(完整版)利用matlab仿真对电力系统谐波治理
基于Matlab的整流装置谐波分析
, , 由以上仿真结果可以看出, 电流中主要含有 基波、& 次、% 次、$$ 次、$) 次和 $% 次等各次谐 波,表 ( 中各次谐波含量和用理论推导出的谐波含 量 ( 见表 $ ) 相符,且特征谐波电流幅值和谐波次 ! 6 & # ! ) 基本一 数的近似关系也与式 " ! 4 "$ # $" ( ( 致,说明本文所建立的仿真模型及仿真结果正确。 整流负荷在实际运行中除产生特征谐波外, 还产 生非特征谐波,即谐波次数不是 3 % G $ 次的谐波电 流,如对于三相六脉动整流桥, 产生 ) 次、’ 次和 $& 次等非特征谐波。 非特征谐波是由于整流设备 触发延迟角不均匀、 供电电压不平衡、 系统三相 阻抗不对称及负荷波动等因素引起的, 其谐波次 数不能像特征谐波那样由脉动数来决定。 非特征 谐波电流的计算比较复杂, 而且许多因素和参数 难以确定,所以非特征谐波一般采用估计的方法。
谌贵辉
整流装置的电气系统模型
— —三相六脉动整 以大型整流装置— 流器为例,分析其在电力系统中的谐波 问题。图 $ 所示为三相可控整流的电气 模型。 三相整流桥详细的整流过程分析与 供电电流表达式非常复杂, 从配电网使
[ 23-" 1 !4& ] 1 "
% !9 %-
( %) ( 6)
4 !$ + ! ! 9 !’$
用谐波计算的角度看 , 详细的整流负荷
3 3 3 3 3 3 3 3 图 43 三相可控整流模型
西南 石 油 大 学 自 然 科 学 基 金 资 助 ( 编 号: %&&’()*$$% ) 。
# !"
・石化电气・*++, 年第 *- 卷第 ** 期
基于matlab谐波抑制的仿真研究(毕设)
如果将整流相数增加到12 相,则5 次谐波电流下降到基波电流的4.5%,7 次谐波电流下降到3%。
除了可对整流器本身进行改造外,当有多台相同的6 脉动换流器同时工作时,可以用取自同一电源的换流变压器二次绕组之间适当的移相,以达到提高整流脉动数的目的。
(2)采用交流滤波装置。
采用交流滤波装置在谐波源的附近就近吸收谐波电流,以降低连接点处的谐波电压。
滤波装置是由电阻、电感、电容等元件组成的串联谐振电路,利用其串联谐振时阻抗最小的特性,消除5、7、11 次等高次谐波。
在运行中滤波器除了能起到滤波作用外还能兼顾无功补偿的需要。
(3)抑制快速变化的谐波。
快速变化的谐波源(如电弧炉、电力机车、晶闸管供电的轧钢机和卷扬机等)除了产生谐波外,往往还会引起供电电压的波动和闪变,有的(如电气化铁道的机车,处于熔化期的电弧炉等)还会造成系统电压三相不平衡,严重影响公用电网的电能质量。
抑制快速变化谐波较全面的技术措施就是在谐波源处并联装设静止无功补偿装置,可有效减小波动谐波源的谐波量,同时,可以抑制电压波动、闪变、三相不平衡,还可补偿功率因数,目前技术上较成熟。
(4)避免并联电容器组对谐波的放大作用。
在电力系统,中并联电容器组可以改善无功,起改善功率因数和调节电压的作用。
当有谐波源时,在一定的参数下,电容器组会对谐波起放大作用,危及电容器本身和附近电气设备的安全。
因此可采取改变电容器的串联电抗器,或将电容器组的一些支路改为滤波器,还可以采取限定电容器组的投入容量,避免电容器对谐波的放大。
(5)LC无源滤波法。
LC无源滤波器是一种常用的谐波补偿装置。
它的基本工作原理是利用LC谐振回路的特点抑制向电网注入的谐波电流。
当谐振回路的谐振频率和其中一高次谐波电流频率相同时,则可将该次谐波电流滤除,使其不会进入电网。
多个不同谐振频率的谐振回路可溥除多个高次谐波电流,这种方法简单易行。
(6)采用有源电力滤波器APF(Active Power Filter)。
(完整word版)基于MATLABSimulink的电力系统仿真实验
基于MATLAB/Simulink 的电力系统故障分析10kv 系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:g BlOCk Parameters: Th「ee・P hase SoUrCeThree-Phase SOllrCe (nask} ζlink;7hrGG-phas≡ VOItaZG SoUrCG in SGrieK With RL bxanch.Par>∑n ∙t ∙rsPhase—tO-PhaSG τ≡s volta≡G (V):110. 5e3Phase anrl⅛ Gf chase A (degreGs):lθFrtQutncy (HX):InternaI Conn.action: ∣ Y厂SPeCifr iaped&nce USXnS Sh^Xt V CirCUit IeVeISoUree resistance (Oh=Si:I O. 009SoUrCe inductance (H):116. 58e-5APPIr JOK Cancel Helpt∣∣ BlOCk Parameters; Linel-Three-Phase PZ SeCtion Lin已□a5⅛) (Iink)ThiB block inpleaents a thr«t-phi.i∙ PI section lin∙ to XePreS∙nt a thiGG-phasG transaision line. Thig block iGDresents OnIy OnG Pl section. TO Inplenenteyou si□Dlr need to CanneCt COPiea Qf this block in2>ore that One PI secti∙onjsexies・ParaaQtQTS ---------------------------------------------------------------------FreQUenCy Ueecl for RLC specification (Hz):F5PoIitiVe- Ind z⅜ro-seau⅜nce resiβtances (Ohas/ka) [ K: RO ]:I [ 0.01273 O. 3SG4:Positive* and Zero e SGauenc© inductances ⅛∙,lαι) [ LI LO ]:IT O. 9327e-3 4. 