N -G =0①F N 为水平面对物体的支持力,即物体与水平面之间的弹力,故摩擦力F f =μF N ①由①①①得a =1.3 m/s 2,由运动学公式得5 s 内物体的位移x =12at 2=12×1.3×52 m =16.25 m. 12.如图甲所示,质量为1.0 kg 的物体置于固定斜面上,斜面的倾角θ=37°,对物体施以平行于斜面向上的拉力F ,物体运动的F -t 图像如图乙(规定沿斜面向上的方向为正方向,g =10 m/s 2,sin37°=0.6),物体与斜面间的动摩擦因数μ=3/8,试求:(1)0~1 s 内物体运动位移的大小;(2)1 s 后物体继续沿斜面上滑的距离.【答案】(1)9 m (2)54 m【解析】 (1)根据牛顿第二定律得:在0~1 s 内F -mg sin37°-μmg cos37°=ma 1,解得a 1=18 m/s 20~1 s 内的位移x 1=12a 1t 21=9 m (2)1 s 时物体的速度v =a 1t 1=18 m/s1 s 后物体继续沿斜面减速上滑的过程中mg sin37°+μmg cos37°-F ′=ma 2,解得a 2=3 m/s 2设物体继续上滑的距离为x 2,由2a 2x 2=v 2得x 2=54 m13.公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为 1 s .当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度. 【答案】:20 m/s【解析】:设路面干燥时,汽车与地面间的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得μ0mg =ma 0①s =v 0t 0+v 202a 0① 式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面间的动摩擦因数为μ,依题意有μ=25μ0① 设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得 μmg =ma ①s =vt 0+v 22a① 联立①①①①①式并代入题给数据得v =20 m/s(72 km/h).14.如图所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v 0=16 m/s 从底端A 点滑上斜面,滑至B 点后又返回到A 点,滑块与斜面之间的动摩擦因数μ=0.25.(已知:sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2)求:(1)AB 之间的距离;(2)滑块再次回到A 点时的速度;(3)滑块在整个运动过程中所用的时间.【答案】(1)16 m (2)8 2 m/s (3)(2+22) s【解析】(1)设滑块从A 滑到B 过程的加速度大小为a 1,由牛顿第二定律得ma 1=mg sin θ+μmg cos θ,则a 1=8 m/s 2,由v 2B -v 20=-2a 1x AB ,得AB 之间的距离x AB=16 m ; (2)设滑块从B 返回到A 过程的加速度大小为a 2,由牛顿第二定律得:ma 2=mg sin θ-μmg cos θ,则a 2=4 m/s 2,则滑块返回到A 点时的速度为v t ,有v 2t =2a 2x AB ,解得:v t =8 2 m/s ;(3)设滑块从A 到B 用时为t 1,从B 返回到A 用时为t 2,则有:t 1=0-v 0-a 1=2 s ,t 2=v t -0a 2=2 2 s ,则滑块在整个运动过程中所用的时间为:t =t 1+t 2=(2+22) s.15.风洞实验室中可产生方向、大小都可以调节控制的各种风力.如图所示为某风洞里模拟做实验的示意图.一质量为1 kg 的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°.现小球在F =20 N 的竖直向上的风力作用下,从A 点静止出发沿直杆向上运动,已知杆与球间的动摩擦因数μ=36.试求:(1)小球运动的加速度a 1;(2)若风力F 作用1.2 s 后撤去,求小球上滑过程中距A 点的最大距离x m ;(3)在上一问的基础上若从撤去风力F 开始计时,小球经多长时间将经过距A 点上方为2.25 m 的B 点.【答案】:(1)2.5 m/s 2 (2)2.4 m (3)0.2 s 和0.75 s【解析】:(1)在力F 作用时有:(F -mg )sin 30°-μ(F -mg )cos 30°=ma 1解得a 1=2.5 m/s 2.(2)刚撤去F 时,小球的速度v 1=a 1t 1=3 m/s小球的位移x 1=v 12t 1=1.8 m 撤去力F 后,小球上滑时有:mg sin 30°+μmg cos 30°=ma 2,a 2=7.5 m/s 2因此小球上滑时间t 2=v 1a 2=0.4 s 上滑位移x 2=v 12t 2=0.6 m 则小球上滑的最大距离为x m =x 1+x 2=2.4 m.(3)在上滑阶段通过B 点:x AB -x 1=v 1t 3-12a 2t 23经过B 点时的时间为t 3=0.2 s ,另t 3=0.6 s(舍去)小球返回时有:mg sin 30°-μmg cos 30°=ma 3,a 3=2.5 m/s 2因此小球由顶端返回B点时有:x m-x AB=12a3t24,t4=35s经过B点时的时间为t2+t4=2+35s≈0.75 s.。
