第四章 BP神经网络

合集下载

BP神经网络介绍

BP神经网络介绍

18
9
E 1 q
q t1
yt ct
ERME
18
10 4.4 BP神经网络学习算法
(1)计算中间隐含层各个神经元的净输入和输出
n
s j xiwij j i 1
bj f s j j=1,2,...,p
(2)计算输出层各个神经元的净输入和实际输出
p
lt v jtbj t
ct f lt t=1,2,...,q
第四章 误差反向传播神经网络
研16电子 陈晨 2017.4.11
4.1 误差反向网络的提出 4.2 BP神经网络结构基本思想
4.3 BP神经网络处理的单元模型
4.4 BP神经网络学习算法 4.5 BP网络的分析--梯度下降学习方法
4.6 BP人工神经网络模型的改进
18
3
4.1 误差反向网络的提出
1、非线性映射能力
1、存在局部极小问题
2、泛化能力
2、存在平坦区,收敛速度慢
3、容错能力
3、网络结构选择不一
18
13 4.6 BP人工神经网络模型的改进
1、BP 人工神经网络结构的自我调整 在BP人工神经网络拓扑结构中, 输入节点与输出节点
是由问题的本身决定的, 关键在于隐层的层数与隐节点的 数目。
(b1 , b2 , ⋯,bp) T ; 输出层净输入向量L=(l1,l2 , ⋯,lq)T,实际输出向量C=(c1,c2 ,
⋯,cq)T; θ={θj}(j=1,2 , ⋯,p}为隐层神经元引入阈值,γ={γt}(t=1,2...q)
为输出层神经元引入阈值;
输入层到隐层之间的权值矩阵 V = ( V1 , V2 , ⋯,V m) ,隐层到 输出层之间的权值矩阵 W = ( W1 ,ij

BP神经网络介绍

BP神经网络介绍

BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。

它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。

一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。

BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。

在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。

在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。

最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。

二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。

BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。

(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。

标准BP算法及改进的BP算法标准BP算法及改进的BP算法应用(1)

标准BP算法及改进的BP算法标准BP算法及改进的BP算法应用(1)
➢ 网络的层数
➢ 隐含层神经元数
➢ 初始权值的选取 ➢ 学习速率 ➢ 期望误差的选取
22
2020/3/6
网络的层数
理论上已经证明:具有偏差和至少一个S型隐含层 加上一个线性输出层的网络,能够逼近任何有理函 数
定理:
增加层数主要可以进一步的降低误差,提高精度, 但同时也使网络复杂化,从而增加了网络权值的训 练时间。
%输入向量P和目标向量T
P = -1:0.1:1
T = [-0.96 -0.577 -0.0729 0.377 0.641 0.66 0.461 0.1336 -0.201 -0.434 -0.5 -0.393 0.1647 0.0988 0.3072 0.396 0.3449 0.1816 -0.0312 -0.2183 -0.3201 ];
4.3 BP学习算法
假设输入为P,输入神经元有r个,隐含层内有s1个神经 元,激活函数为F1,输出层内有s2个神经元,对应的激 活函数为F2,输出为A,目标矢量为T
12
2020/3/6
4.3 BP学习算法
信息的正向传递
隐含层中第i个神经元的输出
输出层第k个神经元的输出
定义误差函数
13
4.4.2应用举例
1、用BP神经网络实现两类模式分类 p=[1 -1 -2 -4;2 1 1 0]; t=[0 1 1 0]; %创建BP网络和定义训练函数及参数 NodeNum=8;%隐含层节点数 TypeNum=1;%输出维数 Epochs=1000;%训练次数 TF1='logsig'; TF2='logsig';
D1=deltatan(A1,D2,W2);
[dWl,dBl]=learnbp(P,D1,lr);

