(完整版)高中物理追击和相遇问题专题(含详解)
(完整版)高中物理相遇和追及问题(完整版)
![(完整版)高中物理相遇和追及问题(完整版)](https://img.taocdn.com/s3/m/f9eeef97804d2b160a4ec08a.png)
、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。
高中物理追击及相遇问题专题(含详解)5654
![高中物理追击及相遇问题专题(含详解)5654](https://img.taocdn.com/s3/m/0d3c9f5c1eb91a37f1115caa.png)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
专题4追击相遇问题(精选练习)(原卷版+解析)
![专题4追击相遇问题(精选练习)(原卷版+解析)](https://img.taocdn.com/s3/m/9fe9214a876fb84ae45c3b3567ec102de2bddfab.png)
人教版新教材物理必修第二册第二章《匀变速直线运动的研究》专题4 追击相遇问题精选练习一、夯实基础1.(2022·广东·深圳中学模拟预测)如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5m以内时能够实现通信。
t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为4m/s,乙车的速度为1m/s,O1、O2的距离为3m。
从该时刻起甲车以1m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动。
忽略信号传递时间,从t=0时刻起,甲、乙两车能利用蓝牙通信的时间为()A.2s B.10s C.16s D.20s2.小明到汽车站时,车已经沿平直公路驶离车站,司机听到呼喊后汽车马上以2m/s2的加速度匀减速刹车,设小明同时以4m/s的速度匀速追赶汽车,汽车开始刹车时速度为8m/s,减速前距离小明12m。
则小明追上汽车所需的时间为()A.6s B.7s C.8s D.9s3.挥杆套马是我国蒙古传统体育项目,烈马从骑手身边奔驰而过时,骑手持6m长的套马杆,由静止开始催马追赶,二者的v t 图像如图所示,则()A.0~4s内骑手靠近烈马B.6s时刻骑手刚好追上烈马C.在0~4s内烈马的平均速度大于骑手的平均速度D.0~6s内骑手的加速度大于8~9s内烈马的加速度4.(多选)汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机减速安全通过。
在夜间,有一货车因故障停驶,后面有一小轿车以30m/s的速度向前驶来,由于夜间视线不好,小轿车驾驶员只能看清前方50m内的物体,并且他的反应时间为0.6s,制动后最大加速度为5m/s2。
假设小轿车始终沿直线运动。
下列说法正确的是()A.小轿车从刹车到停止所用的最短时间为6sB.小轿车的刹车距离(从刹车到停止运动所走的距离)为80mC.小轿车运动到三角警示牌时的最小速度为20m/sD.三角警示牌至少要放在货车后58m远处,才能有效避免两车相撞5.无人驾驶汽车车头的激光雷达就像车辆的“鼻子”,随时“嗅”着正前方120m范围内车辆和行人的“气息”,大大缩短了汽车的制动反应时间,仅需0.2s,图为某次在测试场地进行制动测试时获得的一部分图像(v为汽车的速度,x为位置坐标)。
高一物理追击和相遇专题(含详解)
![高一物理追击和相遇专题(含详解)](https://img.taocdn.com/s3/m/1c8af10c453610661ed9f4ce.png)
追及和相遇问题专题研究一、追及和相遇问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解决追及和相遇问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四.典型例题分析:【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀速驶过。
(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以6m/s 的速度匀速前进。
于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是否相撞。
【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。
高中物理相遇和追及问题(完整版)
![高中物理相遇和追及问题(完整版)](https://img.taocdn.com/s3/m/4f4e832c974bcf84b9d528ea81c758f5f61f2966.png)
高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。
1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。
二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。
解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。
2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。
追及的主要条件是两个物体在追上时位置坐标相同。
3.寻找问题中隐含的临界条件。
例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。
利用这些临界条件常能简化解题过程。
4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。
相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
高一物理相遇和追及问题(含详解)
![高一物理相遇和追及问题(含详解)](https://img.taocdn.com/s3/m/27117f6931b765ce05081415.png)
相遇和追及问题
【学习目标】
1、掌握追及和相遇问题的特点
2、能熟练解决追及和相遇问题
【要点梳理】
要点一、机动车的行驶安全问题:
要点诠释:
