移动机器人控制系统设计

合集下载

世界技能大赛移动机器人运动控制系统设计

世界技能大赛移动机器人运动控制系统设计

0引言世界技能大赛由世界技能组织举办,被誉为“技能奥林匹克”,是世界技能组织成员展示和交流职业技能的重要平台,比赛项目共分为6个大类,分别为结构与建筑技术、创意艺术和时尚、信息与通信技术、制造与工程技术、社会与个人服务、运输与物流。

移动机器人项目属于制造与工程技术领域的赛事之一,随着制造业的转型升级,技能人才的培养也扮演着越来越重要的角色,为了更好地推广移动机器人项目,让更多的院校参与世界技能大赛,让更多的学生学会利用自动控制技术设计世界技能大赛所需的移动机器人,笔者将几年来对移动机器人电机控制、运动规划方面的一些技巧及实现做了总结,旨在让更多的参与者快速学会对移动机器人的控制,更好地推动移动机器人相关专业的发展。

1系统组成1.1系统基本构成世界技能大赛移动机器人项目一般要求参赛队伍所制作的移动机器人具有较为灵活的移动能力,为了满足这一条件,普遍采用全方位移动的机器人设计。

全方位移动机器人具有全方位运动能力,其实现方式关键在于全方位的轮系结构,该结构具备每一个大轮边缘套有小轮的机构,能够避免普通轮系不能侧滑带来的非完整性运动限制,从而实现全方位运动。

在比赛中,机器人较为常用的底盘是用 3 个全向轮组成的底盘运动控制系统。

其中,三个全向轮运动轴心夹角按照 120°进行设计,之间通过3条横梁互为60°连接构成,如图1所示,底盘三个全向轮由独立的电机驱动。

底盘运动信息主要通过三个360线的编码器和一个9轴陀螺仪获取。

图1 三轮机器人效果图(左)及实物图(右)1.2系统主体框架世界技能大赛移动机器人项目所设计的机器人,既要考虑到实用性,又要考虑到使用提供指定套件来搭建。

整个指定套件提供了4个直流电机、3个舵机、1个陀螺仪、2个超声波传感器、2个红外传感器、2个限位开关,设计的机器人需要依赖于上述提供的电气元件。

笔者所使用的三轮平台由核心控制模块(MYRIO)、传感器检测模块、世界技能大赛移动机器人运动控制系统设计 章安福(广州市工贸技师学院,广州,510000)摘 要世界技能大赛移动机器人项目要求设计的机器人能够在2m×4m的平面场地中完成一定的任务,而全向轮式移动机器人为非完整性约束系统,机器人可向任意方向做直线运动而不需事先做旋转运动,同时可执行复杂的弧线运动。

自主轮式移动操作机器人的系统设计与分析的开题报告

自主轮式移动操作机器人的系统设计与分析的开题报告

自主轮式移动操作机器人的系统设计与分析的开题报告一、研究背景和意义自主移动机器人作为一种能够自主运动的智能机器,已经在生产、服务、军事等领域得到了广泛的应用。

而自主轮式移动操作机器人更是在工业生产中扮演着重要的角色,能够完成多种复杂任务,如搬运、装配、加工等。

因此,自主轮式移动操作机器人的设计和研究是具有重要意义的。

本课题将研究自主轮式移动操作机器人的系统设计与分析,主要包括机器人的硬件设计和控制系统设计。

通过本课题的研究,可以实现自主轮式移动操作机器人在工业生产中的高效运用,提升生产效率和产品质量,降低了成本。

二、研究内容和方法本课题主要研究自主轮式移动操作机器人的系统设计和分析,研究内容包括:1.机器人的机械结构设计:涉及机器人的底盘、悬挂、轮子、驱动装置等部件的设计和组装。

通过借鉴现有的设计,结合实际需要,优化机器人的机械结构,以满足自主移动操作机器人的要求。

2.机器人的控制系统设计:需要研究机器人的控制系统组成、控制策略、程序设计等方面,实现机器人的自主运动和操作。

3.算法和模型:机器人的自主运动和操作需要依赖于一系列的算法和模型,本课题将研究机器人路径规划、决策算法、视觉检测算法等方面,提高机器人在不同环境中的适应性。

研究方法主要包括实验室实践、模拟仿真、数据采集和分析等,还将结合相关文献和专家意见进行分析和讨论。

三、预期成果通过本课题的研究,预计可以达到以下成果:1.实现自主轮式移动操作机器人的硬件设计;2.设计并实现机器人的控制系统;3.研究机器人的算法和模型,以提高机器人在不同环境中的适应性和智能化水平;4.系统分析和性能测试,验证系统在实际操作中的效果和可行性;5.实现自主轮式移动操作机器人在工业生产中的高效运用。

四、研究进度和计划本研究计划分为以下几个阶段:1.文献调研和技术分析:对相关的技术资料和文献进行调研和分析,研究现有的机器人设计和研究现状。

2.机器人的硬件设计:涉及机器人的底盘、悬挂、轮子、驱动装置等部件的设计和组装,包括机械结构的设计、3D打印、装配、调试等过程。

全向移动机器人的运动控制系统设计的开题报告

全向移动机器人的运动控制系统设计的开题报告

全向移动机器人的运动控制系统设计的开题报告一、研究背景与意义随着智能制造和服务机器人的迅速发展,全向移动机器人成为了研究热点之一。

全向移动机器人具有灵活性高、操作半径大、动力学性能好、运动自由度多等特点,被广泛应用于物流搬运、零售服务、医院护理等领域。

而全向移动机器人的运动控制系统是一项至关重要的技术,能够直接影响机器人的运行性能和工作效率。

传统的全向移动机器人运动控制方法主要基于轮式移动机器人定位和控制的方法,但是该方法不适用于全向移动机器人。

因此,研究基于全向轮的移动机器人运动控制系统对于提高机器人定位精度和运动自由度,优化机器人运动路径,提高运动控制精度,提高机器人工作效率能起到非常重要的作用。

二、研究内容本文将研究全向移动机器人运动控制系统,主要内容包括以下几个方面:1. 全向移动机器人系统的建模与仿真。

通过建立机器人的数学模型,研究机器人的运动学和动力学特性,并通过仿真平台对系统进行验证和优化。

2. 控制算法的设计与优化。

基于全向轮的机器人控制算法包括路径规划、速度控制和力矩控制。

通过优化控制算法,提高机器人位置和姿态控制的精度。

3. 模块化控制系统设计。

设计模块化控制系统实现对机器人轮式驱动器、IMU (惯性测量单元)、编码器、雷达、摄像头等外部传感器的驱动控制。

并实现与机器人运动控制算法的整合。

三、研究方法本研究采用理论研究和实验研究相结合的方法,通过理论分析和仿真实验验证机器人运动控制算法的正确性和可行性,并通过实物机器人的实验验证所设计的控制系统的性能和稳定性。