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

bp神经网络的原理

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

bp神经网络原理

bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。

BP神经网络主要由输入层、隐藏层
和输出层构成。

在BP神经网络中,每个神经元都有自己的权重和偏置值。


据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。

神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。

然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。

这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。

具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。

首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。

最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。

这个过程反复进行,直到达到停止条件。

BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。

同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。

然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。

总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。


可以应用于分类、回归等任务,并具有较强的自适应能力。

但同时也有一些问题需要注意。

BP神经网络

BP神经网络

BP神经网络BP神经网络今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据挖掘等领域。

接下来介绍BP神经网络的原理及实现。

Contents1. BP神经网络的认识2. 隐含层的选取3. 正向传递子过程4. 反向传递子过程5. BP神经网络的注意点6. BP神经网络的C 实现1. BP神经网络的认识BP(Back Propagation)神经网络分为两个过程(1)工作信号正向传递子过程(2)误差信号反向传递子过程在BP神经网络中,单个样本有个输入,有个输出,在输入层和输出层之间通常还有若干个隐含层。

实际上,1989年Robert Hecht-Nielsen证明了对于任何闭区间内的一个连续函数都可以用一个隐含层的BP网络来逼近,这就是万能逼近定理。

所以一个三层的BP网络就可以完成任意的维到维的映射。

即这三层分别是输入层(I),隐含层(H),输出层(O)。

如下图示2. 隐含层的选取在BP神经网络中,输入层和输出层的节点个数都是确定的,而隐含层节点个数不确定,那么应该设置为多少才合适呢?实际上,隐含层节点个数的多少对神经网络的性能是有影响的,有一个经验公式可以确定隐含层节点数目,如下其中为隐含层节点数目,为输入层节点数目,为输出层节点数目,为之间的调节常数。

3. 正向传递子过程现在设节点和节点之间的权值为,节点的阀值为,每个节点的输出值为,而每个节点的输出值是根据上层所有节点的输出值、当前节点与上一层所有节点的权值和当前节点的阀值还有激活函数来实现的。

具体计算方法如下其中为激活函数,一般选取S型函数或者线性函数。

正向传递的过程比较简单,按照上述公式计算即可。

在BP神经网络中,输入层节点没有阀值。

4. 反向传递子过程在BP神经网络中,误差信号反向传递子过程比较复杂,它是基于Widrow-Hoff学习规则的。

假设输出层的所有结果为,误差函数如下而BP神经网络的主要目的是反复修正权值和阀值,使得误差函数值达到最小。

AI翻转课堂教案-第4章 人工神经网络与深度学习教案

AI翻转课堂教案-第4章 人工神经网络与深度学习教案

第四章人工神经网络与深度学习课题名称:人工神经网络与深度学习学习过程:络曾历经质疑、批判与冷落,同时也几度繁荣并取得了许多瞩目的成就。

从20世纪40年代的M-P神经元和Hebb学习规则,到50年代的Hodykin-Huxley方程感知器模型与自适应滤波器,再到60年代的自组织映射网络、神经认知机、自适应共振网络,许多神经计算模型都发展成为信号处理、计算机视觉、自然语言处理与优化计算等领域的经典方法,为该领域带来了里程碑式的影响。

目前模拟人脑复杂的层次化认知特点的深度学习已经成为类脑智能中的一个重要研究方向。

通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究和应用的一个新高潮。

(三)神经元人脑中的信息处理单元是神经细胞,而人工神经网络的计算单元就是人工神经元,,一个人工神经元的结构如图所示。

(1)来自其他神经元的输入信号为(x1, x2, ..., xn)。

(2)每一个输入信号都有一个与之对应的突触权重(w1, w2, ..., wn),权重(weight)的高低反映了输入信号对神经元的重要性。

(3)线性聚合器(∑)将经过加权的输入信号相加,生成一个“激活电压”(activation voltage)。

(4)激活阈值(activation threshold)或bias(θ)给神经元的输出设置一个阈值。

(5)激活电位(activation potential)u是线性聚合器和激活阈值之差,如果u≥0,神经元产生的就是兴奋信号,如果u<0,神经元产生的是抑制信号。