高中物理必修一 新课改 讲义 05 C牛顿运动三定律 提升版
牛顿运动三定律考点一牛顿第一定律的理解1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都具有惯性,因此牛顿第一定律又被叫作惯性定律;②揭示了运动和力的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.技巧点拨1.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动).(2)物体受到外力时,惯性表现为抗拒运动状态的改变,惯性大,物体的运动状态较难改变;惯性小,物体的运动状态较易改变.2.牛顿第一定律与牛顿第二定律的关系牛顿第一定律和牛顿第二定律是相互独立的.(1)牛顿第一定律告诉我们改变运动状态需要力,力是如何改变物体运动状态的问题则由牛顿第二定律来回答.(2)牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.例题精练1.科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法中符合历史事实的是()A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:运动必具有一定的速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出,如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体都具有保持原来匀速直线运动状态或静止状态的性质2.伽利略对自由落体运动及运动和力的关系的研究,开创了科学实验和逻辑推理相结合的重要科学研究方法.图1(a)、(b)分别表示这两项研究中实验和逻辑推理的过程,对这两项研究,下列说法正确的是()图1A.图(a)通过对自由落体运动的研究,合理外推得出小球在斜面上做匀变速运动B.图(a)中先在倾角较小的斜面上进行实验,可“冲淡”重力,使时间测量更容易C.图(b)中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成D.图(b)的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持3.某同学为了取出如图2所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()图2A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性考点二牛顿第二定律1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.2.力学单位制(1)单位制:基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.技巧点拨1.对牛顿第二定律的理解2.解题的思路和关键(1)选取研究对象进行受力分析;(2)应用平行四边形定则或正交分解法求合力;(3)根据F合=ma求物体的加速度a.例题精练4.下列关于速度、加速度、合外力之间的关系的说法正确的是()A.物体的速度越大,则加速度越大,所受的合外力也越大B.物体的速度为0,则加速度为0,所受的合外力也为0C.物体的速度为0,但加速度可能很大,所受的合外力也可能很大D.物体的速度很大,但加速度可能为0并且所受的合外力很大5.如图4所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点.如果物体受到的阻力恒定,那么()图4A.物体从A到O先加速后减速B.物体从A 到O 做加速运动,从O 到B 做减速运动C.物体运动到O 点时,所受合力为零D.物体从A 到O 的过程中,加速度逐渐减小考点三 牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F =-F ′.技巧点拨1.相互作用力的特点(1)三同⎩⎪⎨⎪⎧ 同大小同时产生、变化、消失同性质(2)三异⎩⎪⎨⎪⎧ 反向异体,即作用力、反作用力作用在不同物体上不同效果(3)二无关⎩⎪⎨⎪⎧与相互作用的两物体的运动状态无关与是否和其他物体相互作用无关 2.一对平衡力与作用力和反作用力的比较例题精练6.如图6所示,体育项目“押加”实际上相当于两个人拔河,如果甲、乙两人在“押加”比赛中,甲获胜,则下列说法中正确的是( )图6A.甲对乙的拉力大于乙对甲的拉力,所以甲获胜B.当甲把乙匀速拉过去时,甲对乙的拉力等于乙对甲的拉力C.当甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲获胜7.如图7所示,一根轻绳的上端悬挂在天花板上,下端挂一灯泡,则()图7A.灯泡受的重力和灯泡对绳的拉力是一对平衡力B.灯泡受的重力和绳对灯泡的拉力是一对作用力和反作用力C.灯泡对绳的拉力和绳对灯泡的拉力是一对作用力和反作用力D.绳对天花板的拉力和天花板对绳的拉力是一对平衡力8.