四、预期成果本次研究的预期成果包括:1. 全向移动机器人系统的数学模型和建模仿真平台。

2. 基于全向轮的移动机器人控制算法的设计与实现。

3. 全向移动机器人运动控制系统的硬件设计与实现。

4. 机器人运动控制算法的优化。

五、研究计划本研究的计划分为以下4个阶段:1. 研究全向移动机器人基础知识和掌握机器人建模和仿真技术。

完成全向移动机器人的数学模型建立、运动规划算法设计及验证仿真、力矩控制算法设计及验证仿真等。

基于ROS的自主移动机器人控制系统设计

基于ROS的自主移动机器人控制系统设计

基于ROS的自主移动机器人控制系统设计自主移动机器人是近年来兴起的一种新型机器人,它能够在无人监管的情况下完成一定的任务。

集成控制系统是自主移动机器人的重要组成部分,它可以实现机器人的定位、导航、避障等基本功能。

本文将介绍一个基于ROS(Robot Operating System)的自主移动机器人控制系统设计。

1. ROS简介ROS是一个开源机器人操作系统,它为机器人开发者提供了一套标准化的工具和库,使得机器人软件开发变得更加简单和高效。

ROS是以C++和Python为主要语言开发的,它提供了许多机器人领域常用的功能模块,包括运动规划、感知、控制等。

2. 控制系统的硬件架构自主移动机器人控制系统的硬件架构主要包括机器人本体、传感器、计算机等部分。

机器人本体主要由底盘、电机、轮子等组成,传感器则包括激光雷达、视觉传感器、惯性导航系统等。

计算机可以是嵌入式电脑或者笔记本电脑等。

3. 控制系统的软件设计在ROS中,机器人的控制系统被称为“ROS节点”。

我们需要为机器人的各个模块(底盘、激光雷达、摄像头等)分别创建ROS节点,并在节点之间建立通信机制。

例如,我们可以为底盘设计一个控制节点,为激光雷达设计一个数据处理节点,为摄像头设计一个图像处理节点等。

4. 控制系统的软件框架控制系统的软件框架是ROS节点的整体设计方案,它主要包括节点的定义、通信机制设计、运动规划、障碍物避障等。

在本文中,我们以一个四轮差速机器人为例,介绍自主移动机器人控制系统的软件框架。

(1) 定义节点我们需要为机器人的各个功能模块定义ROS节点,例如底盘控制节点、激光雷达节点、摄像头节点等。

在定义节点时,需要指定节点的名称、输入输出消息类型等。

(2) 通信机制设计在各个节点之间建立通信机制,可以使用ROS的消息机制实现。

节点之间可以发布(Publish)和订阅(Subscribe)消息,实现数据的传输与共享。

(3) 运动规划运动规划是机器人控制系统的重要组成部分,它可以实现自主导航和路径规划。

智能化移动机器人系统的设计与控制

智能化移动机器人系统的设计与控制

智能化移动机器人系统的设计与控制第一章:引言随着科技的不断进步,人们对人工智能和机器人等先进技术的需求逐渐增加。

智能化移动机器人系统作为一种典型的人工智能应用,其研发和应用受到了越来越多的关注和重视。

本文将详细探讨智能化移动机器人系统的设计和控制等方面,旨在为该领域的研究和应用提供一些有益的参考。

第二章:智能化移动机器人系统的组成智能化移动机器人系统由多个部分组成,包括机器人本体、传感器、控制器等。

在这些部分中,机器人本体是智能化移动机器人系统的核心组成部分。

机器人本体主要由底盘、摄像头、机械臂等组成。

传感器则主要包括激光雷达、摄像头、声纳、距离传感器等。

控制器则是整个智能化移动机器人系统的“大脑”。

控制器通过接收传感器捕捉到的数据和机器人本体的反馈信号来进行决策和控制。

第三章:智能化移动机器人系统的设计智能化移动机器人系统的设计是整个系统的关键。

设计的好坏直接影响系统的性能和稳定性。

设计时需要考虑的因素包括机器人本体的重量、形状、速度、功率以及传感器的种类和数量等。

同时还需要考虑传感器和控制器之间的信息传递速度,以及控制系统是否可以快速响应机器人的变化。

在设计智能化移动机器人系统时,需要确定机器人的目标和应用环境。

例如,若机器人用于室内清洁,则需要考虑机器人本体的大小,以便在狭小的空间内行走。

同时还需要考虑机器人本体的动力是否充足,以覆盖室内较大的面积。

如果机器人用于监测环境,则需要考虑传感器的种类和数量,以便获取与任务相关的数据。

第四章:智能化移动机器人系统的控制智能化移动机器人系统的控制是整个系统的关键。

控制系统需要实现机器人的自主导航和控制。

机器人的自主导航需要通过传感器获取周围环境的数据,然后通过控制器对机器人进行决策和控制。

同时,控制系统还需要具备自我学习的能力,以提高机器人的智能性。

在智能化移动机器人系统的掌控下,机器人可以行走、转向、提取和运载物品、进行信息传递、调整自身位置、检测和记录环境变化等。

轮式移动机器人控制系统设计

轮式移动机器人控制系统设计

轮式移动机器人控制系统设计轮式移动机器人控制系统设计一、引言随着科技的不断进步和机器人技术的快速发展,移动机器人已经广泛应用于工业、军事、医疗等领域。

轮式移动机器人由于其稳定性和灵活性被广泛应用,因此其控制系统的设计显得尤为重要。

本文将探讨轮式移动机器人控制系统的设计原则、结构和实现方法。

二、轮式移动机器人的基本机构轮式移动机器人一般由底盘、轮子、传感器和控制器组成。

底盘是机器人的主要支撑结构,承载其他各部件,并在其上装载各种设备。

轮子是机器人行进和转向的关键组件,具有较大的摩擦力和承载能力。

传感器可以获取环境信息,并将其转化为电信号传输给控制器。

控制器根据传感器信息和预设的任务要求来实时控制机器人的行为。

三、轮式移动机器人控制系统设计原则1. 清晰明确的任务目标:在进行轮式移动机器人控制系统设计之前,首先要明确机器人的任务目标。

基于任务目标,确定机器人的控制策略和参数,以便更好地实现任务需求。

2. 稳定性和可靠性:轮式移动机器人需要在各种复杂环境下进行工作,因此其控制系统必须具备较好的稳定性和可靠性,以应对各种不确定性因素的干扰。

3. 灵活性和适应性:轮式移动机器人具有灵活的机动性和适应能力,因此其控制系统应具备较高的灵活性,能够根据环境变化和任务需要做出相应的调整。

4. 实时性:由于轮式移动机器人需要实时地感知环境并做出响应,因此控制系统设计中的算法和通讯机制要具备较高的实时性,以确保机器人的快速响应能力。

5. 省电性:由于移动机器人工作时往往需要依靠电池供电,而电池续航能力有限,因此控制系统设计中要尽量优化能源消耗,提高电池利用率,延长机器人工作时间。

四、轮式移动机器人控制系统结构轮式移动机器人的控制系统一般采用层次化的结构,包括感知层、决策层和执行层。

1. 感知层:感知层是轮式移动机器人控制系统的底层,负责感知环境信息。

常用的感知装置包括激光雷达、摄像头、红外传感器等。

感知层通过采集环境信息并对其进行处理,将处理后的信息传递给决策层。

移动机器人运动控制系统设计的开题报告

移动机器人运动控制系统设计的开题报告

移动机器人运动控制系统设计的开题报告一、选题背景及意义近年来,移动机器人得到了越来越广泛的应用,从智能巡检、物流配送到医疗护理等领域,移动机器人可以自主地完成一定的任务。

其中,移动机器人运动控制系统是保证其正常运行和高效完成任务的核心部分之一。

因此,移动机器人运动控制系统的设计及研究具有重要的现实意义和应用价值。

本文将针对移动机器人运动控制系统的设计,围绕以下几个方面进行研究:1.针对现有的移动机器人运动控制系统存在的问题,总结其优缺点,提出新的解决方案;2.设计一种基于视觉传感的移动机器人运动控制系统,利用视觉传感器实现机器人的定位和路径规划,提高机器人的运动精度和路径规划效率;3.探究移动机器人的运动学和动力学模型,分析机器人运动的各种因素,建立机器人运动控制系统的数学模型,并进行仿真验证,验证系统的可行性和效果。