1264e-3]PCSitiV⅛- and ∑4ro∙-ssau4nee ca-pacitanees (FJka;IeICOI :I [12. 74e-9 7. 751e-9ΓLine SeetiOn IGnSth (ka√ :1130OK CanCeI KeIP Apply■OK CanCaI I EelD 厂 删 FUnCtiOn BIOCk Parameters; AddlCu s Acld c ∙r subtract XnPUtS- S^CIfT Cne Oi the fol.ovιng:a. string COntaining ∙ or - for each InPLt port, for SPaCer tetτem PortS (e. c.—・Db) SCaIar >≡ 】・ A value > 1 SUal all inputs: 1 SUnI ∙lts ⅜nts Of a tingle InPLt v ,∙ctorMain ∣ SifnftI data typaκICOn sha□e: ∣ re:t&ngulax▼]LISt Of KXeni:I 4**SaSDle t-n≡ βl for IEherXted):∣∙χ X I Cancel I HeID I Appl ∙BJ c5s3βN∕MUItimeterlHdPAaIbb Q ∖te ∂⅛ufementsU ∆Λ r βbr. LCAd3 LO a ∙133 Uan: TTbri VCΛ Lc&d3i U H : Ub Tht*∙Pb ⅛m F ⅛JlCl/fault. B» α>: IhrCQ-Pbazc fαulτl∕iαu^r C_l Cb- IHLeC ?hase Γa^lvl∕FAulV AI AT. Lo AdiIbU Lcαd3ICn GOad3lb: Ib"Q ∙7hα" I>αultl/fault Blb: Ih^ec _?hasc F aulVl∕Γau2V CUC lb: IhtraA ・7乃a=a FArJItI/FAult A—Σ-J Cown IR«rf)ve*f -IUPMe ⅝⅛∣ SOUrCe BIQCk Parameters; FromF∑o□Keceive SiEnaIC frσ≡ the GOtO block Irith the SDeClfiGd :as ・ If the tae is definedas r scoped , in the GOtO block, then a GOtO TaE ViSlbility bl ∙ock aust te used to definethe VieibiIity Of tht tac ・ After : UPdat ∙ DiaCraa I the block icon displays theSeleCted tag nase >Local taes are encIOSed in brackets. .], and SeODed tag na=es areSneIOSed in braees ; J).L ΦQ 43 Lθft<13 ≥p∣e 匚IEd MeaSU Ξ小 PIOt SdAe ⅛<igpαg Ie wI PiCX制SOUrCe BlOCk Parameters; FrOm4 「町〕一Fro□----------------------------R<c∙iv∙ SdKnalS froa the Goto bl>ck With the specified tar- If tht tae is d<ιfi∏4dseoped, in the Go∙tc Mcelt then a GOtO 7ar Vigibility blσek ≡ust be USGCl to definethe block icon displays the the Vigibility Of the tag. After , Update DiaeraID JISeIeCted tag nazιe (IOCaI tags are enclosed in brackets. and SCQPed tag nazes axeenclose! in braces::}〉・OK Cancel I Help FUnCtiOn BlOCk Parameters: DiSCrete 3・PhaSe SeqUeflCe AnalyZer三相短路仿真波形如下:如图1——a、b、c 三相短路电流仿真波形图分析:正常运行时,a、b、c 三相大小相等,相位相差120 度。
基于Matlab的电力谐波分析
基于Matlab的电力谐波分析
摘要:谐波采样中存在的信号混叠问题,本文通过数据加窗和插值算法进行电力谐波的精确分析,此方法可以解决快速傅里叶变换(FFT)算法精度不高,特别是相位计算误差较大的问题。
关键词:谐波采样加窗插值快速傅里叶变换
采用快速傅立叶变换(FFT)进行电力系统谐波检测具有正交、完备等许多优点,在电能质量仿真分析取得了广泛的应用,但此方法很难做到同步采样和整周期截断,会导致频率、幅值和相位等参数不准,尤其是相位误差很大,无法对谐波进行准确的测量。
本文引入了加窗插值FFT算法,此算法硬件设计实现简单,具有良好的时频局部化特性,精度和实时性都均能满足谐波检测的实际要求。
通过用FFT算法和汉宁窗修正算法所得的谐波频率、幅值和相位的误差图分析可得,用FFT算法进行谐波检测相位误差较大大,计算结果精确度较差,利用本文算法可以有效减少了泄漏,抑制谐波之间、杂波之间及噪声的干扰,可以精确测量到各次谐波电压和电流的幅值及相位,完全可以满足电力系统的分析要求。
基于Matlab的谐波抑制技术的仿真研究
图 5 控制侧的谐波注入模型图
313 结果与分析 图 5 的参 数 设置 如 下: D C1 = D C2 = 700 V,