如图8所示,质量为m的木块在质量为M的长木板上以加速度a水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,重力加速度为g,若长木板仍处于静止状态,则长木板对地面摩擦力的大小和方向一定为()图8A.μ1(m+M)g,向左B.μ2mg,向右C.μ2mg+ma,向右D.μ1mg+μ2Mg,向左综合练习一.选择题(共8小题)1.(连云港月考)关于惯性,下列说法正确的是()A.乒乓球可以迅速抽杀,是因为乒乓球惯性小的缘故B.某人推不动原来静止的箱子,是因为箱子的惯性太大的缘故C.在宇宙飞船内的物体不存在惯性D.在月球上举重比在地球上举重容易,所以同一物体在月球上比在地球上惯性小2.(新洲区期末)如图,在车厢中的A是用绳拴在底部上的氢气球,B是用绳挂在车厢顶的金属球,开始时它们和车顶一起向右做匀速直线运动,若忽然刹车使车向右做匀减速运动。
人教版高中物理必修第1册精品讲义 第18课 牛顿运动定律的应用(教师版)
第5课牛顿运动定律的应用课程标准课标解读1.能通过分析物体的受力情况,确定物体的运动情况,能通过物体的运动情况确定物体的受力情况。
2.能根据力与运动的关系,联系牛顿运动定律和运动学知识,分析求解有关动力学问题。
3.掌握应用牛顿运动定律解决问题的基本思路和方法。
1、能用牛顿运动定律解决两类主要问题:已知物体的受力情况确定物体的运动情况、已知物体的运动情况确定物体的受力情况。
2、掌握应用牛顿运动定律解决问题的基本思路和方法,即首先对研究对象进行受力和运动情况分析,然后用牛顿运动定律把二者联系起来。
3、初步体会牛顿运动定律对社会发展的影响,建立应用科学知识解决实际问题的意识。
知识点01 动力学两类基本问题1.动力学问题的解题思路知识精讲目标导航2.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.【即学即练1】(已知受力情况求运动情况)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F1=32 N,试飞时飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的空气阻力大小恒为f=4 N,飞行器上升9 s后由于出现故障而失去升力,出现故障9 s后恢复升力但升力变为F2=16 N,取重力加速度大小g=10 m/s2,假设飞行器只在竖直方向运动.求:(1)飞行器9 s末的速度大小v1;(2)飞行器0~18 s内离地面的最大高度H;(3)飞行器落回地面的速度大小v2.答案(1)36 m/s (2)216 m (3)48 m/s解析(1)0~9 s内,飞行器受重力、升力和阻力作用做匀加速直线运动,由牛顿第二定律得:F1-mg-f=ma1解得a1=4 m/s2飞行器9 s末的速度大小v1=at1=36 m/s.(2)最初9 s 内位移h 1=12a 1t 12=162 m设失去升力后上升阶段加速度大小为a 2,上升阶段的时间为t 2,由牛顿第二定律得: f +mg =ma 2 解得a 2=12 m/s 2由运动学公式可得飞行器失去升力后上升阶段v 1=a 2t 2 由运动学公式可得h 2=12a 2t 22飞行器0~18 s 内离地面的最大高度H =h 1+h 2 解得t 2=3 s ,H =216 m.(3)飞行器到最高点后下落,设加速度大小为a 3,由牛顿第二定律得: mg -f =ma 3 解得a 3=8 m/s 2恢复升力前飞行器下落的时间为t 3=9 s -t 2=6 s ,所以其速度v 2=a 3t 3. 解得v 2=48 m/s ,由于H>12a 3t 32=144 m ,恢复升力后F 2=mg -f ,所以飞行器匀速下降,可知落回地面的速度大小为48 m/s.【即学即练2】(已知运动情况求受力)(多选)如图甲所示,物块的质量m =1 kg ,初速度v 0=10 m/s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻F 突然反向,大小不变,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列说法中正确的是( )A.0~5 m 内物块做匀减速运动B.在t =1 s 时刻,恒力F 反向C.恒力F 大小为10 ND.物块与水平面间的动摩擦因数为0.3 答案 ABD解析 0~5 m 内,由v 12-v 02=2a 1/s 2,则物块做匀减速运动,A 正确;由题图乙知,物块的初速度v 0=10 m/s ,恒力F 在5 m 处反向,在0~5 m 内物块运动的时间t =0-v 0a 1=1 s ,即在t =1 s 时刻,恒力F 反向,B 正确;5~13 m 内,由v 22=2a 2x 2得物块的加速度a 2=v 222x 2=642×8m/s 2=4 m/s 2,由牛顿第二定律得-F -μmg=ma 1,F -μmg=ma 2,联立两式解得F =7 N ,μ=0.3,D 正确,C 错误. 知识点02 等时圆1、质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到圆环的最低点所用时间相等,如图甲所示;2、质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示 ;3、两个竖直圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示.