二、研究内容1.现有移动机器人运动控制系统问题的总结和分析。

2.基于视觉传感的移动机器人运动控制系统设计,实现机器人定位和路径规划,提高机器人运动精度和路径规划效率。

3.探究移动机器人的运动学和动力学模型,建立机器人运动控制系统的数学模型,进行仿真验证。

4.对系统进行实验验证,分析系统的性能指标和应用效果,完善和改进系统设计。

三、预期成果1.对现有移动机器人运动控制系统的问题进行总结和分析,提出新的解决方案。

2.基于视觉传感的移动机器人运动控制系统的设计与实现,提高机器人运动精度和路径规划效率。

3.建立移动机器人的运动学和动力学模型,掌握机器人运动控制的基本理论。

4.对系统进行仿真验证,验证系统的可行性和效果。

5.对系统进行实验验证,分析系统的性能指标和应用效果,完善和改进系统设计。

四、研究方法和技术路线1.文献研究法:查找和阅读与移动机器人运动控制系统相关的文献资料,对现有系统的缺陷和不足进行总结和分析。

2.方案设计法:设计基于视觉传感的移动机器人运动控制系统,实现机器人定位和路径规划,提高机器人运动精度和路径规划效率。

基于ROS的开源移动机器人系统设计

基于ROS的开源移动机器人系统设计

基于ROS的开源移动机器人系统设计ROS(Robot Operating System)是一个开源的机器人操作系统,广泛应用于各种移动机器人平台。

在设计基于ROS的开源移动机器人系统时,需要考虑机器人的硬件平台、软件架构、传感器集成、控制与导航等方面。

一、硬件平台设计硬件平台是移动机器人系统的基础,需要根据具体需求选择适合的硬件组件。

常见的硬件组件包括电机、传感器(如激光雷达、摄像头、惯性测量单元等)、嵌入式控制板等。

硬件平台的设计需要考虑机器人的尺寸、载重、功耗等特性,同时要与ROS兼容。

二、软件架构设计在基于ROS的移动机器人系统中,软件架构设计起着关键作用。

可以采用分层架构,类似于ROS自身的设计。

常见的软件架构包括感知层、规划层、执行层等。

感知层负责获取机器人周围环境的信息,规划层负责生成机器人的路径规划,执行层负责执行路径规划控制机器人运动。

此外,还可以设计上层的用户界面和运维管理模块。

三、传感器集成设计移动机器人系统通常需要使用多种传感器,如激光雷达、摄像头、惯性测量单元等。

传感器集成设计需要考虑硬件的连接和通信协议,以及软件的驱动和数据处理。

在ROS中,可以使用ROS官方提供的传感器驱动包,也可以自行开发传感器驱动。

四、控制与导航设计控制与导航是移动机器人系统的核心功能。

在ROS中,可以使用导航栈(Navigation Stack)实现机器人的路径规划和导航。

路径规划可以使用ROS导航栈中提供的全局路径规划器(Global Planner)和局部路径规划器(Local Planner)来完成。

导航栈还提供了定位功能,可以使用SLAM(Simultaneous Localization and Mapping)算法实现机器人的自主定位。

五、模块和功能的扩展基于ROS的开源移动机器人系统非常灵活,可以根据具体需求扩展功能和添加模块。

可以使用ROS的Package和Node机制,将整个系统划分为多个独立的功能模块,每个模块运行在一个独立的Node中,通过ROS的消息机制进行通信。

机器人控制系统设计

机器人控制系统设计

机器人控制系统设计机器人控制系统设计是机器人研发的关键环节之一。

一个优秀的控制系统可以确保机器人能够准确地感知环境、自主决策、有效地执行任务,提高机器人的整体性能和智能化水平。

本文将从以下几个方面探讨机器人控制系统设计。

一、引言随着人工智能技术的不断发展,机器人已经广泛应用于生产、生活、医疗等诸多领域。

机器人控制系统是机器人的核心部分,它负责接收传感器输入的信息,根据预设的程序或算法进行处理,并产生相应的控制信号,以控制机器人的行动。

因此,设计一个性能优良的机器人控制系统,对于提高机器人的智能化水平和工作效率具有至关重要的意义。

二、系统架构机器人控制系统的架构通常包括以下几个主要组成部分:1、传感器接口:用于接收来自传感器的信息,包括环境感知、自身状态等传感器数据。

2、信息处理单元:对接收到的传感器数据进行处理和分析,提取有用的信息以供控制系统使用。

3、决策单元:根据信息处理单元输出的信息,做出相应的决策和控制指令。

4、执行器:接收决策单元发出的控制信号,驱动机器人执行相应的动作。

5、电源管理单元:负责整个控制系统的电源供应,确保系统的稳定运行。

这些组成部分通过一定的通信协议和接口相互连接,形成一个完整的控制系统架构。

三、算法设计机器人控制系统的算法设计是实现系统功能的核心环节。

根据不同的控制需求,需要选择和设计合适的算法。