L = 5 mH, 变压器参数不变。注入控制绕组中的谐 波电流 Ic 和注入 Ic 前变压器原边电流 Is 的波形如 图 6所示。 Is 的 THD 由 29195% 降为 0148% , 功 率因数由 0180提高到 0196, Is 的波形如图 7所示。 注入控制电流 前后电源 电流的各 次谐波, 如表 3 所示。
负载电流包含基波 ( 50 H z) 和谐波两种分量, 它们在通过变压器副边绕组 时分别产生基波磁势 F 1 和谐波磁 势 F 2, 从而在 变压 器的 磁路 中分别 产生基波磁链 1和 谐波磁链 2。在负载 侧通过电
45
基于 M atlab的谐波抑制技术的仿真研究
流检测器检出负载电流 I2 中需要滤除的谐波分量 I3, 然后将其接入控制绕组 N c, 产生相 关次谐波 磁势F 3 = W # I3 (其 中, F 3 为 控 制绕 组 的 谐波 磁 势, W 为控制绕 组匝 数 )。通 过改 变控 制绕 组的 连接方式和控制绕组匝数 W, 使谐波控 制绕组产 生的相关次谐波磁势 F3 与负载侧产生的谐波磁 势 F 2 大小相等而方向 相反, 从而使得由 F 3 产生 的谐波磁链 3和由 F 2 产生的谐波磁链 2 相互抵 消。由于在变压器的磁路中消除了谐波 的磁势和 磁链, 因此在变压器原边绕组中不会感 应产生相 关次谐波电流, 使得由负载侧产生的谐 波电流不 会对变压器原边电网产生影响, 从而达 到治理电 网谐波的目的 [ 3] 。
W ang H ongran, L iu T iancu,i H ong Na igang ( S chool of E lectrica l Eng in eering& In formation, A nhu iU n iversity of T echnology, M apansh an 243002, Ch ina)
(完整版)利用matlab仿真对电力系统谐波治理
利用matlab仿真对电力系统谐波治理摘要:随着国民经济和科学技术的蓬勃发展,冶金、化学等现代化大工业和电气化铁路的发展,电网负荷加大,电力系统中的非线性负荷(硅整流设备、电解设备、电力机车)及冲击性、波动性负荷(电弧炉、轧钢机、电力机车运行)使得电网发生波形畸变(谐波)、电压波动、闪变、三相不平衡,非对称性(负序)和负荷波动性日趋严重。
电能质量的下降严重地影响了供用电设备的安全、经济运行,降低了人民的生活质量。
所以在世界各国都十分重视电能质量的管理。
引言新兴负荷的出现对电能质量的要求更高电能质量问题逐渐引起普遍重视,主要原因如下:(1)大量基于计算机的控制设备和电子装置投入使用,其性能对电压质量非常敏感。
(2)调速电机和无功补偿装置,导致系统谐波水平不断上升,从而对电力系统的容量和安全运行产生影响。
(3)电力用户不断增长的电能质量意识迫使电力公司提高供电质量,设法解决诸如电压中断,电压跌落和开关暂态等电能质量问题。
衡量电能质量的主要指标是电网频率和电压质量。
频率质量指标为频率允许偏差;电压质量指标包括允许电压偏差、允许波形畸变率(谐波)、三相电压允许不平衡度以及允许电压波动和闪变。
国家技术监督局已公布了上述电能质量的五个国家标准。
电能质量的具体指标。
1.电网频率我国电力系统的标称频率为50Hz,GB/T15945-1995《电能质量一电力系统频率允许偏差》中规定:电力系统正常频率偏差允许值为±0.2Hz,当系统容量较小时,偏差值可放宽到±0.5Hz,标准中没有说明系统容量大小的界限。
在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。
实际运行中,从全国各大电力系统运行看都保持在不大于±0.1HZ范围内。
2.电压偏差GBl2325-90《电能质量一供电电压允许偏差》中规定:35kV及以上供电电压正负偏差的绝对值之和不超过额定电压的10%;10kV及以下三相供电电压允许偏差为额定电压的土7%;220V单相供电电压允许偏差为额定电压的7%~10%。
第五章MATLAB在电力系统故障分析中的仿真实例精选全文
第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
无阻尼绕组同步发电机三相短路电流计算
第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
图5-13 发电机端突然发生三相短路的Simulink仿真模型
第五章MATБайду номын сангаасAB在电力系统故障分析 中的仿真实例
图5-14 同步发电机模块的参数设置
第五章MATLAB在电力系统故障分析 中的仿真实例
图5-15 升压变压器模块的参数设置
第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
6)Transition status和Transition times用来设置转换状态和转换时间; 其中,Transition status表示故障开关的状态,通常用“1”表示闭合, “0”表示断开;Transition times表示故障开关的动作时间;并且 每个选项都有两个数值,而且它们是一一对应的。 7)Snubbers resistance和snubbers Capacitance用来设置并联缓冲电 路中的过渡电阻和过渡电容。 8)Measurements 用来选择测量量。
图5-16 利用Powergui模块的潮流计算和电机初始化窗口计算初始参数
第五章MATLAB在电力系统故障分析 中的仿真实例
•5.3 单相短路故障仿真
•当网络元件只用电抗表示时,不对称短路的序网络方程
第五章MATLAB在电力系统故障分析 中的仿真实例
12脉波整流电路MATLAB_Simulink仿真及谐波分析
图 5 移相 30°串联 2重联结电路电流波形
将 iA 进行傅里叶分析 ,展开见式 (1)
iA
=
43 π
Id
[
sinωt
-
1 11
sin11ωt
-
1 13
sin13ωt
+
1 sin23ωt + 1 sinωt -
23
25
…
=
43 π Id
sinωt
+
∑ 4 3
π
Id
n = 12k ±1
