初二数学上册知识点总结

合集下载

初二上册数学知识点总结

初二上册数学知识点总结

初二数学上册知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

2024年数学初二上册知识点总结

2024年数学初二上册知识点总结

2024年数学初二上册知识点总结一、整数运算1. 整数的概念及性质:正整数、负整数、零、相反数、绝对值2. 整数的加法、减法、乘法和除法:同号相加减取绝对值、异号相加减取符号,乘除法遵循相应的运算规则3. 科学计数法:含有乘除法的整数运算,将数转换为科学计数法进行运算,最后将结果还原为正常的数二、有理数1. 有理数的概念及性质:整数和分数的统称,有理数的四则运算法则,有理数的大小比较2. 分数的加减法:通分后进行相应的运算,结果化简,最后将答案化简为最简分数3. 分数的乘除法:分数的乘法将两个分子分母相乘,结果化简;分数的除法将除数与被除数互换,然后进行分数的乘法运算4. 有理数的乘方运算:正数的乘方的运算规则,负数的乘方的运算规则,0的乘方的运算规则三、代数式和方程1. 代数式:字母和数字的组合,其中字母表示某个数或未知数,有系数、常数项和次数等概念2. 简单方程:方程的解的概念,将等式两边的项化简成等式,将未知数从式中解出来,验证是否为解3. 两边加减法求解简单方程:将含有未知数的项移到等式的一边,常数项移到另一边,进行相应的计算4. 两边乘除法求解简单方程:将含有未知数的项移到等式的一边,常数项移到另一边,进行相应的计算四、平方根和三角形1. 平方根的概念及性质:正数和负数的平方根的定义,平方根的性质2. 平方根的运算:用开方的方法求平方根,化简平方根表达式,说明平方根运算的一些性质3. 直角三角形和勾股定理:直角三角形的概念及性质,勾股定理的概念及性质,三角形的边与角的关系4. 三角形的面积:三角形面积的计算公式,计算三角形面积的一些特殊情况五、比例和百分数1. 比例的概念及性质:比例的定义,比例的简化和扩大,确定比例中的未知数2. 比例的运算:已知比例中的三个数,可以求出缺少的一个数;给出三个数中的两个比例关系,化简比例关系3. 百分数的概念及性质:百分数的定义,百分数的运算法则,百分数与实数之间的转换4. 比例和百分数的应用:用百分数表示比例,解决实际问题,计算和表示百分数六、平面图形的认识1. 平面图形的分类:四边形的分类,三角形的分类,其它的平面图形的命名和特点2. 正方形和长方形:正方形和长方形的性质,计算正方形和长方形的面积和周长3. 三角形的性质:三角形的内角和定理,三角形的外角和定理,三角形的内外角关系4. 圆的概念及性质:圆的定义,圆的直径、半径、弧、弦、切线和弧度的关系七、统计与概率1. 统计调查:统计调查的方法,问卷调查的设计和实施,分析统计数据2. 样本和总体:样本的选择和抽样,样本和总体的关系,样本和总体的统计指标的抽样分布3. 概率的概念及性质:概率的定义,概率的性质,概率的计算4. 独立事件和事件的组合:独立事件的概念,事件的组合,事件发生的概率这些知识点涵盖了初二上册数学的重要内容,掌握这些知识将有助于你在学习数学时更加得心应手。