【即学即练3】(多选)如图所示,Oa 、Ob 和ad 是竖直平面内三根固定的光滑细杆,O 、a 、b 、c 、d 位于同一圆周上,c 为圆周的最高点,a 为最低点,O′为圆心.每根杆上都套着一个小滑环(未画出),两个滑环从O 点无初速度释放,一个滑环从d 点无初速度释放,用t 1、t 2、t 3分别表示滑环沿Oa 、Ob 、da 到达a 、b 所用的时间.下列关系正确的是( )A.t 1=t 2B.t 2>t 3C.t 1<t 2D.t 1=t 3答案 BCD解析 设想还有一根光滑固定细杆ca ,则ca 、Oa 、da 三细杆交于圆的最低点a ,三杆顶点均在圆周上,根据等时圆模型可知,由c 、O 、d 无初速度释放的小滑环到达a 点的时间相等,即t ca =t 1=t 3;而由c→a 和由O→b 滑动的小滑环相比较,滑行位移大小相同,初速度均为零,但加速度a ca >a Ob ,由x =12at 2可知,t 2>t ca ,故选项A 错误,B 、C 、D 均正确.知识点03 动力学中的临界问题1、有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;2、若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3、若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4、若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度.【即学即练4】如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m 1和m 2,各接触面间的动摩擦因数均为μ.重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m 1=0.5 kg ,m 2=0.1 kg ,μ=0.2,砝码与纸板左端的距离d =0.1 m ,取g =10 m/s 2.若砝码移动的距离超过l =0.002 m ,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?解析 (1)砝码对纸板的摩擦力f 1=μm 1g ,桌面对纸板的摩擦力f 2=μ(m 1+m 2)g ,纸板所受的摩擦力f =f 1+f 2=μ(2m 1+m 2)g.(2)设砝码的加速度为a 1,纸板的加速度为a 2,则有:f 1=m 1a 1,F -f 1-f 2=m 2a 2,发生相对运动的条件a 1<a 2, 解得F>2μ(m 1+m 2)g.(3)纸板抽出前,砝码运动距离x 1=12a 1t 21.纸板运动距离x 1+d =12a 2t 21.纸板抽出后,砝码在桌面上运动距离x 2=12a 3t 22,l =x 1+x 2且a 1=a 3,a 1t 1=a 3t 2,联立以上各式解得F =2μ⎣⎢⎡⎦⎥⎤m 1+⎝⎛⎭⎪⎫1+d l m 2g ,代入数据求得F =22.4 N.答案 (1)μ(2m 1+m 2)g (2)F>2μ(m 1+m 2)g (3) 22.4 N能力拓展考法01 动力学图像1.常见的动力学图像v t图像、a t图像、F t图像、F a图像等。
《牛顿运动定律的应用》 讲义
《牛顿运动定律的应用》讲义一、牛顿运动定律概述牛顿运动定律是经典力学的基础,由艾萨克·牛顿在 1687 年于《自然哲学的数学原理》一书中总结提出。
它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律,也被称为惯性定律,其内容是:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
这一定律揭示了物体具有惯性这一本质属性,惯性的大小只与物体的质量有关。
牛顿第二定律指出,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比,其数学表达式为 F = ma ,其中 F 表示合力,m 为物体的质量,a 为加速度。
这一定律建立了力、质量和加速度之间的定量关系,是解决力学问题的核心定律。
牛顿第三定律表明,两个物体之间的作用力和反作用力总是大小相等、方向相反,且作用在同一条直线上。
这一定律说明了力的相互性,对于理解物体之间的相互作用具有重要意义。
二、牛顿运动定律在日常生活中的应用1、行走与跑步当我们行走或跑步时,脚向后蹬地,地面对脚产生向前的摩擦力,这个摩擦力就是我们前进的动力。
根据牛顿第三定律,脚对地面施加向后的力,地面就会给脚一个大小相等、方向向前的反作用力,推动我们向前运动。
同时,我们的身体在运动过程中会受到重力、空气阻力等力的作用,而我们能够保持稳定的速度前进,是因为肌肉产生的力与这些阻力达到平衡,符合牛顿第二定律。
2、汽车的启动与制动汽车启动时,发动机提供牵引力,克服汽车的静止惯性,使汽车加速前进。
牵引力大于汽车所受到的阻力(包括地面摩擦力、空气阻力等),根据牛顿第二定律,汽车产生向前的加速度。