(6)激活函数(activation function)g将神经元的输出限制在一个合理的范围内。

(7)神经元产生的输出信号(y),可以传递给与之相连的其他神经元。

将上述信息用公式可表示为:(四)归纳总结整体了解人工神经网络的发展概况以及神经元的相关工作原理,同时通过案例导读了解人工神经网络的当前应用情况。

第4章 基于BP的模型优化预测与MATLAB实现

第4章  基于BP的模型优化预测与MATLAB实现

0.3
0.35
0.4
0.45
0.5
图4- 5 系统逼近
图4- 6 PID控制输出
第四章
0.1
MATLAB优化算法案例分析与应用
kp
0.05 0
0
0.05
0.1
0.15
0.2
0.25 time(s)
0.3
0.35
0.4
0.45
0.5
0.1 0.05 0
ki
0
0.05
0.1
0.15
0.2
0.25 time(s)
第四章
MATLAB优化算法案例分析与应用
•4.3 基于BP神经网络的PID参数整定
图4- 2 基于BP神经网络的PID控制结构图
第四章
MATLAB优化算法案例分析与应用
图4- 4 BP_PID算法流程
第四章
epid=[x(1);x(2);x(3)]; % 合并矩阵 I=xi*wi'; for j=1:1:H Oh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %隐藏层 end K=wo*Oh; for l=1:1:Out K(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); end kp(k)=K(1);ki(k)=K(2);kd(k)=K(3); Kpid=[kp(k),ki(k),kd(k)]; %存储 kp,ki,kd三个参数
第四章
MATLAB优化算法案例分析与应用
•4.1 BP神经网络模型及其基本原理
图4- 1 BP神经网络结构
BP神经网络模拟生物神经元信号的传递过程,生物神经元信号的传递是通

神经网络及BP与RBF比较

神经网络及BP与RBF比较

机器学习第四章神经网络报告一、神经网络概述1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实时学习的特点,它通过预先提供的一批相互对应的输入和输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。

人工神经网络(ANN)学习对于训练数据中的错误健壮性很好,且已被成功地应用到很多领域,例如视觉场景分析、语音识别、机器人控制以及医学图像处理等。

人工神经网络2.人工神经网络的特点及功能2.1人工神经网络具有以下几个突出的优点:(1)能充分逼近复杂的非线性关系。

只有当神经元对所有输入信号的综合处理结果超过某一个限值后才能输出一个信号。

(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,每个神经元及其连线只能表示一部分信息,因此当有节点断裂时也不影响总体运行效果,具有很强的鲁棒性和容错能力。

(3)采用并行分布处理方法,使得快速进行大量运算成为可能。

(4)可学习和自适应不知道或不确定的系统。

2.2人工神经网络的特点和优越性,使其具有以下三个显著的功能:(1)具有自学习功能:这种功能在图像识别和处理以及未来预测方面表现得尤为明显。

自学习功能在未来预测方面也意义重大,随着人工神经网络的发展,未来它将在更多的领域,比如经济预测、市场预测、效益预测等等,发挥更好的作用。

(2)具有联想存储功能:人的大脑能够对一些相关的知识进行归类划分,进而具有联想的功能,当我们遇到一个人或者一件事情的时候,跟此人或者此事相关的一些信息会浮现在你的脑海,而人工神经网络则通过它的反馈网络,实现一些相关事物的联想。

数学建模之BP神经网络

数学建模之BP神经网络

神经网络的应用
人工神经网络以其具有自学习、自组织、 较好的容错性和优良的非线性逼近能力,受到 众多领域学者的关注。在实际应用中,80%~ 90%的人工神经网络模型是采用误差反传算法
或其变化形式的网络模型(简称BP神经网络),
目前主要应用于函数逼近、模式识别、分类和
数据压缩或数据挖掘。
§2 BP神经网络概述
人工神经网络是根据人的认识过程而开发出的一 种算法。 假如我们现在只有一些输入和相应的输出,而对 如何由输入得到输出的机理并不清楚,那么我们可以 把输入与输出之间的未知过程看成是一个“网络”, 通过不断地给这个网络输入和相应的输出来“训练” 这个网络,网络根据输入和输出不断地调节自己的各 节点之间的权值来满足输入和输出。这样,当训练结 束后,我们给定一个输入,网络便会根据自己已调节 好的权值计算出一个输出。这就是神经网络的简单原 理。

工作过程:
从神经元各组成部分的功能来看,信息的处理与传递主
要发生在突触附近。当神经元细胞体通过轴突传到突触 前膜的脉冲幅度达到一定强度,即超过其阈值电位后, 突触前膜将向突触间隙释放神经传递的化学物质。 神经元间信息的产生、传递和处理是一种电化学活动。 神经元间的信号通过突触传递。通过它,一个神经元内 传送的冲击信号将在下一个神经元内引起响应,使下一 个神经元兴奋,或阻止下一个神经元兴奋。
常见的激活函数有以下几种类型:
1、阶梯函数 2、线性函数 3、非线性:Sigmoid函数
1 (s) 1 e s
1 (s) 1 e s
人工神经网络的分类