八上数学知识点总结初中

八上数学知识点总结初中

八上数学知识点总结初中一、实数1. 有理数与无理数:理解有理数可以表示为两个整数的比,无理数则不能表示为这种形式。

2. 实数的运算:掌握加、减、乘、除等基本运算规则,了解分配律、结合律和交换律。

3. 绝对值:理解绝对值的概念,即一个数距离0的距离,掌握绝对值的计算方法。

4. 估算:学会对无理数进行近似计算,使用四舍五入法进行估算。

二、代数式1. 单项式与多项式:理解单项式是由数字和字母相乘组成的,多项式则是单项式的和。

2. 同类项:识别并合并同类项,即具有相同字母和相同指数的项。

3. 代数式的加减:掌握代数式加减的运算规则,注意去括号和合并同类项。

4. 代数式的乘除:理解单项式与多项式相乘的方法,以及多项式除以单项式的运算过程。

三、方程与不等式1. 一元一次方程:解一元一次方程,掌握移项、合并同类项、系数化为1的方法。

2. 二元一次方程组:了解代入法和消元法解二元一次方程组。

3. 不等式的概念:理解不等式的含义,掌握不等式的表示方法。

4. 一元一次不等式:解一元一次不等式,注意在解集表示中使用大于、小于符号。

5. 一元一次不等式组:解一元一次不等式组,学会找到不等式组的解集。

四、几何1. 平行线与角:理解平行线的性质,掌握同位角、内错角和同旁内角的概念。

2. 三角形的基本概念:了解三角形的分类,包括等边、等腰和直角三角形。

3. 三角形的性质:掌握三角形的内角和定理,了解三角形的中位线定理。

4. 四边形:学习矩形、平行四边形、菱形和正方形的性质和判定方法。

5. 圆的基本性质:掌握圆的基本概念,包括圆心、半径、直径、弦、弧等。

6. 圆的性质:理解圆周角定理,掌握切线的性质和判定。

五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。

2. 频数与频率:学会计算频数和频率,理解它们之间的关系。

3. 概率的初步认识:理解概率的定义,掌握概率的计算方法。

4. 简单事件的概率:计算简单事件发生的概率,了解概率的加法原理。

初二数学上册知识点总结归纳

初二数学上册知识点总结归纳

初二数学上册知识点总结归纳一、整数和有理数1. 整数运算:加法、减法、乘法、除法2. 整数的性质:相等性、大小关系、相反数、绝对值3. 有理数的性质:相等性、大小关系、相反数、绝对值4. 有理数的加法和减法:同号相加、异号相减5. 有理数的乘法和除法:同号得正、异号得负二、代数式与方程1. 代数式的概念:字母、数字和运算符号的组合2. 代数式的运算:加法、减法、乘法、除法3. 方程的概念:等号两边的代数式4. 方程的解:使方程成立的值5. 一元一次方程:解一次方程的方法6. 一元一次方程的应用:问题的转化和解答三、图形的认识1. 图形的分类:平面图形和立体图形2. 平面图形的名称和性质:点、线、线段、射线、角、三角形、四边形、多边形、圆3. 立体图形的名称和性质:球体、圆柱体、圆锥体、棱锥体、棱柱体四、相交线与平行线1. 相交线的性质:相互垂直、补角相等、同位角相等、对顶角相等2. 平行线的判定:相交线与平行线的性质3. 平行线的性质:对应角相等、内错角相等、同位角相等4. 直线与平面的关系:直线与平面有一个公共点,直线与平面没有公共点五、数的倍数与约数1. 数的倍数的概念:一个数除以另一个数,商是整数2. 数的倍数的性质:公倍数、最小公倍数3. 数的约数的概念:能整除给定数的数4. 数的约数的性质:公约数、最大公约数六、四则运算与算式1. 公式与算式的概念:有运算符号和等号的式子2. 算式的运算法则:先乘除后加减、先括号后计算3. 利用四则运算解决实际问题七、角与直线的关系1. 角的概念:角的三要素、角的分类2. 角的比较与度量:角的大小比较、度量角的单位3. 角的平分线和角的三等分线4. 直线的分类:与角有关的直线、与平行线有关的直线八、方形与平行四边形1. 方形的性质:四个角都是直角的四边形2. 平行四边形的性质:对边平行、对边相等、对角相等3. 平行四边形的判定:各边的长度、对角线的关系4. 平行四边形的性质应用九、单位换算与量的计算1. 常用单位的换算:长度、面积、体积、质量、时间2. 运用单位换算解决实际问题3. 人口密度、文明程度等综合计算十、比例与比例应用1. 比例的概念:比值相等的关系2. 解决比例问题的方法:分离两比值、求未知数3. 按比例象形、小学生由高到低站队、分数排数等应用4. 面积比例、速度比例、比例尺及其应用十一、数轴与大小关系1. 数轴的概念:用线段表示数及其大小2. 数轴上点的坐标:规定数轴上一个点的坐标3. 数轴上的加法和减法:根据坐标的变化进行运算4. 数轴上的倍数:根据坐标的变化进行运算十二、综合与实践1. 基本依据:理论与实际结合2. 实际问题:通过解答实际问题,理解和应用所学知识通过对初二数学上册的知识点进行总结归纳,可以加深对这些知识的理解和掌握。