而在制动过程中,刹车系统产生的摩擦力作用于车轮,使汽车减速直至停止。
同样,这也是牛顿第二定律的应用。
3、体育运动中的投掷项目比如铅球、标枪等投掷运动,运动员通过肌肉的力量对球或标枪施加作用力,使其获得初速度。
在投掷过程中,运动员要遵循牛顿第二定律,控制力量的大小和方向,以达到最佳的投掷效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律考点1,基本牛二1、搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则A 、a l =a 2B 、a 1<a 2<2a lC 、a 2=2a 1D 、a 2>2a l2、固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的是( ) A .小车静止时,F=mg sinθ,方向沿杆向上 B .小车静止时,F=mg c osθ,方向垂直杆向上 C .小车向右以加速度a 运动时,一定有/sin F ma θ= D .小车向左以加速度a 运动时,22)()(mg ma F +=,方向左上方,与竖直方向的夹角为 g a /tan =α3、如图(a ),质量m =1kg 的物体沿倾角θ=37︒的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图(b )所示。
求:(1)物体与斜面间的动摩擦因数μ;(2)比例系数k 。
考点2,定性分析4、运动员跳板跳水”运动的过程可简化为:运动员走上跳板,将跳板从水平位置B 压到最低点C ,跳板又将运动员竖直向上弹到最高点A ,然后运动员做自由落体运动,竖直落入水中.跳板自身重力忽略不计,则下列说法正确的是 A .运动员向下运动(B →C )的过程中,先失重后超重,对板的压力先减小后增大 B .运动员向下运动(B →C )的过程中,先失重后超重,对板的压力一直增大 C .运动员向上运动(C →B )的过程中,先超重后失重,对板的压力先增大后减小D .运动员向上运动(C →B )的过程中,先超重后失重,对板的压力一直减小5、在水平桌面上推一物体压缩一个原长为L 0的轻弹簧,桌面与物体之间有摩擦,放手后物体被弹开,则 A 、物体与弹簧分离时加速度为零以后做匀减速运动 B 、弹簧恢复到L 0时物体速度最大 C 、弹簧恢复到L 0以前一直做加速度越来越小变加速度运动D 、弹簧恢复到L 0以前某一时刻物体已达到最大速度6、如质量相同的木块A 、B 用轻弹簧连接置于光滑的水平面上,开始时两木块静止且弹簧处于原长状态。
现用水平恒力F 推木块A ,则从开始到弹簧第一次被压缩到最短的过程中A 、两木块速度相同时,加速度a A < aB B 、两木块加速度相同时,速度v A >v BC 、B 的加速度一直在增大D 、A 的加速度先减小后增大考点3,瞬时加速度7、轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。
重力加速度大小为g 。
则有 A 、1a g =,2a g = B 、10a =,2a g = C 、10a =,2m M ag M+=D 、1a g =,2m M a g M+=8、如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0 B.233g C .g D.33g9、如图所示,两个质量分别为m 1=2kg ,m 2=3kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接。
两个大小分别为F 1=30N 、F 2=20N 的水平拉力分别作用在m 1、m 2上,则( ) A .弹簧秤的示数是10NB .弹簧秤的示数是50NC .在突然撤去F 2的瞬间,m 1的加速度不变D .在突然撤去F 2的瞬间,m 2的加速度变大考点4,图像问题10、物体A B C 均静止在同一水平面上,它们的质量分别为m A 、 m B 、 m C ,与平面的动摩擦因数a /ms -2 (b ) m 4θ(a ) 0 5 v /ms -1分别为μA、μB 、μC,用平行于水平面的拉力F分别拉物体A、B、C所得加速度a与F的关系图线如图,对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是①.μA< μB m A =m B②.μB >μC m B >m C③.μB =μC m B >m C④. μA<μC m A< m CA、①②B、②④C、③④D、①④11、如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,同时对环施加一个竖直向上的作用力F,并使F的大小随v的大小变化,两者的关系为F=kv,其中k为常数,则环运动过程中的v-t图象可能是()12、如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是考点5 分解加速度13、为了节省能量,某商场安装了智能化的电动扶梯。
无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转。