按网络连接的拓扑结构分类:
层次型结构:将神经元按功能分成若干层,如输入
层、中间层(隐含层)和输出层,各层顺序相连 互连型网络结构:网络中任意两个节点之间都可能 存在连接路径

BP神经网络

BP神经网络

BP神经网络在函数逼近中的实现1.1 概述BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。

此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于函数逼近和样本含量估计问题中,并分析比较相关参数对算法运行结果的影响。

人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

BP神经网络 百度百科

BP神经网络 百度百科

BP神经⽹络 百度百科 在⼈⼯神经⽹络发展历史中,很长⼀段时间⾥没有找到隐层的连接权值调整问题的有效算法。

直到误差反向传播算法(BP 算法)的提出,成功地解决了求解⾮线性连续函数的多层前馈神经⽹络权重调整问题。

BP (Back Propagation)神经⽹络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。

输⼊层各神经元负责接收来⾃外界的输⼊信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能⼒的需求,中间层可以设计为单隐层或者多隐层结构;最后⼀个隐层传递到输出层各神经元的信息,经进⼀步处理后,完成⼀次学习的正向传播处理过程,由输出层向外界输出信息处理结果。

当实际输出与期望输出不符时,进⼊误差的反向传播阶段。

误差通过输出层,按误差梯度下降的⽅式修正各层权值,向隐层、输⼊层逐层反传。

周⽽复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经⽹络学习训练的过程,此过程⼀直进⾏到⽹络输出的误差减少到可以接受的程度,或者预先设定的学习次数为⽌。

BP神经⽹络模型BP⽹络模型包括其输⼊输出模型、作⽤函数模型、误差计算模型和⾃学习模型。

(1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-⾮线形作⽤函数;q -神经单元阈值。

图1 典型BP⽹络结构模型 (2)作⽤函数模型 作⽤函数是反映下层输⼊对上层节点刺激脉冲强度的函数⼜称刺激函数,⼀般取为(0,1)内连续取值Sigmoid函数:f(x)=1/(1+e) (3) (3)误差计算模型 误差计算模型是反映神经⽹络期望输出与计算输出之间误差⼤⼩的函数: Ep=1/2×∑(tpi-Opi) (4) tpi- i节点的期望输出值;Opi-i节点计算输出值。

(4)⾃学习模型 神经⽹络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

w14
0.2+(0.9) (-0.0087)(1)=0.192
w15
-0.3+(0.9) (-0.0065)(1)=-0.306
w24
0.4+(0.9) (-0.0087)(0)=0.4
w25
0.1+(0.9) (-0.0065)(0)=0.1
w34
-0.5+(0.9) (-0.0087)(1)=-0.508
8.1人工神经网络旳基本概念
人工神经网络在本质上是由许多小旳非线性函数构成 旳大旳非线性函数,反应旳是输入变量到输出变量间旳复 杂映射关系。先给出单个人工神经网络旳一般模型描述:
8.1人工神经网络旳基本概念
先来看一种单一输入旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1 f (·)
8.1人工神经网络旳基本概念
8.1人工神经网络旳基本概念
单极sigmoid函数
8.1人工神经网络旳基本概念
双曲函数
8.1人工神经网络旳基本概念
增长激活阈值后旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1-θ f (·)
-1
小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神 经元旳净输入和输出分别是多少?
2.反向传播 反向传播时,把误差信号按原来正向传播旳通路反向
传回,并对每个隐层旳各个神经元旳权系数进行修改,以 望误差信号趋向最小。
8.2 误差反向传播(BP)神经网 络
8.2 误差反向传播(BP)神经网 络
x1 x2
x3
单元 j 6
1 w14
Err4=