初二数学上学期知识点总结优秀6篇

初二数学上学期知识点总结优秀6篇

初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。

③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。

7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

初二数学上册知识点汇总(文库)

初二数学上册知识点汇总(文库)

初二数学上册必背知识点默写版+解析版专题01三角形(解析版)知识点1:三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.细节剖析:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.细节剖析:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,细节剖析:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.细节剖析:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.知识点2:三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.细节剖析:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.知识点3:三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.知识点4、:、多边形及有关概念1.多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.细节剖析:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.细节剖析:各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.细节剖析:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.知识点5:、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数).细节剖析:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.细节剖析(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.知识点6:、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.细节剖析:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.专题02全等三角形(解析版)知识点1:全等三角形的判定与性质知识点2:全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边知识点3:角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等知识点4:全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法. 1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.专题03轴对称(解析版)知识点1:轴对称图形1.轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点2:轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.知识点3:轴对称与轴对称图形的性质1.轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点4:线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.知识点5:对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.知识点6:用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.专题04整式的乘法与因式分解(解析版)知识点1:幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点2:整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点3:乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点4:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.专题05分式(解析版)知识点1:分式的有关概念及性质1.分式一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M 为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.知识点2:分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方。

初二数学上册知识点归纳

初二数学上册知识点归纳

初二数学上册知识点归纳1. 数的运算- 有理数的四则运算,包括加、减、乘、除。

- 绝对值的计算方法。

- 有理数的乘方和开方。

- 有理数大小比较的方法。

2. 代数基础- 代数式的基本概念,包括单项式、多项式、同类项等。

- 代数式的加减运算法则。

- 代数式的乘除运算法则。

- 整式的乘法公式,如平方差公式和完全平方公式。

3. 一元一次方程- 一元一次方程的概念和解法。

- 一元一次方程的应用问题,如行程问题、工程问题等。

- 一元一次方程的解的检验方法。

4. 一元一次不等式- 一元一次不等式的概念和解法。

- 一元一次不等式的解集表示方法。

- 一元一次不等式的应用问题。

5. 线段与角- 线段的性质,包括线段的和差、中点等。

- 角的概念,包括锐角、直角、钝角、平角等。

- 角度的表示方法,包括度、分、秒。

6. 三角形- 三角形的基本概念,包括三角形的边长、角度等。

- 三角形的分类,如等边三角形、等腰三角形、直角三角形等。

- 三角形的内角和定理。

- 三角形的外角定理。

7. 多边形- 多边形的基本概念,包括边数、顶点数等。

- 多边形的内角和定理。

- 多边形的外角和定理。

8. 圆- 圆的基本概念,包括圆心、半径、直径等。

- 圆的性质,如圆周角定理、圆心角定理等。

- 圆的周长和面积的计算公式。

9. 数据的收集与处理- 数据收集的方法,包括调查法、实验法等。

- 数据的整理,如制作条形图、扇形图等。

- 数据的分析,包括平均数、中位数、众数等的计算。

10. 概率初步- 概率的基本概念,包括随机事件、必然事件、不可能事件等。

- 概率的计算方法,如古典概型、几何概型等。

- 概率在实际问题中的应用。

初二数学上册知识点汇总

初二数学上册知识点汇总

初二数学上册知识点汇总(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a²-b²=(a+b)(a-b)a²+2ab+b²=(a+b) ²a²-2ab+b²=(a-b) ²如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a²-b²=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a²+2ab+b²和(a-b) ²=a²-2ab+b²反过来,就可以得到:a²+2ab+b² =(a+b) ²a²-2ab+b² =(a-b) ²这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a²+2ab+b²和a²-2ab+b²这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)×(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x² +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