1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
要点二、追及与相遇问题的概述
要点诠释:
1、追及与相遇问题的成因
当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题.2、追及问题的两类情况
(1)速度小者追速度大者
(2)速度大者追速度小者
第1页共12页。
高中物理 追及相遇问题 专题练习 (含详细答案)
![高中物理 追及相遇问题 专题练习 (含详细答案)](https://img.taocdn.com/s3/m/dbfbe611b7360b4c2e3f6419.png)
第八弹:那些年我们追过的小怪物1、如下图所示,小球甲从倾角θ=30°的光滑斜面上高h=5 cm的A点由静止释放做匀加速运动(加速度a=gsin30°),同时小球乙自C点以速度v0沿光滑水平面向左匀速运动,C点与斜面底端B处的距离L=0.4 m.甲滑下后能沿斜面底部的光滑小圆弧平稳地朝乙匀速追去,甲释放后经过t=1 s刚好追上乙,求乙的速度v0.2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B. A、B相遇时速度相同C.相遇时A车做匀速运动D. 两车不可能再次相遇3.同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动.若A在B前,两者可相遇______次,若B在A前,两者最多可相遇______次.4、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3 m/s2的加速度开始加速行驶,恰在这时一辆自行车以6 m/s 的速度匀速驶来,从后边超过汽车.试求:汽车从路口启动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(请分别用公式法、图像法、二次函数极值法、相对运动法尝试解答)5、一列货车以28.8 km/h的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m才停止.试判断两车是否会相碰.6、两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0.若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车的加速度开始刹车.已知前车在刹车过程中所行驶的距离为x,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为( )A.1xB.2xC.3xD.4x7、A、B两车沿同一直线向同一方向运动,A车的速度v A=4 m/s,B车的速度v B=10 m/s.当B车运动至A车前方7 m 处时,B车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要的时间是_____s ,在A 车追上B车之前,二者之间的最大距离是______m.8.如图1-2-1所示,A、B两物体相距s=7 m,A正以v1=4 m/s的速度向右做匀速直线运动,而物体B此时速度v2=10 m/s,方向向右,做匀减速直线运动(不能返回),加速度大小a=2 m/s2,求:①从图示位置开始计时,经多少时间A追上B.②若A、B两物体初始相距s=8 m,A以v1=8 m/s的速度向右做匀速直线运动,其他条件不变,求A追上B时间9、在水平轨道上有两列火车A和B相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足什么条件.10.火车甲以速度V1向前行驶,发现前方S米处另一辆火车乙正以速度V2(V2<V1)做匀减速运动,加速度的大小为2α,火车甲为了避免与火车乙相撞,也开始做减速运动,则加速度1α的大小至少为多少?11.A、B两物体从同一地点,以相同初速度30 m/s,相同加速度a=10m/s2,间隔2 s时间先后出发,做匀减速运动(可以折返), 求两物体将在何处、何时相遇?12.从相距30 km的甲、乙两站每隔15 min同时以30 km/h的速率向对方开出一辆汽车.若首班车为早晨5时发车,则6时从甲站开出的汽车在途中会遇到多少辆从乙站开出的汽车?★13. A球自距地面高h处开始自由下落(以初速度为零,加速度为10m/s2做匀加速运动),同时B球以初速度v0正对A球竖直上抛(加速度向下,大小为10m/s2,做匀减速运动)空气阻力不计. 问:(1)要使两球在B球上升过程中相遇,则v0应满足什么条件?(2)要使两球在B球下降过程中相遇,则v0应满足什么条件?14—16题为选做题:14.甲、乙两车相距为s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。
高中物理追击和相遇问题专题(含详解).doc
![高中物理追击和相遇问题专题(含详解).doc](https://img.taocdn.com/s3/m/584e046b79563c1ec4da7152.png)
v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
完整word版高中物理追击和相遇问题专题含详解
![完整word版高中物理追击和相遇问题专题含详解](https://img.taocdn.com/s3/m/703d519d3b3567ec112d8a3c.png)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系t?t?tx?x?x)位移关系:()时间关系:2(10BA0BA vv=(3)速度关系:BA距离最大、最小的临界条件,也是分析判断的切入点。
两者速度相等往往是物体间能否追上或(两者): 三、追及、相遇问题的分析方法; 选择同一参照物,列出两个物体的位移方程A. 画出两个物体运动示意图,根据两个物体的运动性质, B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系.D. 联立方程求解:说明:追及问题中常用的临界条件; ,有最大距离⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时有最速度在接近,但距离在变小。