(-
1) i sinnωt
12 脉动整流 电路 的与 6 脉 动整 流电路 的 THD (谐波失真 )对比见图 6。
4 结论
从以上分析可以看出 ,采用 12脉波整流的联 结方法可以很好地抑制 6脉波整流电路中某些特 定次数的高次谐波 ,有效的提高系统的功率因数 , 因此在大容量整流电路中特别是在钢厂电力系统 中有着重要的应用 。
摘 要 :以 12脉波整流电路为研究对象 ,利用 M atlab2Simulink建立模型对其进行仿真 ,并对其产生谐波电流 进行分析和计算 ,阐述了其消谐原理 。并将其与 6脉波整流电路进行了分析对照 ,证明了 12脉波整流电路消 谐的有效性 。 关键词 :整流装置 ;谐波 ;谐波失真 ;仿真 作者简介 :张文斌 ,从事机电工程与自动化研究 。 中图分类号 : TM762 文献标识码 : A 文章编号 : 100129529 (2008) 0420070203
整流变压器一次侧a2之和其波形见图5c30串联2重联结电路电流波形11sin11t13sin13t23sin23t25sintth17th19th谐波因相互抵消而被消除a相电流只含有12k1次谐波电流可以消除6脉动整流电路中的7等次数的谐波大大减少了电网中的谐波含量其与6脉动整流电路中的各次谐波幅值对比见表16脉动与12脉动整流电路各次谐波含量对比harmonics1113171923251412pluse1712脉动整流电路的与脉动整流电路的thd谐波失真对比见图612脉动与6脉动整流电路的thd对比由仿真波形和表1的对比关系看出由于采用了移相变压器th17th19th谐波相互抵消只剩下11th13th23th25th谐波相比6脉动整流电路而言12脉动整流电路可以很好的抑制某些特定次数的谐波同时由图6可得12脉动较6脉动的谐波失真更小12脉动整流电路的优势更为明显
基于matlab电力系统谐波抑制的仿真研究
电力系统谐波抑制的仿真研究目 录1 绪论……………………………………………………………………………1.1 课题背景及目的…………………………………………………………1.2国内外研究现状和进展…………………………………………………1.2.1国外研究现状 ……………………………………………………1.2.1国内研究现状 ……………………………………………………1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究………………………………………………2.1 谐波的基本概念…………………………………………………………2.1.1 谐波的定义………………………………………………………2.1.2谐波的数学表达…………………………………………………2.1.3电力系统谐波标准…………………………………………………2.2 谐波的产生………………………………………………………………2.3 谐波的危害和影响………………………………………………………2.4 谐波的基本防治方法……………………………………………………2.5无源电力滤波器简述……………………………………………………2.6 有源电力滤波器介绍……………………………………………………2.6.1 有源滤波器的基本原理.………………………………………2.6.2 有源电力滤波器的分类.………………………………2.7并联型有源电力滤波器的补偿特性……………………………………2.7.1谐波源…………………………………………………………2.7.2有源电力滤波器补偿特性的基本要求……………………………2.7.3影响有源电力滤波器补偿特性的因素……………………………2.7.4并联型有源电力滤波器补偿特性………………………………2.8 谐波源的数学模型的研究………………………………………………2.8.1 单相桥式整流电路非线性负荷…………………………………2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法……………………………………………3.1谐波检测的几种方法比较……………………………………………3.2三相电路瞬时无功功率理论……………………………………………3.2.1瞬时有功功率和瞬时无功功率………………………………………3.2.2瞬时有功电流和瞬时无功电流………………………………………3.3 基于瞬时无功功率理论的p q -谐波检测算法.……………………3.4基于瞬时无功功率理论的p q i i -谐波检测法.……………………4并联有源电力滤波器的控制策略……………………………………………4.1并联型有源电力滤波器系统构成及其工作原理…………………………4.2并联有源电力滤波器的控制研究.………………………………4.2.1并联有源电力滤波器直流侧电压控制……………………4.2.2有源电力滤波器电流跟踪控制技术……………………………4.2.2.1 PWM 控制原理…………………………………………4.2.2.2滞环比较控制方式…………………………………………4.2.2.3三角波比较方式…………………………4.3有源电力滤波器的主电路设计 …………………………………………4.3.1直流侧电容量的选择.…………………………………………4.3.2直流侧电压的选择………………………………………5 有源电力滤波器仿真分析…………………………………………5.1 仿真电路及主要参数.…………………………………………5.2 仿真结果及分析.………………………………………………6 总结.………………………………………………………………1 绪论1.1课题背景及目的随着国民经济的发展和人们生活水平的提高,电力电子产品广泛地应用于工业控制领域,用户对电能质量的要求也越来越高,谐波问题一直被作为最突出的问题之一而受到广泛的关注。
基于matlab的低压电力系统谐波检测方法仿真研究.docx
1 前言随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。
它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行[1]。