初二数学上册知识点总结(共6篇)

初二数学上册知识点总结(共6篇)

初二数学上册知识点总结第1篇(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

实数知识点平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的`一个点来表示。

打好基础数学基础包括基础知识和基本技能。

基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。

基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。

技能等等。

只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。

初二数学上学期知识点总结(10篇)

初二数学上学期知识点总结(10篇)

初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。

掌握知识点有助于大家更好的学习。

问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。

初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。

教师和学生应参考具体的教材和教学大纲来确定学习重点。

八年级上册数学知识点

八年级上册数学知识点

八年级上册数学知识点
1. 数的性质
- 自然数、整数、有理数、无理数的概念和特征
- 常见数集及其元素的性质:自然数集、整数集、有理数集和实数集
- 数的比较和大小关系:大小判断、绝对值的概念和性质
2. 代数式与方程
- 代数式的概念和基本运算法则
- 一元一次方程的概念和解法:列方程、解方程的基本步骤,解的判断和检验,含有括号的方程等
- 解一元一次方程的应用题:简单的实际问题转化成一元一次方程
3. 几何图形
- 直线、射线、线段的概念及其表示方法
- 平行线、相交线和垂直线的判定方法
- 角的概念及其分类:锐角、直角、钝角、平角
- 三角形的概念和分类:直角三角形、等腰三角形、等边三角形
- 多边形的概念和分类:四边形、正多边形
- 圆的概念:圆心、半径、直径等
4. 数据与统计
- 数据的搜集与整理:频率表、频率分布直方图
- 数据的分析与应用:平均数、中位数、众数的概念和计算
- 折线图的绘制方法
5. 概率与统计
- 事件、样本空间和概率的概念
- 简单事件和复合事件的计算
- 使用频率和概率判断事件的发生可能性
6. 平面坐标系
- 平面直角坐标系:横轴、纵轴、原点、象限等概念
- 点的坐标表示和确定:横坐标、纵坐标
- 点在坐标系中的位置关系:同一直线上、同一平行线上等概念
7. 直线与平行线
- 直线的概念和性质:直线上的点、直线上的点的坐标表示
- 平行线与相交线的特点和性质
- 直线之间的位置关系:相互平行、相交、垂直等
以上是八年级上册数学的主要知识点。

希望对你的研究有所帮助!。

八年级上册数学总结知识点

八年级上册数学总结知识点

八年级上册数学总结知识点八年级上册数学知识点总结一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正数、负数和零。