追上前在两个物体速度相等时,⑵速度大者减速追赶速度小者,. ,否则就不能追上小距离.即必须在此之前追上四、典型例题分析: vv.匀加速运动追匀速运动的情况(开始时:<)(一)21 vv1.当 <时,两者距离变大;21 vv2.当 =,两者距离最大;时21 xx3.vv (即追上时,两者距离变小,相遇时满足)=一次。
+Δx,全程只相遇>22112求:恰有一自行车以6m/s的速度从车边匀速驶过.【例1】一小汽车从静止开始以3m/s的加速度行驶,小汽车什么(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2) 时候追上自行车,此时小汽车的速度是多少?vv ).匀速运动追匀加速运动的情况(开始时)>:(二21vv1.当 >时,两者距离变小;21xx2.当v v +Δ=时,①若满足x<,则永远追不上,此时两者距离最近;2121xx x②若满足=,则恰能追上,全程只相遇一次;+Δ21x x,此条件下理论上全程要相遇Δ+x③若满足,则后者撞上前者(或超越前者)>21两次。
2025高考物理专项复习专题进阶课三 追及相遇问题含答案
![2025高考物理专项复习专题进阶课三 追及相遇问题含答案](https://img.taocdn.com/s3/m/0d050028777f5acfa1c7aa00b52acfc789eb9f28.png)
2025高考物理专项复习专题进阶课三追及相遇问题含答案专题进阶课三追及相遇问题核心归纳1.几种追及相遇问题的图像比较:类型图像说明匀加速追匀速(1)t=t0以前,后面物体与前面物体间距逐渐增大;(2)t=t0时,v1=v2,两物体间距最大,为x0+Δx;(3)t=t0以后,后面物体与前面物体间距逐渐减小;(4)能追上且只能相遇一次匀速追匀减速匀加速追匀减速匀减速追匀速开始时,后面物体与前面物体间的距离在逐渐减小,当两物体速度相等时,即t=t0时刻:(1)若Δx=x0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;(2)若Δx<x0,则不能追上,此时两物体有最小距离,为x0-Δx;(3)若Δx>x0,则相遇两次,设t1时刻匀速追匀加速匀减速追匀加速Δx=x0,两物体第一次相遇,则必有t2时刻两物体第二次相遇,且t2-t0=t0-t1注意:(1)v1是前面物体的速度,v2是后面物体的速度;(2)x0为开始时两物体之间的距离;(3)Δx为从开始追赶到两者速度相等时,前面或后面的物体多发生的位移2.追及相遇问题情况概述:(1)追及问题①若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
②若后者追不上前者,则当后者的速度与前者相等时,两者相距最近。
(2)相遇问题①同向运动的两物体追及即相遇。
②相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
提醒:(1)若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动。
(2)仔细审题,注意抓住题目中的关键字眼(如“刚好”“恰好”“最多”“至少”等),充分挖掘题目中的隐含条件。
3.解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图或v-t图像,找到临界状态和临界条件。
(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。
物理高一追击相遇问题类型题及解析
![物理高一追击相遇问题类型题及解析](https://img.taocdn.com/s3/m/4d5a186378563c1ec5da50e2524de518974bd31a.png)
物理高一追击相遇问题类型题及解析一、追击相遇问题的基本概念物理中的追击相遇问题可有趣啦。
追击呢,就是一个物体去追另一个物体,像小动物追自己的小伙伴一样。
相遇就是两个物体在某个时刻在同一个地方碰头啦。
这里面涉及到的有速度、时间、位移这些概念哦。
速度就像是小动物跑的快慢,时间就是跑了多久,位移就是从一个地方到另一个地方移动了多远的距离。
二、不同类型的追击相遇问题1. 同一直线的匀速追击匀加速比如说一辆汽车以恒定速度行驶,后面有一辆摩托车从静止开始匀加速追赶。
这种情况下呢,我们要找到它们位移相等的时候,也就是相遇的时候。
假设汽车速度是v1,摩托车初速度是0,加速度是a,经过时间t后相遇,那汽车的位移就是x1 = v1t,摩托车的位移就是x2 = 1/2at²,当x1 = x2的时候,就求出相遇时间t啦。
2. 匀减速追击匀速就像一个刹车的汽车去追前面匀速行驶的自行车。
这里要特别注意哦,匀减速的汽车可能在速度减为0之前就追上了自行车,也可能追不上。
如果追不上,那就要算出它们之间的最小距离。
假设汽车初速度是v0,加速度是- a,自行车速度是v1,在某一时刻t,汽车的位移x1 = v0t - 1/2at²,自行车位移x2 = v1t,当v0 - at = v1的时候,这时候两者速度相等,如果还没追上,之后距离就会拉大啦。
3. 相向运动的相遇就像两个人从路的两端朝着中间走,这时候他们的位移之和等于他们初始的距离。
比如甲的速度是v甲,乙的速度是v乙,他们初始距离是L,经过时间t相遇,那v甲t+v乙t = L。
三、解析思路1. 画草图这个可重要啦,把两个物体的运动轨迹画出来,标上速度、位移等信息,就像画画一样,让整个问题清晰起来。
2. 找关系找出两个物体在位移、速度、时间方面的关系。
比如刚刚说的位移相等或者位移之和等于某个值。
3. 列方程求解根据找到的关系列出方程,像解数学题一样把未知量求出来。
高中物理必修一追及和相遇问题专题练习及答案解析
![高中物理必修一追及和相遇问题专题练习及答案解析](https://img.taocdn.com/s3/m/18795223ae45b307e87101f69e3143323968f542.png)