国际上公认的谐波含义为:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。
它明确了谐波次数n必须是一个正整数。
由于谐波是其基波的整数倍,故也常称为高次谐波。
高次谐波产生的根本原因是电力系统中某些设备和负荷的非线性特性,即所加的电压和产生的电流不成线性关系而造成的波形畸变。
造成系统正弦波形崎变、产生高次谐波的设备和负荷称为高次谐波源或谐波源[2]。
一切非线性的设备和负荷都是谐波源。
当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的谐波能量,使系统正弦波形畸变,产生谐波。
谐波源产生的谐波与其非线性有关。
当前,电力系统的谐波源按其非线性特性分主要有三类[3]:(1)电磁饱和型:各种铁芯设备,如变压器、电抗器等,其磁饱和特性呈现非线性。
(2)电子开关型:主要为各种交直流换流设备装置(整流器、逆变器)以及双向晶闸管可控开关设备等,在化工、冶金、电气轨道等大量工矿企业及家用电器中广泛使用;在系统内部,则如直流输电中的整流阀和逆变阀等,其非线性呈现交流波形的开关切合和换向特性。
(3)电弧型:各种炼钢电弧炉在熔化钢铁期间以及交流电弧焊接机在焊接期间,其电弧的点燃和剧烈变动形成的高度非线性,使电流不规则的波动,其非线性呈现电弧电压与电弧电流不规则的、随机变化的伏安特性。
由于电力系统施加于负荷的电压基本不变,谐波源负荷通过从电力系统取得一定的电流作功,该电流不因系统外界条件和运行方式而改变,同时谐波源固有的非线性伏安特性决定了电流波形的畸变,使其产生的谐波电流具有一定的比例,因此非线性负荷一般都为谐波电流源向系统注入一定的谐波电流。
Matlab在电力系统仿真和优化中的应用
Matlab在电力系统仿真和优化中的应用一、引言电力系统作为现代社会不可或缺的基础设施之一,对于国家经济的发展和人民生活的便利起着至关重要的作用。
随着电力系统规模的不断扩大和电力系统复杂性的增加,如何进行有效的电力系统仿真与优化成为了一个重要的研究领域。
Matlab作为一种功能强大的科学计算软件,在电力系统仿真和优化中有着广泛的应用。
二、Matlab在电力系统仿真中的应用1. 电力系统建模电力系统仿真的第一步是对电力系统进行建模。
在Matlab中,可以使用各种电力系统建模工具箱,如电力系统工具箱(Power System Toolbox)、模糊逻辑工具箱(Fuzzy Logic Toolbox)等来进行各种电力系统元件的建模。
通过这些工具箱,可以建立各种电力系统模型,如发电机、输电线路、变压器等,并对其进行参数设置和连接。
2. 电力系统稳定性分析电力系统稳定性是电力系统运行的基本要求之一。
在Matlab中,可以使用电力系统工具箱进行电力系统稳定性分析。
该工具箱提供了各种稳定性分析方法,如动态稳定性分析、静态稳定性分析等。
通过对电力系统的各种稳定性指标进行计算和分析,可以评估电力系统的稳定性,并采取相应的措施进行调整和优化。
3. 电力系统潮流计算电力系统潮流计算是对电力系统中各个节点电压和电流进行分析和计算的过程。
在Matlab中,可以使用电力系统工具箱进行电力系统潮流计算。
该工具箱提供了各种潮流计算方法,如牛顿-拉夫逊法(Newton-Raphson method)、高斯-赛德尔法(Gauss-Seidel method)等。
通过对电力系统的潮流进行计算和分析,可以评估系统中各个节点的电压和功率,帮助系统运行人员进行决策和调整。
三、Matlab在电力系统优化中的应用1. 电力系统调度优化电力系统调度优化是指通过优化方法对电力系统的发电机出力、输电线路负荷分配等进行调整,使得发电成本最小、输电损耗最小、电压稳定性最好等目标得到最佳满足的过程。
211133640_基于MATLAB_的电网谐波和无功补偿控制策略研究
能源与环境工基于MATLAB的电网谐波和无功补偿控制策略研究吴思敏(南宁供电局广西南宁530000)摘 要:针对谐波和无功产生的原因及其危害,引出有源电力滤波器用来补偿谐波和无功的趋势,推导出了有源电力滤波器的数学模型,进而对谐波和无功电流的有效检测方法进行了深入地探究。
通过给出的PI+重复控制器的控制框图,结合以上研究,在MATALB中的simulink及s-function函数中搭建整个系统的仿真模型并进行了理论验证,仿真结果表明,该方法具有良好的动态响应速度,补偿效果良好。
关键词:电力系统有源电力滤波器仿真模拟谐波和无功补偿中图分类号:T M76文献标识码:A文章编号:1674-098X(2022)10(c)-0147-06Research on Control Strategy of Harmonic and Reactive PowerCompensation Based on MATLABWU Simin( Nanning Power Supply Bureau, Nanning, Guangxi Zhuang Autonomous Region, 530000 China ) Abstract: In view of the causes and hazards of harmonic and reactive power generation, the tendency of active power filter to compensate harmonic and reactive power is derived, and the mathematical model of active power filter is derived. Furthermore, the effective detection methods of harmonic and reactive current are deeply explored.Through the control block diagram of the PI+repetitive controller given, combined with the