一顾客乘扶梯上楼,恰好经历了这两个过程,那么下列说法中正确的是A、顾客始终受到三个力的作用B、顾客始终处于超重状态C、顾客对扶梯作用力的方向先指向左下方,再竖直向下D、顾客对扶梯作用的方向先指向右下方,再竖直向下14、在升降机地面上固定着一个倾角α=30°的光滑斜面,用一条平行于斜面的细绳拴住一个质量m=2kg 的小球,当升降机以加速度a=2m/s²竖直向上匀加速运动时,绳子对球的拉力和小球对斜面的压力分别为多少?考点6 运动与力结合15、将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体A、刚抛出时的速度最大B、在最高点的加速度为零C、上升时间大于下落时间D、上升时的加速度等于下落时的加速度16、一名消防队员在模拟演习训练中,沿着长为12m的竖立在地面上的钢管住下滑.已知这名消防队员的质量为60kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3s,g取10m/s2,那么该消防队员()A、下滑过程中的最大速度为4 m/sB、加速与减速过程的时间之比为1∶2C、加速与减速过程中所受摩擦力大小之比为1∶7D、加速与减速过程的位移之比为1∶417、如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为︒60,C是圆环轨道的圆心,已知在同一时刻,甲、乙两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点,丙球由C点自由下落到M点,有关下列说法正确的是A.甲球下滑的加速度大于乙球下滑的加速度B.丙球最先到达M点C.甲、乙、丙球同时到达M点D.甲、丙两球到达M点时的速率相等18、一卡车拖挂一相同质量的车厢,在水平直道上以12/v m s=的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。
某时刻,车厢脱落,并以大小为22/a m s=的加速度减速滑行。
在车厢脱落3t s=后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍。
假设刹车前牵引力不变,求卡车和车厢都停下后两者之间的距离。
19、有一个倾角为37°的固定斜面,斜面长ml2.3=,现将一个质量kgm0.1=的物体放在斜面顶端,对物体施加一个沿斜面向上的恒力F作用F=2.4N。
物体从静止开始沿斜面匀加速下滑,经过时间2s,物体恰好滑至斜面底端。
(1)求物体与斜面间的动摩擦因数;(2)若对物体施加一水平向右的恒力F′,可使物体自斜面底端从静止开始仍经2s匀加速上升回到斜面顶端,问应加多大的水平恒力F′?20、航模兴趣小组设计出一架遥控飞行器,其质量m=2㎏,动力系统提供的恒定升力F =28 N。
试飞时,飞行器从地面由静止开始竖直上升。
设飞行器飞行时所受的阻力大小不变,g取10m/s2。
(1)第一次试飞,飞行器飞行t1 = 8 s 时到达高度H = 64 m。
求飞行器所阻力f的大小;(2)第二次试飞,飞行器飞行t2= 6 s 时遥控器出现故障,飞行器立即失去升力。
求飞行器能达到的最大高度h;(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3。
21、如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据.(重力加速度g =10 m/s2)求:(1)斜面的倾角落α(2)物体与水平面之间的动摩擦因数μ(3) t =0.6 s 时的瞬时速度v考点7 皮带问题22、传送带的水平部分长为L,传动速率为v,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间可能是A.Lv+v2μgB.LvC.2LμgD.2Lv23、一条足够长的浅色水平传送带自左向右匀速运行。
现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。
下列说法中正确的是A.黑色的径迹将出现在木炭包的左侧B.木炭包的质量越大,径迹的长度越短C.传送带运动的速度越大,径迹的长度越短D.木炭包与传送带间动摩擦因数越大,径迹的长度越短24、如图所示,绷紧的水平传送带始终以恒定速率v1运行。
初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。
已知v2>v1,则A、t2时刻,小物块离A处的距离达到最大B、t2时刻,小物块相对传送带滑动距离达到最大C、0~t2时间内,小物块受到的摩擦力方向先向右后向左D、0~t3时间内,小物块始终受到大小不变的摩擦力作用25、重物放在倾角为θ的皮带传送机上,它和皮带没有打滑,如图所示,关于重物受到的静摩擦力的大小,下列说法正确的是( )A 、物体静止时受到的摩擦力一定小于它斜向上运动时受到的摩擦力B 、重物斜向上加速运动时,加速度越大摩擦力一定越大C 、重物斜向下加速运动时,加速度越大摩擦力一定越大D 、重物向上运动的速度越大,摩擦力一定越大26、如图所示为粮食仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距m L 31=;另一台倾斜传送,传送带与地面间的倾角037=θ,C 、D 两端相距m L 45.42=,B 、C 相距很近。