以下是一些常用的算法:1、决策算法:根据机器人的感知数据和预设规则,做出相应的决策和控制指令。

常见的决策算法包括基于规则的推理、模糊逻辑等。

2、路径规划算法:在给定起点和终点的情况下,计算出机器人从起点到终点的最优路径。

常用的路径规划算法包括基于搜索的方法(如A*算法)、基于网格的方法(如Dijkstra算法)和基于启发式的方法(如遗传算法)等。

3、运动控制算法:根据机器人的运动学模型和动力学模型,控制机器人的运动轨迹和姿态。

常用的运动控制算法包括PID控制、鲁棒控制、自适应控制等。

基于嵌入式Linux的移动机器人控制系统设计

基于嵌入式Linux的移动机器人控制系统设计

无线通讯模块设计框图
CC2420为射频芯片,PIC18LF4620为微控 制器来进行开发。PIC18LF4620和CC2420都工 作在3.3V,这样可以减少电量的消耗。工作频 率选择为2.4GHz ,不会产生无线电频率限制的 问题
人机交互界面
人机交互界面的主要功能有: 设置机器人运动参数,
无线通讯模块
无线通讯模块实际上相当于一个机器人与 无线传感器网络的桥接器,它把从RF收到的信 息通过串口发送到机器人,而把从串口收到的信 息通过RF发送到无线网络中去。另外,其上还 使用了Microchip公司发布的Zigbee协议栈,从 而可以通过这种自组织、多跳的网络协议,更有 效的获取和发送大范围制器通过串口相连,负责机 器人与其它无线传感器节点间的通讯
人机交互界面可供用户查看机器人自身传感器和 运动状态信息,以及从外部传感器节点处收到的 传感器信息,用户还可以通过该界面直接对机器 人进行控制。
运动控制与传感模块
运动控制与传感模块负责接收并执行上位 机即主控制模块的命令,返回机器人的状态信息, 如速度、方位和周围障碍物的距离等。该模块采 用一片PIC18F8520单片机作为微控制器。
主控制模块框图
串口0作为linux系统的 控制台,串口1用于连接无 线通讯模块,串口2用于连 接运动控制与传感模块;以 太网口和JTAG口,可以方 便对系统进行调试;液晶 屏用来实现人机交互界面。
构建一个嵌入式linux系统
硬件选型与电路设计 BootLoader设计 linux内核的裁减与移植 文件系统的制作
主程序的编写
主程序专门建立了一个线程来完成与无线传 感器节点的通讯,从而保证了信息采集的实时性; 另外,这样做也使得主程序在无线通讯失败的情 况下也能继续稳定的工作。主程序还使用了一个 定时器,每隔0.5秒,定时器就会向主窗口的过 程函数发送定时器到期的消息,过程函数在收到 该消息后,就可以对从其它的机器人或传感器节 点获取的信息进行处理。

agv移动机器人原理与设计

agv移动机器人原理与设计

agv移动机器人原理与设计AGV(Automated Guided Vehicle),即自动引导车,是一种智能型的移动机器人。

它基于红外线、激光和视觉等多种传感器技术,利用计算机控制系统,实现自主的导航和运输。

AGV移动机器人的运行原理主要包括三个主要的部分:导航、位置确定和运动控制。

1. 导航:AGV移动机器人通过激光或红外线等传感器根据设定的导航路径进行自主导航。

2. 位置确定:AGV移动机器人利用位置传感器、编码器和激光器等装置实时获取其位置信息。

3. 运动控制:AGV移动机器人的运动控制主要包括速度控制、方向控制和转向控制等。

AGV移动机器人的设计1. 硬件设计:AGV移动机器人的硬件设计包括机械结构、控制系统和传感器等。

a) 机械结构:机械结构设计决定了AGV移动机器人的形状和外观,同时也影响着机器人的负载能力和稳定性。

因此,机械结构设计需要考虑机器人的运输任务,以便更好地满足用户的需求。

b) 控制系统:控制系统是AGV移动机器人的核心部分,它主要由控制板和电机等组成。

在设计控制系统时需要考虑以下要素:控制方式、控制精度和刹车系统等。

c) 传感器:传感器在AGV移动机器人的自主导航和定位中扮演着重要角色。

常用的传感器有:红外传感器、激光传感器和编码器等。

a) 系统架构:系统架构包括软硬件的分层、模块化和接口定义等。

良好的系统架构有利于程序的设计、开发和维护。

b) 导航规划:导航规划是AGV移动机器人的基础,通过对机器人的移动任务的分析,确定最优的路径。

导航规划通过机器人的传感器信息获取、对环境的感知来选择适当的路径,以实现更高程度的自主导航。

c) 运动控制:运动控制主要是通过控制软件实现AGV移动机器人的速度、方向和转向等,同时控制机器人的动力、制动和倒车等功能,提高机器人的运动精度和稳定性。

通过编写特定的控制算法,避免机器人过度或轻微摆动。

总之,AGV移动机器人原理和设计均涉及到硬件和软件两个方面,其中,硬件方面包括机械结构、控制系统和传感器等组成部分,软件方面则包括系统架构、导航规划和运动控制等。