BP神经网络与BP网络设计

BP神经网络与BP网络设计

BP神经网络与BP网络设计
图像处理教研室
第14页
2. 输入量提取与表示
(1)文字符号输入
一 、训练样本集准备
XC=(111100111)T XI=(111100111)T XT=(111100111)T
BP神经网络与BP网络设计
图像处理教研室
第15页
(2)曲线输入
x(t) xn
一 、训练样本集准备
(2)“n-1”表示法 假如用n-1个全为0输出向量表示某个类别,则能够节约一个输
出节点。比如,用000、001、010和100也可表示优、良、中、差4 个类别。
(3)数值表示法
对于渐进式分类,能够将语言值转化为二值之间数值表示。数 值选择要注意保持由小到大渐进关系,并要依据实际意义拉开距离。
BP神经网络与BP网络设计
BP神经网络与BP网络设计
图像处理教研室
第17页
3. 输出量表示
一 、训练样本集准备
(1)“n中取1”表示法
“n中取1”是令输出向量分量数等于类别数,输入样本被判 为哪一类,对应输出分量取1,其余 n-1 个分量全取0。比如,用 0001、0010、0100和1000可分别表示优、良、中、差4个类别。
2
xmin
xi
xi xmid
1 2
( xmax
xmin
)
其中,xmid代表数据改变范围中间值。
BP神经网络与BP网络设计
图像处理教研室
第21页
三、网络训练与测试
三、网络训练与测试
网络性能好坏主要看其是否含有很好泛化能力, 对泛化能力测试不能用训练集数据进行,而要用训练集 以外测试数据来进行检验。
输出量:代表系统要实现功效目标

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
44
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。

BP 神经网络

BP 神经网络
数更精确,容错性较好。 输入与负无穷到正无穷的范 围映射到0~1或 -1~1区间内, 具有非线性的放大功能
二、BP神经网络的结构
BP神经网络采用误差反向传播算法 (Back-Propagation Algorithm)进 行学习。在BP网络中,数据从输入 层经隐含层逐层向后传播,训练网络 权值时,则沿着减少误差的方向,从 输出层经过中间各层逐层向前修正网 络的连接权值。
达数万次迭代。根据网络的大小,训练过程可能需要主机时间几个到几十个小
时。 (2)需大量训练数据:人工神经网络在很大程度上取决于训练时关于问题的输
入-输出数据,若只有少量输入-输出数据,一般不考虑使用人工神经网络。
(3)不能保证最佳结果:反向传播是调整网络的一个富有创造性的方法,但它 并不能保证网络能恰当地工作。训练可能导致网络发生偏离,使之在一些操作 区域内结果准确,而在其他区域则不准确。此外,在训练过程中,有可能偶尔 陷入“局部最小”。

够在训练过程中自动调节步长。

当误差以减小的方式趋于目标时,说明正方向是正确的,可以增加学习率; 当误差增加超过一定范围时,说明前一步修正进行的不正确,应减小步长,并 撤销前一步修正过程。
六、BP神经网络的优化

3.数据的归一化处理 BP神经网络在训练前对数据进行归一化处理,隐含层的数量通常不宜过多, 虽然将数据映射到更小的数据区间,有效提高学习速度。
2 1 m (3)网络关于第p个样本的误差: Ep d pj Ypj 2 j 1
(4) 网络关于整个样本集的误差:
E Ep
p
三、BP神经网络的学习算法 2.误差传播分析:
Ⅰ 输出层权的调整 ANp wpq ∆wpq 第L-1层 wpq= wpq+∆wpq 反向传播时,把误差信号按照原来正向传播的通路反向传回,并对每个神 经元的权数进行修改,以望误差信号趋向最小。 权值调整量=学习率*局部梯度*上一层信号输出 第L层 ANq
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章BP神经网络
Minsky和Papert的论点曾使许多人对神经网络的研究失去了信心,但仍有许多学者坚持这方面的研究。