- 无理数:无限不循环小数,如√2、π等。

2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。

- 减法:实数减法可以转化为加法,即a - b = a + (-b)。

- 乘法:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。

- 除法:除以一个数等于乘以这个数的倒数。

- 乘方:求一个数的幂,如a^n表示a的n次方。

3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。

- 平方根:一个数的平方根有两个,一个正数和一个负数。

4. 实数的性质和比较大小- 正实数大于0,负实数小于0。

- 两个负实数,绝对值大的反而小。

二、代数表达式1. 单项式- 单项式是由数字和字母的乘积组成的,如3x^2。

2. 多项式- 多项式是由若干个单项式通过加减法组成的,如2x^2 + 3x - 5。

3. 同类项- 同类项是指次数相同且字母相同的项,如2x^2和-5x^2是同类项。

4. 合并同类项- 将同类项的系数相加或相减,字母和次数不变。

5. 代数式的加减运算- 去括号法则:括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号。

三、方程与不等式1. 一元一次方程- 形如ax + b = 0的方程,其中a和b是已知数,x是未知数。

2. 二元一次方程- 形如ax + by + c = 0的方程,其中a、b和c是已知数,x和y是未知数。

3. 解一元一次方程- 通过移项、合并同类项、系数化为1等步骤求解。

4. 不等式- 用符号“>”、“<”、“≤”、“≥”连接的式子。

5. 不等式的解集- 不等式的解集是满足不等式的一切数值的集合。

6. 解一元一次不等式- 通过移项、合并同类项等步骤求解,注意在不等式两边同时乘以或除以同一个负数时,不等号的方向要改变。

八年级上册数学知识点归纳大全

八年级上册数学知识点归纳大全

八年级上册数学知识点归纳大全一、数与式1.数的整除:整除的定义、性质;0的整除性;素数与合数。

2.代数式:代数式的概念;代数式的运算法则(加、减、乘、除、乘方)。

3.一元一次方程:一元一次方程的定义;一元一次方程的解法(代入法、消元法、加减法)。

二、平面直角坐标系1.坐标与图形:平面直角坐标系的概念;原点、坐标、象限;点的坐标。

2.直线与坐标轴:直线的概念;直线的方程(点斜式、两点式、一般式);坐标轴与直线的关系。

3.坐标与图形:通过坐标表示点、直线、角;平面内的图形变换(平移、旋转、对称)。

三、三角形1.三角形的基本性质:三角形的内角和;三角形的外角和;三角形的角平分线;三角形的中线。

2.三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。

3.三角形的面积:三角形的面积公式(海伦公式、底乘高公式);三角形面积的应用。

四、整式的乘法与因式分解1.整式的乘法:同底数幂的乘法;积的乘方;幂的乘方与积的乘方。

2.整式的因式分解:因式分解的方法(提公因式法、公式法、分组法);因式分解的应用(解方程、求值)。

五、方程与函数1.一元一次方程:一元一次方程的性质;一元一次方程的解法(代入法、消元法、加减法)。

2.一元一次不等式:一元一次不等式的性质;一元一次不等式的解法(代入法、消元法、加减法)。

3.一次函数:一次函数的概念;一次函数的图像与性质;一次函数的应用。

4.反比例函数:反比例函数的概念;反比例函数的图像与性质;反比例函数的应用。

六、数据的整理与描述性统计1.数据的整理:数据的收集与整理(调查、实验、观察);数据的表示与呈现(表格、条形图、折线图)。

2.数据的描述性统计:平均数、中位数、众数;频数与频率;数据的分布(集中趋势、离散程度)。

七、几何图形初步1.图形的认识:基本图形的认识(点、线、面);基本图形的性质。

2.几何变换:图形的旋转;图形的对称(轴对称、中心对称、中心对称图形);图形的平移。

八年级上册数学知识点总结(热门14篇)

八年级上册数学知识点总结(热门14篇)

八年级上册数学知识点总结第1篇一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

第七章知识点1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的'整式方程叫做二元一次方程。

2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4、二元一次方程组的解二元一次方程组中各个方程的。

公共解,叫做这个二元一次方程组的解。

初二数学上学期知识点总结

初二数学上学期知识点总结

初二上学期数学知识点回顾分式知识要点 1. 分式的有关概念设A.B 表示两个整式. 如果B 中含有字母, 式子 就叫做分式. 注意分母B 的值不能为零, 否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式, 要进行约分化简2.分式的基本性质,M B M A B A ⨯⨯= MB M A B A ÷÷=(M 为不等于零的整式) 3. 分式的运算 (分式的运算法则与分数的运算法则类似).(异分母相加, 先通分);4. 零指数5. 负整数指数注意正整数幂的运算性质n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=⋅-+)(,)(),0(,可以推广到整数指数幂, 也就是上述等式中的m 、 n 可以是O 或负整数.6.解分式方程的一般步骤: 在方程的两边都乘以最简公分母, 约去分母, 化为整式方程.解这个整式方程. .验根, 即把整式方程的根代入最简公分母, 看结果是不是零, 若结果不是0, 说明此根是原方程的根;若结果是0, 说明此根是原方程的增根, 必须舍去.7、列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子, 找出相等关系, 列出方程;(4)解方程, 并验根, 还要看方程的解是否符合题意;(5)写出答案(要有单位)。