移动机器人控制系统设计

移动机器人控制系统设计

一、绪论(一)引言移动机器人技术是一门多科学交叉及综合的高新技术,是机器人研究领域的一个重要分支,它涉及诸多的学科,包括材料力学、机械传动、机械制造、动力学、运动学、控制论、电气工程、自动控制理论、计算机技术、生物、伦理学等诸多方面。

第一台工业机器人于20世纪60年代初在美国新泽西州的通用汽车制造厂安装使用。

该产品在20世纪60年代出口到日本,从20世纪80年代中期起,对工业机器人的研究与应用在日本迅速发展并步入了黄金时代。

与此同时,移动机器人的研究工作也进入了快速发展阶段。

移动机器人按其控制方式的不同可以分为遥控式、半自动式和自主式三种;按其工作环境的不同可以分为户外移动机器人和室内机器人两种。

自主式移动机器人可以在没有人共干预或极少人共干预的条件下,在一定的环境中有目的的移动和完成指定的任务。

自主式移动机器人是一个组成及结构非常复杂的系统,具有加速、减速、前进、后退以及转弯灯功能,并具有任务分析,路径规划,导航检测和信息融合,自主决策等类似人类活动的人工智能。

(二)移动机器人的主要研究方向1.体系结构技术1)分布式体系结构分布式体系结构【1。

2.3】是多智能体技术在移动机器人研究领域的应用。

智能体是指具有各自的输入、输出端口,独立的局部问题求解能力,同时可以彼此通过协商协作求解单个或多个全局问题的系统。

移动机器人系统,特别是具有高度自组织和自适应能力的系统,它们的内部功能模块与智能体相仿,因此可以应用多智能体技术来分析和设计移动机器人系统的结构,实现系统整体的灵活性和高智能性。

在分布式体系结构中,各个功能模块具有不同的输入输出对象和自身的不同功能,并行各工作,整个系统通过一个调度器实现整体的协调,包括制定总体目标、任务分配、运动协调和冲突消解等。