Rumelhart、McClelland和他们的同事洞察到神经网络信息处理的重要性,于1985年发展了BP网络学习算法,实现了Minsky的多层网络设想。

BP网络是一种多层前馈型神经网络,其神经元的传递是S型函数,输出量为0到1之间的连续量,它可以实现从输入到输出的任意非线性映射。

由于权值的调整采用反向传播学习算法,因此也常称其为BP网络(Back Propagation Network)。

目前,在人工神经网络的实际应用中,绝大部分的神经网络模型都采用BP网络慢及其变化形式。

它也是前向网络的核心部分,体现了人工神经网络的精华。

BP网络主要用于以下四个方面。

1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。

2)模式识别:用一个待定的输出向量将它与输入向量联系起来。

3)分类:把输入向量所定义的合适方式进行分类。

4)数据压缩:减少输出向量维数以便于传输或存储。

2.1人工神经网络
神经科学研究表明,生物神经系统是由大量的神经细胞或神经元广泛相互连接组成的,一个神经元与另一个神经元密切接触,传递神经冲动,实习信息传递。

人的大脑皮层由六个不同的功能区组成的,上面布满了大约1.4*1011个神经细胞,它相当于一万台大型计算机并行运行。

所以说,人脑是一个广泛相互连接的复杂非线性系统,这种系统具有特殊的信息处理功能。

人工神经网络(简称神经网络)是神经系统的模拟,包括了大脑神经系统的许多特征。

研究人的大脑的目的就是试图模拟人脑信息处理机制来设计新一代智能型计算机,所以,在工程上我们所研究的都是人工神经网络(Artificial Neural Network,简称ANN)的范畴。

为此,美国的神经网络学家Hecht Nielsen给出人工神经网络的一般定义:神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算机系统,该系统是靠其状态对外部输入信息的动态响应来处理信息的。

因此你就,我们所指的神经网络都是指人工神经网络。

2.2发展简史
最早用数学模型对神经系统中的神经元径向理论建模的是美国心理学家麦卡洛克(W.McCulloch)和数学家皮茨(W.Pitts)。

1943年,美国心理学家W.S.Mcculloch和数学家W.A.Pitts提出了一个非常简单的神经元模型——MP模型。

模型将神经元当作一个功能逻辑器件来对待,从而开创了神经网络模型的理论研究。

1957年,Roscnblatt在MP模型的基础上,提出了感知器(Perceptron)的概念,并第一次把神经网络的研究从纯理论的探讨付诸于工程实现。

感知器是第一个真正意义上的神经网络,包括了许多现代神经网络的基本原理,整个模型的结构大体上符合神经生理学知识。

Rosenblatt给出了两层感知器的收敛定理,并提出了引入隐层处理单元的三层感知器。

感知器模型的提出吸引了众多学者加入到神经网络的研究中了。

1959年,美国工程师威德罗(B.Widrow)和霍夫(M.Hoff)提出了自适应线性元件和被称为Widrow——Hoff学习规则(又称学习规则)的神经网络训练方法。

它是感知器的变化形式,尤其在修正权矢量的算法上进行了改进,不仅提高了训练收敛速度,而且还做成了硬件,并将训练厚的人工神经网络成功地用于抵消通讯中的回波和噪声,成为第一个用于
解决实际问题的人工神经网络。

1969年,人工智能创始人之一明斯基(M.Minsky)和帕伯特(S.Papert)在合著的《感知器》一书中对以单层感知器为代表的简单人工神经网络的功能及其局限性从数学上进行了深入的分析,使得当时许多神经网络研究者感到前途渺茫,客观上对神经网络理论的发展起了一定的消极作用。

1982年,美国学者霍普菲尔德(Hopfield)提出了一种反馈神经网络,用于联想记忆和优化计算。

1984年,Hopfield又提出了连续的Hopfield神经网络模型,将神经元的响应函数由离散的二值改为连续的模拟值。

1986年,儒默哈特(D.E.Rumelhart)等人提出了解决多层神经网络权值修正的算法——误差反向传播法(BP算法),成为当前应用最为广泛的神经网络模型,找到了解决明斯基和帕伯特提出的问题的办法,从而给人工神经网络添加了活力,使其得以全面迅速地恢复发展起来。

1987年6月在美国圣地亚哥召开了第一届世界神经网络会议,标志着神经网络研究在世界范围内形成了高潮。

进入90年代后,神经网络的国际会议连接不断。

1989年我国在广州召开了全国第一届神经网络信号处理会议1991年在南京召开了第三、四、五、六届C2N2大会。

智能控制作为一门新兴的交叉学科,在许多方面都优于传统控制,而智能控制中的人工神经网络由于模仿人类的神经网络,具有感知识别、学习、联想、记忆、推理等智能,更是有着广阔的发展前景。

其中最核心的是反向传播网络(Back Propagation Network),简称BP 网络。

本文介绍BP神经网络,并用两类不同的数据对该神经网络进行训练,然后运用训练后的网络对字符进行识别。

1011。

相关文档
最新文档