追击和相遇问题一、追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?答案.S 人-S 车=S 0 ∴ v 人t-at 2/2=S0即t 2-12t+50=0Δ=b 2-4ac=122-4×50=-56<0方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5sΔS=S 乙-S 甲+S AB=10×2.5-4×2.52/2+12=24.5m⑵S 甲=S 乙+S ABat 2/2=v 2t+S AB t 2-5t-6=0t=6sS 甲=at 2/2=4×62/2=72m3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12/2+v m t 2v m =at 1=20卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2t ≤120s a ≥0.18m/s 24.汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车? 答案.S 汽车≤S 自行车+d当v 汽车=v 自行车时,有最小距离 v 汽车=v 汽车0-at t=1sd 0=S 汽车-S 自行车=v 汽车0t-at 2/2-v 自行车=3m 故d ≥3m 解二: ΔS=S 自行车+d-S 汽车=(v 自行车t+d)-(v 汽车 0t-at 2/2)=d-6t+3t2=d-3+3(t-1)2当t=1s时, ΔS有极小值ΔS1=d-3 ΔS1≥0d≥3m二、相遇问题的分析方法:A.根据两物体的运动性质,列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D.联立方程求解.5.高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间.答案.S梯-S钉=h∴ h=vt+at2/2-(vt-gt2/2)=(a+g)t2/26.小球1从高H处自由落下,同时球2从其正下方以速度v0竖直上抛,两球可在空中相遇.试就下列两种情况讨论的取值范围.⑴在小球2上升过程两球在空中相遇;⑵在小球2下降过程两球在空中相遇.答案.h1+h2=Hh1=gt2/2 h2=v0t-gt2/2∴ t=h/v0⑴上升相遇 t<v0/g∴ H/v0>v0/g v02>gH⑵下降相遇 t>v0/g t′<2v0/g∴ H/v0>v0/g v02<gHH/v0<2v0/g v02>gH/2即Hg>v02>Hg/27.从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?答案.S1=v0(t+2)-g(t+2)2/2S2=v0t-gt2/2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以2v0竖直上抛一物体后,又以初速度v0在同一地点竖直上抛另一物体,若要使两物体在空中相遇,则两物体抛出的时间间隔必须满足什么条件?(不计空气阻力)答案.第二个物体抛出时及第一个物体相遇Δt1=2×2v0/g第二个物体落地时及第一个物体相遇Δt2=2×2v0/g-2v0/g=2v0/g∴ 2v0/g≤Δt≤4v0/g追及相遇专题练习1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )图5A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m3.公共汽车从车站开出以4 m/s 的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少?4.汽车A 在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B 以8 m/s 的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向及A 车相同,则从绿灯亮时开始 ( )A.A 车在加速过程中及B 车相遇B.A 、B 相遇时速度相同C.相遇时A 车做匀速运动D.两车不可能再次相遇5.同一直线上的A 、B 两质点,相距s ,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A 做速度为v 的匀速直线运动,B 从此时刻起做加速度为a 、初速度为零的匀加速直线运动.若A 在B 前,两者可相遇几次?若B 在A 前,两者最多可相遇几次?6.一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止.试判断两车是否会相碰7.一列火车以v 1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v 2做匀速运动,于是他立即刹车,为使两车不致相撞,则a 应满足什么8.A 、B 两车沿同一直线向同一方向运动,A 车的速度v A =4 m/s,B 车的速度v B =10 m/s.当B 车运动至A 车前方7 m 处时,B 车以a =2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A 车追上B 车需要多长时间?在A 车追上B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s 2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1. 【答案】D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线及时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知,B 物体比A 物体早出发5 s ,故A 选项错;10 s 末A 、B 速度相等,故B 选项错;由于位移的数值等于图线及时间轴所围“面积”,所以前15 s 内B 的位移为150 m ,A 的位移为100 m ,故C 选项错;将图线延伸可得,前20 s 内A 的位移为225 m ,B 的位移为200 m ,故D 选项正确. 2.【答案】C【解析】υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大.据此得出正确的答案为C 。
(完整版)追及与相遇问题(含答案)
![(完整版)追及与相遇问题(含答案)](https://img.taocdn.com/s3/m/a0b666fa58fafab068dc0239.png)
追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2、理清两大关系:时间关系、位移关系。
3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。
高中物理追击和相遇问题专题(含详解).