正比例、反比例第一象限(+, +), 第二象限(-, +)第三象限(-、-)第四象限(+, -);x 轴上的点的纵坐标等于0, 反过来, 纵坐标等于0的点都在x 轴上, y 轴上的点的横坐标等于0, 反过来, 横坐标等于0的点都在y 轴上,若两个点关于x 轴对称, 横坐标相等, 纵坐标互为相反数;若两个点关于y 轴对称, 纵坐标相等, 横坐标互为相反数;若两个点关于原点对称, 横坐标、纵坐标都是互为相反数。

八年级上册数学知识点汇总

八年级上册数学知识点汇总

八年级上册数学知识点汇总一、代数与函数1. 代数运算:加减乘除、加法交换律、结合律、分配律、简单的整式求值。

2. 解一元一次方程:原理是等式两边同时做相同的运算,消去未知数的系数和常数项,求得未知数的值。

3. 一次函数:y = kx + b 的标准式,斜率是 k,截距是 b。

4. 平面直角坐标系:确定点的位置,解决几何问题。

5. 平移、相似、对称、旋转等基本变换。

二、图形的初步认识1. 图形的基本概念:点、线、面等基本元素。

2. 基本图形的性质:三角形、四边形、圆等基本图形的内角和、面积、周长等性质。

3. 图形的相似:形状相同,大小不同;相似三角形的性质。

三、三角形的性质和计算1. 三角形的分类:按角度分为锐角三角形、直角三角形、钝角三角形;按边长分为等边三角形、等腰三角形、普通三角形。

2. 三角形重心、垂心、外心和内心:位置和计算公式。

3. 三角形的面积公式:海伦公式、正弦公式、余弦公式和面积公式。

四、列方程解几何问题1. 利用方程解几何问题:列方程、解方程,求出未知数。

2. 分析几何问题:确定已知量和未知量,列方程求解。

五、形状的运动1. 平移、相似、对称、旋转等基本变换。

2. 图形的运动:平移、相似、对称、旋转变换的概念和性质。

3. 图形的复合变换:多个变换连续作用的情况。

六、数学中的单位换算1. 长度单位的换算:米、厘米、毫米等常用单位的换算。

2. 面积单位的换算:平方米、平方厘米、平方毫米等常用单位的换算。

3. 容积单位的换算:立方米、立方厘米等常用单位的换算。

4. 质量、时间和速度单位的换算。

七、简单的概率统计1. 事件、样本空间和概率:事件发生的可能性,概率的定义和计算方法。

2. 相关概念:随机事件、独立事件、互不影响事件等相关概念。

3. 统计图表的制作和读取:折线图、条形图、饼图等常见图表的制作和读取方法。

以上是八年级上册数学知识点的汇总,这些知识点是数学学习中的基础,各位同学需要熟练掌握,才能更好地应对数学考试,完成数学作业。

初二上册数学知识点总结

初二上册数学知识点总结

初二上册数学知识点总结一、数的认识1.自然数、整数和普通分数2.数轴及其应用3.负数的引入4.数的倍数和因数5.最大公因数和最小公倍数6.实数及其性质二、代数式及字母表达式1.代数式及其实质2.字母的代表数和位置3.字母的代数运算三、一次函数1.自变量、因变量和函数的关系2.一次函数的概念及图象3.一次函数的性质四、平面图形1.点、线、面2.角及其分类3.三角形及其分类4.四边形及其分类5.平行四边形的性质6.五边形及其分类五、垂直1.垂直与平行2.平行线和相交线3.平行线的判定4.平行线性质5.平行线的位置关系六、多边形1.多边形的概念和命名规则2.正多边形3.边和角4.对称图形5.轴对称图形6.平行四边形的对角线7.多边形的内角和七、图形的平移1.平移的基本概念2.平移和向量的关系3.图形的平移4.向量的运算八、统计1.统计调查和基本步骤2.数据的整理和表示3.频数分布表4.频数分布直方图5.频数分布折线图九、函数1.函数的概念及记法2.函数的图象及性质3.函数的概念及记法4.函数的图象及性质5.函数的运算及性质十、平面直角坐标系1.直角坐标系及其概念2.图象和坐标的关系3.平面直角坐标系初二上册数学知识点总结一、数的认识1.自然数自然数是指0、1、2、3、4……这些正整数称为自然数,自然数是从小到大的排列,没有尽头。