above research, the simulation model of the whole system is built in the simulink and s-function functions in MATLAB and theoretical verification is carried out. The simulation results show that the method has good dynamic response speed and good compensation effect.Key Words: Power system; Active power filter; Matlab simulation; Harmonic and reactive power compensation众所周知,电力系统谐波[1]和无功主要来源于电弧炉、变压器、电力电子装置等电网的非线性负载。
基于Matlab的加窗FFT电力系统谐波分析
基于Matlab的加窗FFT电力系统谐波分析目录摘要: (1)1绪论............................................................................................. 错误!未定义书签。
1.1课题背景、研究意义....................................................... 错误!未定义书签。
1.2 谐波的危害与来源.......................................................... 错误!未定义书签。
1.2.1 谐波来源................................................................... 错误!未定义书签。
1.2.2 电力系统谐波的危害 (3)1.3 谐波检测.......................................................................... 错误!未定义书签。
1.4 谐波的标准与指标.......................................................... 错误!未定义书签。
1.5 国内外关于谐波的研究现状 (5)2谐波分析测量............................................................................. 错误!未定义书签。
2.1 傅里叶级数与系数.......................................................... 错误!未定义书签。
2.2 傅里叶级数的复指数形式.............................................. 错误!未定义书签。
MATLAB在电力系统仿真与优化中的应用
MATLAB在电力系统仿真与优化中的应用摘要:本文主要探讨了MATLAB在电力系统仿真与优化中的应用。
电力系统是一个复杂的工程系统,需要准确的建模和可靠的仿真来进行优化设计,以确保系统的稳定运行和高效运转。
MATLAB作为一种强大的数学建模和仿真工具,在电力系统领域有着广泛的应用。
本文通过简要介绍MATLAB的基本功能和特点,然后详细讨论了它在电力系统建模、仿真和优化中的应用。
最后,展望了未来MATLAB在电力系统领域可能的发展方向。
第一部分: MATLAB的基本功能和特点1.1 MATLAB的概述MATLAB是一种数学建模和仿真软件,最早于1970年由美国MathWorks公司推出。
它具有强大的数学计算和图形绘制功能,可以用于数值计算、符号计算、数据可视化等方面。
MATLAB的主要特点包括用户友好的界面、丰富的工具箱、庞大的用户社区等。
1.2 MATLAB在电力系统仿真中的优势MATLAB具有广泛的应用领域,电力系统仿真是其中之一。
相比于其他仿真工具,MATLAB在电力系统仿真中具有以下优势:(1) 灵活性和可扩展性: MATLAB提供了丰富的工具箱和开发包,使得用户可以根据具体需求自定义建模和仿真模块,具有较高的灵活性和可扩展性。
(2) 全面的数学和信号处理功能: 电力系统仿真需要进行复杂的数学计算和信号处理,MATLAB提供了丰富的数学和信号处理函数,方便用户进行各种复杂计算。
(3) 直观的图形绘制功能: MATLAB具有强大的图形绘制功能,可以直观地展示电力系统的仿真结果,帮助用户进行结果分析和决策。
(4) 丰富的仿真工具箱: MATLAB提供了许多专门用于电力系统仿真的工具箱,如Power System Toolbox、SimPowerSystems等,简化了复杂的电力系统建模和仿真过程。
第二部分: MATLAB在电力系统建模中的应用2.1 电力系统建模的重要性电力系统是由发电机、变压器、输电线路等组成的复杂系统,准确的建模是优化系统设计和运行的基础。
基于MATLAB的变频器谐波抑制的仿真研究(下)
第三章变频器谐波对电网和电动机的影响3.1 变频器对电网的影响3.1.1 变频器输入谐波对电网的影响随着变频器的应用越来越广泛,变频调速系统所占电网负荷也愈来愈大,所以对电网产生的谐波危害也不容忽视。
变频器一般都大量使用了晶闸管或二极管等非线性电力电子元件,不管采用哪种整流方式,变频器从电网中吸取能量的方式均不是连续的正弦波,而是以脉动的断续方式向电网索取电流,这种脉动电流和电网的沿路阻抗共同形成脉动电压降叠加在电网的电压上,使电压发生畸变,经傅立叶分析可知,这种非同期正弦波电流是由于频率相同的基波和频率大于基波频率的谐波组成。
变频器等谐波源设备接入电网后,会向电网注入谐波电流,谐波电流在电网中产生谐波电压,谐波电压叠加在在正弦基波上,通过电网的传递,谐波会影响到整个电网。
主要体现在以下几方面:(l)降低电网电力质量谐波使电网电压、电流波形发生畸变,可能造成中性线电流升高,甚至超过相线电流,可能造成线路过载、发热。