![高中物理追击和相遇问题专题(含详解).](https://img.taocdn.com/s3/m/9e105d743c1ec5da50e27039.png)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理相遇及追及问题[(完整版)]
![高中物理相遇及追及问题[(完整版)]](https://img.taocdn.com/s3/m/746da95c482fb4daa58d4bb3.png)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =vB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?(三).匀减速运动追匀速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1<x2+Δx,则永远追不上,此时两者距离最近;②若满足x1= x2+Δx,则恰能追上,全程只相遇一次;③若满足x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例3】汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?(四).匀速运动追匀减速运动的情况(开始时v1< v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最远;3.当v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇一次。
【例4】当汽车B在汽车A前方7m时,A正以v A=4m/s的速度向前做匀速直线运动,而汽车B此时速度v B=10m/s,并关闭油门向前做匀减速直线运动,加速度大小为a=2m/s2。
此时开始计时,则A追上B需要的时间是多少?针对训练:(课后作业:每天一个题。
做题时,可尝试用多种解法,如:一.公式法(推荐);二.图象法;三.极值法;四.相对运动法)1.现有一辆摩托车先由静止开始以2.5m/s2的加速度做匀加速运动,后以最大行驶速度25m/s匀速行驶,追赶前方以15m/s的速度同向匀速行驶的卡车。
已知摩托车开始运动时与卡车的距离为200m,则:(1)追上卡车前二者相隔的最大距离是多少?(2)摩托车经过多少时间才能追上卡车?2.为了安全,在公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速v=120km/h。
假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s。
刹车时汽车受到阻力的大小f为汽车重力的0.40倍。
该高速公路上汽车间的距离s至少应为多少?3.动车从A站以210.5/a m s=的加速度匀加速度启动,当速度达到180km/h时开始做匀速行驶,接近B站以大小为220.5/a m s=的加速度匀减速刹车,静止时恰好正点到达B站。
某次,动车在A站因故晚出发了3min,以210.5/a m s=匀加速启动后,当速度达到216km/h开始匀速运动,接近B站以大小为220.5/a m s=的加速度匀减速刹车,静止时也恰好正点到达B站。
求A,B两站间的距离。
4.一辆轿车违章超车,以108 km/h 的速度驶入左侧逆行道时,猛然发现正前方80 m 处一辆卡车正以72 km/h 的速度迎面驶来,两车司机同时刹车,刹车加速度大小都是10 m/s2,两司机的反应时间(即司机发现险情到实施刹车所经历的时间)都是Δt.试问Δt 是何数值,才能保证两车不相撞?5.一辆巡逻车最快能在10 s 内由静止加速到最大速度50 m/s ,并能保持这个速度匀速行驶,问该巡逻车在平直的高速公路上由静止追上前方2000 m 处正以35 m/s 的速度匀速行驶的汽车,至少需要多少时间?6.一辆值勤的警车停在公路边,当警员发现从他旁边以v=12m/s 的速度匀速行驶的货车有违章行为时,决定前去追赶。
经过t0=2s ,警车发动起来,以加速度a=2m/s2做匀加速运动,若警车最大速度可达vm=16m/s ,问:(1)在警车追上货车之前,两车间的最大距离是多少? (2)警车发动起来以后至少多长时间可以追上货车?7.平直的公路上,甲车匀速行驶,速度为10m/s ,当它经过乙车处时,乙车从静止开始以a =1m/s 2的加速度作匀加速运动,方向与甲车运动方向相同。
求(1)乙车追上甲车前,它们的最大距离?(2)乙车经过多长时间追上甲车?8.甲车以10 m/s 的速度在平直的公路上匀速行驶,乙车以4 m/s 的速度与甲车平行同向做匀速直线运动,甲车经过乙车旁边时开始以0.5 m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间。