2)进化控制体系结构面对任务的复杂性和环境的不确定性以及动态特性,移动机器人系统应该具有主动学习和自适应的能力。

将进化控制的思想融入到移动机器人体系结构的设计中,使得系统哎具备较高反应速度大的同时,也具备高性能的学习和适应能力。

试析移动机器人控制系统的设计

试析移动机器人控制系统的设计

试析移动机器人控制系统的设计移动机器人控制系统的设计是一项复杂而重要的工作,它涉及到机器人的运动、感知、决策和执行等方面。

一个优秀的控制系统能够使机器人具有高效、稳定、灵活的运动能力,从而更好地完成各种任务。

本文将从控制系统的总体设计原则、核心技术和未来发展趋势等方面进行分析和探讨。

一、控制系统的总体设计原则1. 模块化设计。

控制系统应该采用模块化设计,将机器人的运动控制、感知处理、决策规划等功能模块化,便于分工协作、调试优化和升级更新,同时可以提高系统的稳定性和可靠性。

2. 实时性要求。

移动机器人控制系统需要对机器人在不同环境和场景下的运动、感知和决策做出实时响应,因此需要具备较高的实时性,以保证机器人的运动和行为能够与环境实时协调和适应。

3. 自适应性设计。

由于机器人在执行任务时面临诸多不确定性和复杂环境,因此控制系统需要具备一定的自适应性,可以根据环境变化和任务需求灵活调整和优化机器人的行为和决策。

4. 数据安全性和隐私保护。

在移动机器人控制系统中,涉及到大量的传感器数据和地图信息,因此需要保证数据的安全性和隐私性,避免信息泄漏和被恶意攻击。

二、核心技术1. 运动控制。

机器人的运动控制是控制系统中的核心技术之一,它涉及到机器人的定位、路径规划和运动控制等方面。

针对不同类型的移动机器人,可以采用不同的运动控制方法,如差分驱动机器人可以采用轮速控制法、全向轮机器人可以采用轮速矢量合成法等。

2. 感知处理。

感知处理是机器人获取环境信息和对外界进行感知的关键技术,包括环境建模、目标检测、障碍物避障等方面。

现阶段常用的感知传感器包括激光雷达、摄像头、超声波传感器等,通过这些传感器获取到的信息,可以帮助机器人做出准确的感知和判断。

3. 决策规划。

机器人的决策规划是指机器人在实际环境下做出决策和路径规划,以完成任务或规避障碍。

传统的决策规划方法包括基于规则的方法、基于状态空间的搜索方法等,而近年来,深度学习等人工智能技术的发展也为机器人的决策规划提供了新的思路和方法。

轮式移动机器人系统设计与控制分析

轮式移动机器人系统设计与控制分析

大连理工大学硕士学位论文目录摘要………………………………………………………………………………………………………………IAbstract…………….……….....….……….…..….….….………………….......……………………….………II1绪论……………………………………………………………………………………l1.1课题研究的背景及意义………………………………………………………11.2移动机器人的发展历史及趋势………………………………………………l1.2.1国内外移动机器人的发展历史………………………………………11.2.2移动机器人的新发展与发展趋势……………………………………31.3本文主要研究内容………‰…………………………………………………32移动机器人的体系结构设计…………………………………………………………52.1移动机器人的机械结构设计和运动学模型建立……………………………52.1.1移动机器人的机械结构………………………………………………52.1.2移动机器人的运动学模型……………………………………………52.2移动机器人的控制系统设计…………………………………………………72.2.1主控制器模块…………………………………………………………72.2.2驱动模块………………………………………………………………92.2.3PLC模块……………………………………………………………..122.2.4相机姿态调整模块…………………………………………………..192.2.5测距模块……………………………………………………………一202.2.6通信模块……………………………………………………………一222.2.7电源模块………………………………………………………………253Back—Stepping算法在移动机器人轨迹跟踪中的研究……………………………263.1移动机器人路径规划与轨迹跟踪………………………………………….263.1.1路径规划………………………………………………………………263.1.2轨迹跟踪………………………………………………………………273.2Back—Stepping算法…………………………………………………………273.2.1基于Lyapunov稳定性的最优状态反馈控制器…………………….283.2.2Back—Stepping算法的设计思想……………………………………..293.3Back—Stepping算法在基于运动学模型的轨迹跟踪中的实现……………3l3.4实验结果及分析…………………………………………………………….343.5本章小结…………………………………………………………………….364连续曲率曲线路径在局部路径规划中的研究……………………………………..37轮式移动机器人系统设计及控制研究4.1局部路径规划中的连续曲率曲线的建立………………………………….374.1.1直角坐标系中连续曲率曲线的建立方法……………………………374.1.2连续曲率曲线算法在移动机器人局部路径规划中的实现…………414.2实验结果及分析…………………………………………………………….434.3本章小结…………………………………………………………………….455基于模糊控制算法的移动机器人直线轨迹跟踪………………………………….465.1模糊控制理论……………………………………………………………….465.1.1模糊控制的概念……………………………………………………一465.1.2模糊控制的优点……………………………………………………一465.2模糊控制系统……………………………………………………………….475.2.1模糊控制系统的组成………………………………………………..475.2.2模糊控制器的设计…………………………………………………..485.3模糊控制算法在移动机器人轨迹跟踪中的实现………………………….495.3.1输入输出量模糊语言及其隶属度的建立…………………………一505.3.2模糊控制规则的设定………………………………………………。

移动机器人控制系统设计

移动机器人控制系统设计

移动机器人控制系统设计摘要:当今社会,移动机器人在各种应用领域得到了广泛的应用,但实际使用中的控制系统存在各种问题。

本文提出了一种用于移动机器人控制的新型系统设计,旨在解决现有控制系统存在的问题。

具体而言,本文设计了一种基于机器学习的控制算法,用于提高机器人的导航和自适应能力。

此外,本文还引入了一种基于传感器网络的实时控制系统,用于优化机器人的控制效率,提高运动精度和稳定性。

实验结果表明,所提出的控制系统设计能够有效地提高移动机器人的控制性能和智能化水平。

关键词:移动机器人、控制系统、机器学习、传感器网络、导航、自适应、控制效率、运动精度、稳定性正文:移动机器人控制系统是现代机器人技术的重要组成部分。

在各个应用领域,如制造业、卫生保健、物流、农业等,移动机器人都扮演着不可或缺的角色。

目前,移动机器人控制系统中存在着一些问题,如导航能力不足、运动精度不高、稳定性差、控制效率低等。

为了解决这些问题,本文提出了一种新型的移动机器人控制系统设计。

首先,本文提出了一种基于机器学习的控制算法。

该算法采用强化学习方法,实现机器人的自主导航和自适应能力。

在实际应用中,机器人会遇到各种挑战和障碍,例如复杂的地形、突然的障碍物等等。

此时,基于机器学习的控制算法能够让机器人不断地学习和调整自己的导航策略,并据此提高机器人的导航能力和运动智能化水平。

其次,本文引入了一种基于传感器网络的实时控制系统,以优化机器人的运动效率。

该系统采用多个传感器节点对机器人运动情况进行实时监测,以获得更准确、更细致的机器人运动数据。

同时,传感器网络还能实现对机器人的协同控制,从而提高机器人的运动精度和稳定性。

最后,本文进行了一系列实验验证,结果表明所提出的移动机器人控制系统设计能够显著提高机器人的控制性能和智能化水平。

这种控制系统设计有着广泛的应用前景,可以被运用到各种移动机器人系统中,如AGV、UAV、智能家居机器人等等。

在本文提出的移动机器人控制系统设计中,机器学习是其中最关键的部分。

履带式移动机器人控制系统软件设计

履带式移动机器人控制系统软件设计
F i g3 Th e mu l t i -c o mmu n i c a t i o n lo f w c h a r t o f ma n i
图2 中断 子程 序 流程 图
Fi g2 Th e i nt e r r u p t s u b r o u t ne i s lo f w c ha r t
[ 摘 要] 目前 , 移 动机 器 人具 有很 大 的开发 空 间。 无线控 制成 为 移动 机器 人必 不可 少 的控制 方 式 , 当然 , 无 线控 制 也少 不了对 系 统软件 的设 计 与开 发 , 履 带 式移 动机 器人控 制 系统的软 件编 制主要 是主 单片 机控制 系统 的编制 。 主 要包括 : 主单片 机与 无线通 信模块 的通讯 程序 设计 , 主 从单 片机之 间的多 机通信 程序 设计


交 互设 计 的 可用 性 优 化 策略
毕 重文
( 山 东艺 术学 院 2 5 0 3 0 0 ) [ 摘 要] 现今 网页 设计 可 谓是层 次 不齐 , 计算 机带 来 的交 互思 维在 各个 领域 不 断渗透 。 美 观与 可用 性 两者 的结 合成 为界 面 图形设 计背 后 的重 要方 面 。 因此 优化 页面 , 优 化 可用性 越来 越受 到关 注 。 人们 没有 时 间去思 考臃 肿 , 人们 更喜 欢不 言 而喻 , 喜 欢简 洁易 用 。 以 下的优 化策 略将 会给 大家 带来全 新 的设计 理念 。 [ 关键 词] 交互 , 可用 性 ; 优化 策 略 中图分 类号 : TB 1 8 ; T B 4 7 文 献标 识码 : A 文 章编 号 : 1 0 0 9 — 9 1 4 X( 2 0 1 3 ) 0 3 — 0 3 1 7 一O l

基于Arduino的移动机器人控制系统设计

基于Arduino的移动机器人控制系统设计

电子技术• Electronic Technology106 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】移动机器人 Arduino 自动避障本文主要通过对系统的结构设计的介绍,阐述了系统的工作原理和模块功能,同时对它的硬件设计与软件设计进行了分析,最后通过使用过程中出现的情况对系统进行了调试,希望本文能够对该系统的发展作出贡献。