谐波电流、电压必然产生有功消耗和无功消耗,增加线路压降,降低电网效率。
(2)影响自动装置,威胁安全运行线路中电流、电压受谐波影响,不但波形畸变,电流、电压值也会发生变化,导致第二章中高压变频器对电网和电动机的影响测量和计量不准确,很有可能造成电网保护误动或拒动,给电网安全运行留下隐患。
3.1.2 变频器输入侧谐波抑制方法解决谐波污染有两种办法:一是装设谐波补偿装置来补偿谐波,这对各种谐波源都适用。
二是对电力电子装置本身进行改造。
采用产生谐波电流较小的变频器,使其不产生谐波,且功率因数可控制为1。
谐波抑制具体方法如下:(1)谐波滤波装置的传统方法就是采用LC滤波器,既可补偿谐波,又可补偿无功功率,且结构简单,一直被广泛使用,但其存在诸多问题。
谐波抑制的另一个趋势是采用有源电力滤波器,其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流中只含有基波分量。
MATLAB仿真的谐波治理方法的探讨
基于MAT LAB仿真的谐波治理方法的探讨王琮泽1 王春光2 杨 佳1 魏立明1(1.吉林建筑工程学院,吉林长春 130021; 2.空军航空大学航空理论系,吉林长春 130022)【摘 要】随着智能建筑及智能小区的迅速发展,电子类电器负荷比重逐渐增大,谐波污染影响日趋严重。
由于谐波源负荷单个容量小,数量多、分布广,尚未引起足够的重视,亦无成熟的防治办法、但这类谐波负荷增长迅猛,其污染影响已不容忽视,采取必要的治理措施已是必然。
针对楼宇电气系统的特点,本文采用了一种混合补偿器进行建筑电气谐波治理的方案,提出控制策略。
并且在此基础上利用M AT LAB提供的仿真平台建立了仿真模型,仿真结果表明所提出的补偿方案有良好的滤波效果。
【关键词】谐波治理;有源电力滤波器;混合补偿法 中图分类号:TH132143文献标识码:A1 引 言近年来,智能建筑将向智能建筑群、智能街区、智能城市迅速发展,成为新的经济增长点,智能建筑也成为一个地区、一座城市、一个国家经济和科技实力的象征。
但是,智能建筑由大量的电气设备与电子设备等非线性负荷形成的谐波源,产生谐波和无功功率,对电力系统造成严重污染,使电能质量下降,不仅给智能建筑中的电气设备、电子设备及楼宇智能化系统带来严重的危害和不良影响,并且对智能建筑配电系统以外的电气与电子设备带来危害。
由谐波引发的各种事故和故障,给国民经济和生活造成巨大的损失。
虽然智能建筑技术和谐波抑制技术是当今国内外的研究热点,但对于智能建筑中谐波的危害和不良影响及治理问题没有受到足够的重视,目前已引起国内外有关学者的关注。
2 几种常见的谐波治理方法抑制谐波的总体思路有三个:(1)装置谐波补偿装置来补偿谐波;(2)对电力系统装置本身1;(3)在电网系统中采用适当的措施来抑制谐波[1]。
具体方法有以下几种:211 选用适当的电抗器(1)输入电抗器。
(2)串联直流电抗器[2]。
(3)输出电抗器(电机电抗器)。
MATLAB与电力系统仿真
三、仿真实施
使用MATLAB进行电力系统仿真的步骤如下:
1、导入Simulink模块:打开MATLAB软件,导入Simulink模块,构建电力系 统的仿真模型。
2、建立模型:在Simulink环境中,根据前期准备的电力网络模型,建立相 应的仿真模型。
3、输入数据:将获取的电力系统数据作为输入引入到仿真模型中。
一、MATLAB与电力系统仿真概 述
MATLAB是一种广泛应用于工程和科学领域的计算软件,其内置的Simulink模 块可用于进行系统建模和仿真。电力系统仿真是指通过计算机模型模拟电力系统 的运行和性能,以便对系统进行优化设计和控制。MATLAB在电力系统仿真中的应 用已逐渐成为一种趋势,其优点在于可以快速、准确地对系统进行模拟和预测, 同时可以方便地修改和优化模型。
引言
电力系统潮流仿真是分析和优化电力系统运行的重要手段。通过对电力系统 潮流的仿真,可以有效地预测和规划电力系统的性能,提高电力系统的稳定性和 可靠性。MATLAB作为一种高效的数值计算和仿真软件,已在电力系统潮流仿真领 域得到了广泛应用。
相关技术综述
电力系统潮流仿真的相关技术包括网络拓扑分析、短路电流计算、电压稳定 分析等。网络拓扑分析是电力系统潮流仿真的基础,它通过对电力系统的拓扑结 构进行分析,为潮流计算提供基础数据。短路电流计算是电力系统潮流仿真的重 要组成部分,它用于计算系统在故障情况下的短路电流。电压稳定分析则是研究 电力系统电压稳定性的重要方法,通过对系统电压的监测和分析,可以有效地预 防电压崩溃的发生。
MATLAB与电力系统仿真
目录
01 一、MATLAB与电力系 统仿真概述
02 二、前期准备
03 三、仿真实施
04 四、结果分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用matlab仿真对电力系统谐波治理
摘要:随着国民经济和科学技术的蓬勃发展,冶金、化学等现代化大工业和电气化铁路的发展,电网负荷加大,电力系统中的非线性负荷(硅整流设备、电解设备、电力机车)及冲击性、波动性负荷(电弧炉、轧钢机、电力机车运行)使得电网发生波形畸变(谐波)、电压波动、闪变、三相不平衡,非对称性(负序)和负荷波动性日趋严重。
电能质量的下降严重地影响了供用电设备的安全、经济运行,降低了人民的生活质量。
所以在世界各国都十分重视电能质量的管理。
引言
新兴负荷的出现对电能质量的要求更高电能质量问题逐渐引起普遍重视,主要原因如下:
(1)大量基于计算机的控制设备和电子装置投入使用,其性能对电压质量非常敏感。
(2)调速电机和无功补偿装置,导致系统谐波水平不断上升,从而对电力系统的容量和安全运行产生影响。
(3)电力用户不断增长的电能质量意识迫使电力公司提高供电质量,设法解决诸如电压中断,电压跌落和开关暂态等电能质量问题。
衡量电能质量的主要指标是电网频率和电压质量。
频率质量指标为频率允许偏差;电压质量指标包括允许电压偏差、允许波形畸变率(谐波)、三相电压允许不平衡度以及允许电压波动和闪变。
国家技术监督局已公布了上述电能质量的五个国家标准。