9.一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s 的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s 后警车发动起来,并以一定的加速度做匀加速运动,但警车行驶的最大速度是25 m/s .警车发动后刚好用12 s 的时间追上货车,问:(1)警车启动时的加速度多大? (2)警车在追赶货车的过程中,两车间的最大距离是多少?10.甲、乙两车在一条直线上沿相同方向运动,甲在乙前56 m x =处,甲以初速度116 m/s v =、加速度大小为21 2 m/s a =匀减速刹车,乙以初速度2 4 m/s v =、加速度大小为22 1 m/s a =做匀加速运动,求: (1)乙车追上甲车前二者间的最大距离; (2)乙车追上甲车所需时间.11.一辆汽车在平直的公路上以20m/s的速度匀速行驶,其后1000m 处的摩托车要在起动后3分钟内追上汽车,若摩托车所能达到的最大速度为30m/s ,则它的加速度至少为多大?12.A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前84m 处时,B 车速度为4 m/s ,且正以2 m/s2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12s 后两车相遇.问B 车加速行驶的时间是多少?13.汽车以3 m/s2的加速度开始启动的瞬间,一辆以6 m/s 的速度沿同方向做匀速直线运动的自行车恰好从汽车的旁边通过.求:(1)汽车在追上自行车前多长时间与自行车相距最远? (2)汽车经多长时间追上自行车?14.客车以v = 20 m/s 的速度行驶,突然发现同轨道的正前方s = 120 m 处有一列货车正以v0 = 6m/s 的速度同向匀速前进,于是客车紧急刹车,若客车刹车的加速度大小为a = 1m/s2,做匀减速运动,问: (1)客车是否会与货车相撞?(2)若会相撞,则在什么时刻相撞?客车位移为多少?若不相撞,则客车与货车的最小距离为多少?15. A 、B 两列火车在同一轨道上同向行驶,A 车在前,速度vA=20m/s ,B 车在后,速度vB=30m/s 。
因大雾,能见度很低,B 车在距A 车750m 处才发现前方A 车,这时B 车立即刹车。
已知B 车在进行火车刹车测试时发现,若车以30m/s 的速度行驶时刹车后至少要前进1800m 才能停下,问: B 车刹车的最大加速度为多大?计算说明A 车若按原来速度前进,两车是否会相撞?能见度至少达到多少米时才能保证两辆火车不相撞?针对训练参考答案1.(1)由题意得摩托车匀加速运动最长时间s a v t m 011==,位移 ms m a v s m0021252021=<==,所以摩托车在达到最大速度之前没有追上卡车。
当追上卡车前二者速度相等时相距最大,设从开始经过t2时间速度相等,最大间距为Sm ,于是有匀v at =2,则:sav t 62==匀最大间距mat t v s s m 24521)(2220=-+=匀(2)设从开始经t 时间摩托车追上卡车,则有 tv s t t v a v m m匀+=-+012)(2 解得 t=32.5s2.在反应时间内,汽车做匀速运动,运动的距离s1=vt ① (2分)设刹车时汽车的加速度的大小为a ,汽车的质量为m ,有 kmg =ma ② (2分) 自刹车到停下,汽车运动的距离222s a =v ③ (2分)所求距离s=s1+s2=1.6×102m (或156m )3.从启动到速度达到v1 =180km/s =50m/s 时用时100s ,开始减速到静止B 站用时也为100s 。
匀速行驶时间设为t1 .由v----t 图可得:11(2200)/2AB s v t =+ --------(1)第二次启动到速度达v2 =216km/s ,用时120s ,减速刹车到B 站用时仍为120s ,匀速行驶时间设为t2,则:22(2240)/2AB s v t =+ ————(2)又两次均正点到达,则12200420t t +=+ ————-(3)由上面3式可解得60AB s km= sAB 表示AB 间的距离4.设轿车行驶的速度为v1,卡车行驶的速度为v2,则v1=108 km/h=30 m/s , v2=72 km/h=20 m/s ,在反应时间Δt 内两车行驶的距离分别为s1、s2,则 s1=v1Δt ① s2=v2Δt ②轿车、卡车刹车所通过的距离分别为s3、s4则s3=102302221⨯=a v m =45 m ③s4=202102222⨯=av m =20 m ④ 为保证两车不相撞,必须s1+s2+s3+s4<80 m ⑤ 将①②③④代入⑤解得 Δt <0.3 s5.150s6.(1)当警车与货车速度相等时,两者距离最大。