1 Arduino简介Arduino 是一个基于开放原始码的软硬件平台,构建于开放原始码simple I/O 介面版,并且具有使用类似Java 、C 语言的Processing/Wiring 开发环境。

Arduino 包含两个主要的部分:硬件部分是可以用来做电路连接的Arduino 电路板;另外一个则是Arduino IDE ,你的计算机中的程序开发环境。

你只要在IDE 中编写程序代码,将程序上传到Arduino 电路板后,程序便会告诉Arduino 电路板要做些什么了。

Arduino 能通过各种各样的传感器来感知环境,通过控制灯光、马达和其他的装置来反馈、影响环境。

2 系统的现状分析随着计算机技术的发展,传感技术以及通信技术等都得到了迅猛的发展,机器人也在各行各业中得到了普遍的使用。

家用机器人是机器人使用的一种方式,它的控制系统一般有语音控制、红外线遥控,电脑遥控,网络控制等等,这些方式都促进了机器人在家庭生活中的使用,但是也存在着携带不方便的情况,而且机器人的移动性能相对来讲也比较受限制,对他的控制需要严重依赖网络,造成极大的不方便。

针对上述情况,我们对这一控制系统采取了Arduino+Android 的方案进行进一步的改进,利用Arduino 的传感器对家庭环境进行监控,而且该系统的成本相对来讲比较低,操作上也相对来讲比较灵活,能够对机器人进行目标的锁定和规避障碍物,具有自动寻线、寻光的功能。

一种轮式移动机器人的控制系统设计毕业论文.doc

一种轮式移动机器人的控制系统设计毕业论文.doc

一种轮式移动机器人的控制系统设计毕业论文第一章绪论1.1移动机器人技术概述机器人是一自动的、位置可控的、具有编程能力的多功能操作机。

机器人技术涉及计算机技术、控制技术、传感器技术、通讯技术、人工智能、材料科学和仿生学等多类学科。

作为机器人学的重要分支,移动机器人能够运动到特定位置,执行相应任务,具备环境感知、实时决策和行为控制等功能,拥有很高的军事、商业价值。

移动机器人按运动方式分为轮式移动机器人、步行移动机器人、履带式移动机器人、爬行机器人等;按功能和用途分为医疗机器人、军用机器人、清洁机器人等;按作业空间分为陆地移动机器人、水下机器人、无人飞机和空间机器人。

1.2移动机器人控制技术研究动态1.2.1移动机器人控制技术发展概况步入21世纪,随着电子技术的飞速发展,机器人用传感器的不断研制、计算机运算速度的显著提高,移动机器人控制技术逐步得到完善和发展。