电能质量的具体指标。
1.电网频率我国电力系统的标称频率为50Hz,GB/T15945-1995《电能质量一
电力系统频率允许偏差》中规定:电力系统正常频率偏差允许值为±0.2Hz,当系统容量较小时,偏差值可放宽到±0.5Hz,标准中没有说明系统容量大小的界限。
在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。
实际运行中,从全国各大电力系统运行看都保持在不大于±0.1HZ范围内。
2.电压偏差GBl2325-90《电能质量一供电电压允许偏差》中规定:35kV及以上供电电压正负偏差的绝对值之和不超过额定电压的10%;10kV及以下三相供电电压允许偏差为额定电压的土7%;220V单相供电电压允许偏差为额定电压的7%~10%。
标准中供电电压为供电部门与用户产权分界处的电压或由供用电协议所规定的电能计量点的电压。
确定允许电压偏差是一个综合的技术经济问题,允许的电压偏差小,有利于用电设备的安全、经济运行,但为此要在电网中增添更多的无功电源和调压设备,需要更多的投入。
反过来如果扩大用电设备对电压的适应范围,提高设备在这方面的性能,往往也要增加设备投资。
综合国外标准和我国国情制定的供电电压允许偏差的国家标准,能满足绝大部分用电设备的运行要求。
3.三相电压不平衡GB/T15543-1995《电能质量一三相电压允许不平衡度》中规定:电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%。
标准还规定对每个用户电压不平衡度的一般限值为1.3%。
但是国标规定的三相电压不平衡度的允许值及计算、测量和取值方法只适用于电力系统正常运行方式下在电网公共连接点由负序分量引起的电压不平衡。
因此故障方式引起的不平衡(例如单相接地、两相短路故障等)和零序分量引起的不
平衡均不在考虑之列。
由于电网中较严重的不平衡往往是由于单相或三相不平衡负荷所引起的,因此标准衡量点选在电网的公共连接点,以便在保证其它用户正常用电的基础上,给干扰源用户以最大的限值。
值得注意的是国标在确定三相电压不平衡度指标时用95%概率作为衡量值。
也就是说,标准中规定的"正常电压不平衡度允许值2%"是在测量时间95%内的限值,而剩余5%时间可以超过2%,过大的"非正常值"时间虽短,也会对电网和用电设备造成有害的干扰,特别是对有负序起动元件的快速动作的继电保护和自动装置,容易引起误动。
因此标准中对最大的允许值作了"不得大于4%的规定。
4.公用电网谐波GB/T14549--93《电能质量-公用电网谐波》中规定:6~220kV 各级公用电网电压(相电压)总谐波畸变率是0.38kV为5.0%,6~10kV为4.0%,35~66kV为3.0%,110kV为2.0%;用户注入电网的谐波电流允许值应保证各级电网谐波电压在限值范围内,所以国标规定各级电网谐波源产生的电压总谐波畸变率是:0.38kV为2.6%,6~10kV为2.2%,35~66kV为1.9%,110kV为1.5%。
对220kV电网及其供电的电力用户参照本标准110kV执行。
5.波动和闪变GBl2326--如《电能质量一电压允许波动和闪变》中规定:在公共供电点的电压波动允许值:10kV及以下为2.5,35~110kV为2%,220kV及以上为1.6%。
电压闪变值主要是表征人眼对灯闪主观感觉的参数。
国标推荐的闪变干扰的允许值,对照明要求较高的白炽灯负荷为0.4%,对一般性照明负荷为0.6%
影响电能质量的原因各种各样,大体可以分为:
(1)内因。
系统本身接有电弧炉、整流器、单相负荷、大功率电动机等干扰性负荷。
这些负荷对电网产生负面影响,如谐波、无功冲击、负序等,而且这些负
面影响可能通过公共连接点(PCC)波及其它终端用户。
因此,系统中必须安装相关装置,以及时缓解这些问题,而且还应根据电能质量评估体系,利用经济杠杆约束此类用户对电能质量的影响。
(2)外因。
雷电、外力破坏、树枝影响、配电设备故障、电容器投切、线路切换等都可能干扰系统,造成断电或电压变动,甚至影响到相邻线路,导致有害影响蔓延。
现在采取的措施,一是减少故障发生的次数和改变排除故障的方式,目前配电系统中的线路主保护是电流保护,该保护最大的缺陷是线路中相当大部分区域上的故障不能无时延地予以切除,此外即使无时延保护,从检测出故障到断路器开断故障,最快也需要3~6 个周波。
若是永久性故障,多次重合闸则导致电压的不断波动。
二是降低装置对电能质量问题的敏感性,主要是用户侧在敏感负荷或关键负荷处安装补偿装置,这种方法对单个负荷可有直接和明显的效果,但是受限于补偿装置的容量和价格,应用范围也受到限制。
电能质量分析方法
时域仿真方法在电能质量分析中的应用最为广泛,其最主要的用途是利用各种时域仿真程序对电能质量问题中的各种暂态现象进行研究。
目前较通用的时域仿真程序有EMTP,EMTDC,NETOMAC等系统暂态仿真程序和SPICE,PSPICE,SABER 等电力电子仿真程序。
采用时域仿真计算的缺点是仿真步长的选取决定了可模仿的最大频率范围。
因此必须事先知道暂态过程的频率覆盖范围。
此外,在模仿开关的开合过程时,还会引起数值振荡。
本次采用的是利用matlab中的sumlink对电力系统中谐波源仿真与治理
以三次谐波为例:
1.各元件的图标及参数:
交流电压源:幅值311 频率50hz
谐波源:幅值100A 频率150hz 产生3次谐波
RL并联支路:充当输电线路
谐波过滤器:L=1.1e-3 H,C=1e-3F
负载:额定电压220V 50hz
测量仪器:示波器电压电流表
2.利用上述器件及所学电路知识搭建如下电路: 治理谐波前:
示波器显示
观察可知此时负载侧电压已经被三次谐波干扰
3.利用LC谐振电路对三次谐波进行消除:
根据公式错误!未找到引用源。
求出LC=1.1e-6,所以选取L=1.1e-3,C=1e-3 原理图如下:
示波器显示:
通过前后两次示波器比较可以看出经过LC谐振电路滤波之后电压由原来掺杂三次谐波变为比较完美的正弦波,负载侧电流也变为正弦波,谐波治理成功。
电本0826班。