移动机器人从最初的示教模仿型向具备环境信息感知、在线决策等功能的自治型智能化方向发展。

移动机器人控制系统性能不断提高,各类新型移动机器人也纷纷面世。

步行式机器人是指按照迈步方式前进的移动机器人,由于符合动物的行进模式,可很好的在自然环境中运动,具有较强的越野性能。

如美国NAAS资助研制的丹蒂行走机器人,主要用于远程机器人探险,其控制系统涉及环境感知、障碍物监测、机械臂控制和超远程遥操作等多方面技术。

丹蒂计划的最终目标是,为实现在充满碎片的月球或其它星球的表面进行探险提供一种运动机器人解决方案。

轮椅机器人是指使用了移动机器人技术的电动轮椅。

德国乌尔姆大学开发一种智能轮椅机器人,使丧失行动能力的人也能外出“走动”。

该轮椅机器人,能够自动识别和判断出行驶的前方是否有行人挡路,或是否可能出现行驶不通的情况,自动采取绕行动作,并能够提醒挡路的行人让开道路。

该机器人的控制系统,综合运用了多传感器信息融合、模式识别、避障、电机控制和人机接口等技术。

第一章绪论消防机器人是指能在高温、强热辐射、浓烟、地形复杂、障碍物多、化学腐蚀、易燃易爆等恶劣条件下进行灭火和救援工作的移动机器人。

搬运机械手电气控制系统设计

搬运机械手电气控制系统设计

搬运机械手电气控制系统设计搬运机械手是一种能够自动进行物品搬运的机器人。

它们广泛应用于各种工业领域,如汽车制造、仓储物流、半导体生产等。

电气控制系统是搬运机械手的重要组成部分,它可以控制机械臂的移动和抓取动作,提高机器人的运行效率和精度。

本文将介绍搬运机械手电气控制系统的设计原理、硬件结构和软件实现等内容。

一、设计原理搬运机械手的电气控制系统一般由控制器、电机驱动器和传感器等组成。

控制器是机械手的“大脑”,它可以接收指令和传感器反馈信号,并对电机驱动器进行控制。

电机驱动器可以将控制器发送的电信号转换成机械臂的运动。

传感器可以感知机械臂的状态和周围环境的情况,提供反馈信号给控制器做出相应的调整。

二、硬件结构1. 控制器控制器是搬运机械手电气控制系统的核心部分。

它一般由微处理器、存储器、输入输出接口等组成。

微处理器是控制器的主要芯片,它可以将程序后的代码翻译成相应的机器指令,然后控制器可以根据机器指令来完成相应的动作。

存储器可以对程序进行储存,保证搬运机械手在断电或故障情况下能够重新启动和恢复工作。

输入输出接口可以将控制器与电机驱动器和传感器进行连接,在实现机械臂的控制和状态反馈的过程中发挥重要作用。

2. 电机驱动器电机驱动器是将控制器发送的电信号转换成机械臂运动轨迹的硬件设备。

驱动器的选择要根据机械臂的负载和速度要求进行匹配。

常见的驱动器有步进电机驱动器、直流电机驱动器、交流伺服驱动器等。

除了根据负载和速度要求进行匹配外,还需要根据控制器输出信号的电压和电流进行选择。

3. 传感器传感器是搬运机械手电气控制系统中的重要组成部分。

它可以感知机械臂的状态和周围环境的变化,提供反馈信号给控制器进行相应的调整。

常见的传感器有位置传感器、力传感器、温度传感器等。

位置传感器可以感知机械臂的位置和速度,力传感器可以感知机械臂的受力情况和负载变化,温度传感器可以感知机械臂和周围环境的温度等。

三、软件实现搬运机械手的电气控制软件一般分为机器人控制软件和人机交互软件两部分。

《农业机器人通用移动平台控制系统的设计》

《农业机器人通用移动平台控制系统的设计》

《农业机器人通用移动平台控制系统的设计》一、引言随着科技的不断进步和农业生产模式的发展,农业机器人成为了农业现代化的重要方向。

为了实现高效、智能、精确的农业作业,本文着重探讨了一种农业机器人通用移动平台控制系统的设计。

该系统旨在提高农业生产效率,降低人力成本,同时为农业机器人技术的进一步发展提供基础支持。

二、系统设计目标1. 提高农业生产效率:通过精确控制农业机器人的移动和作业,实现高效、精准的农业生产。

2. 降低人力成本:通过自动化和智能化的控制系统,减少人工干预,降低人力成本。

3. 通用性:设计一套通用性强的控制系统,适应不同类型农业机器人的需求。

4. 稳定性:确保系统在各种复杂环境下稳定运行,保障农业生产的顺利进行。

三、系统架构设计1. 硬件架构:包括移动平台、传感器系统、执行机构和控制单元等部分。

移动平台采用适合农业环境的轮式或履带式结构,传感器系统包括定位传感器、环境传感器等,执行机构负责执行控制指令,控制单元是整个系统的核心,负责处理传感器数据、控制执行机构等。

2. 软件架构:包括操作系统、控制算法、人机交互界面等部分。

操作系统采用实时操作系统,确保系统在复杂环境下能够快速响应;控制算法包括路径规划、速度控制、避障算法等,实现精确的农业作业;人机交互界面方便用户进行系统设置、监控和操作。

四、控制系统设计1. 定位与导航:采用GPS、北斗等卫星定位技术与室内定位技术相结合的方式,实现农业机器人的精确导航和定位。

同时,通过路径规划算法,使机器人在农田中自动规划最佳路径,提高作业效率。

2. 速度控制:根据实际作业需求和环境条件,通过控制算法实现机器人的速度控制。

在复杂环境下,系统能够自动调整速度,确保机器人稳定运行。

3. 避障与安全:通过传感器系统实时监测周围环境,当检测到障碍物时,系统能够自动规划避障路径,确保机器人的安全运行。

同时,系统还具备紧急停止功能,当出现异常情况时,能够迅速停止机器人,保障人员和设备的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 197

ELECTRONICS WORLD・技术交流
移动机器人控制系统设计
广东工业大学 侯晓磊
随着移动机器人在人们社会生活中的地位不断提高,设计一种
可靠、稳定的机器人控制系统越发的变得重要起来,以NI公司的MyRIO控制器以其安全可靠、编程开发简单而脱颖而出。

本文基于上述控制器、L298N电机驱动芯片Labview设计一种移动机器人控制软硬件系统系统,经验证,该系统运行稳定、可靠、高效。

1.前言
新一轮科技革命引发新一轮产业革命。

“互联网+制造”构建工业4.0,智能制造成为我国由制造大国向制造强国转变的关键一步,移动机器人作为智能制造中的一个组成部分,作用越发的变得举足轻重。

本文给出一种以MyRIO+L298N+Labivew的移动机器人控制系统。

2.IN MyRIO控制器
NI myRIO是NI最新设计的嵌入式系统设计平台。

NI myRIO中内含双核ARM Cortex-A9,实时性高,并且还可以便捷定制FPGA I/ O,给开发设计人员提供更好的设计复杂系统的平台。

NI myRIO作为可重配置控制器具有以下重要特点:
易于上手使用:引导性安装和启动界面可使开发人员更快地熟悉操作,协助开发人员快速了解工程概念,完成设计任务。

编程设计简单,利用实时应用、内置WiFi等功能,开发人员可以实现远程部署应用,“无线”操控。

板载资源众多:有丰富的数字I/O接口,提供SPI串行外设接口、PWM脉宽调制输出端口、正交编码器输入端口、UART异步收发器端口和I2C总线接口、多个单端模拟输入、差分模拟输入和带参考的模拟输入等可供选择的资源。

另外,NI MyRIO还提供可靠性能较好的控制器保护电路,防止由于意外操作造成控制器不可恢复性损坏,总之,NI MyRIO为开发人员提供了一个编程简易,设计电路方便,不用刻意担心意外操作而影响控制器使用的平台。

3.L298N电机控制芯片
L298N是一种用来驱动电机的集成电路,可以较稳定的输出平稳电流和较强的功率。

工作均电流为2A,最高可达4A,最高输出电压为50V,能够带动带有感性元件的负载。

控制器可以直接通过输入输出口与电机驱动芯片联接,从而方便控制驱动芯片的输出。

如将芯片驱动直流电机时,可以直接与步进电机相联接,通过调节控制器输出实现步进电机的的正反转功能当控制直流电机时,可以通过调节控制芯片的电压信号的极性,PWM波的占空比,从而实现直流电机转速和转向的调节。

4.系统硬件部分设计
系统采用MyRIO整体框架,外围增设电机驱动电路、避障驱动电路、里程计电路、液晶显示电路、陀螺仪电路。

通过MyRIO主控制发送控制信号驱动移动机器人运动,实时通过外围传感器获取位置信息反馈给主控制
器,然后控制器通过闭环系统调节当前位置以保证对目标位置的追踪。

图1
5.系统软件部分设计
系统软件部分采用经典控制理论的闭环控制系统,将电机、主控制器和外设传感器构成闭环系统,通过调节闭环统的参数,来使
移动机器人以较小偏差追踪按照预定轨迹。

图2
6.结束语
本文介绍了基于NI MyRIO控制器设计移动机器人控制系统,通过仿真和实物测试,能较好的完成对任务的追踪踪。

参考:From Student to Engineer:Preparing Future Innova-tors With the NI LabVIEW RIO Architecture .2014-04-01;王曙光,袁立行,赵勇.机器人原理与设计.人民邮电出版社,2013 。

相关文档
最新文档