2.整数和普通分数整数包括了:正整数1,2,3,4,.. 负整数-1,-2,-3…0 。

分数包括了:基本分数、带分数。

例:带分数的分数表示,例:3 1/5。

它是一个真分数,真分数的分子小于分母。

3. 数轴及其应用这里我们再讲数轴及其应用。

;(1)数轴的概念:数轴是一个用来表示数值的一条直线。

(2)数轴上各点的坐标:直线上任意点A到直线上选定点O的距离对应于有理数a。

(3)数轴上整数的位置:了解很多的知识点,想象数轴上整数的位置;练习排列,通过训练做到心中有底。

4. 负数的引入负数就如同热咖啡和冰咖啡一样不同。

初二数学上册知识点总结大全

初二数学上册知识点总结大全

初二数学上册知识点总结大全1. 整式与分式1.1 整式整式是由系数与字母的积以及常数的和差所组成的代数式,例如:3x2+4xy−5y+7其中3x2、4xy、−5y和7都是整式的一部分。

1.2 分式分式是以分数形式表示的代数式,即分子和分母都是整式,例如:$$ \\frac{3x^2+4xy-5y+7}{7x-5y-3} $$其中3x2+4xy−5y+7是分式的分子,7x−5y−3是分式的分母。

2. 方程与不等式2.1 方程的解法方程是指两个代数式相等,即f(x)=g(x),方程的解是指使等式成立的未知数值。

解方程的常用方法包括:•相加减消元法•合并同类项消元法•因式分解法•代入法•公式法2.2 不等式不等式是指两个代数式不相等,即f(x)eqg(x),例如2x+1>5。

不等式的解是指使不等式成立的未知数值。

解不等式时,需要注意以下几点:•对不等式两边同时乘以正数时,不等号方向不变;•对不等式两边同时乘以负数时,不等号方向会发生反转。

3. 数据与统计3.1 数据的处理在进行数据处理时,需要掌握以下概念:•频数:指某个数值在数据集中出现的次数;•相对频数:指某个数值的出现次数与数据总数的比值;•中位数:指将一组数据从小到大排序后,中间的那个数;•众数:指出现频率最高的数;•极差:指一组数据中最大值与最小值的差;•平均数:指所有数据的和除以数据的总数。

3.2 统计图统计图是对数据进行直观展示和分析的一种方式。

常见的统计图包括:•条形图:用条形的高度表示各个类别的频数或相对频数;•饼图:用扇形的占比表示各个类别的相对频数;•折线图:用折线表示数据的变化趋势。

4. 几何初步4.1 基本概念在几何初步中,需要掌握以下概念:•点:不具有长度、宽度、高度等物理量的基本图形;•直线:由无数个点共线而成的一条线;•射线:有一个端点的直线,另一端向着无限远处延伸;•线段:由两个点和连接它们的线段所组成,有起点和终点。

2024年初二数学上册知识点总结归纳

2024年初二数学上册知识点总结归纳

2024年初二数学上册知识点总结归纳一、有理数1. 整数的概念与性质2. 有理数的概念与性质3. 有理数的加法与减法4. 有理数的乘法与除法5. 有理数的乘方二、代数1. 代数式的概念与性质2. 代数式的运算3. 一元一次方程4. 二元一次方程5. 平方根与算术平方根6. 二次根式的运算7. 用勾股定理解决实际问题三、图形1. 勾股定理的证明与应用2. 平面直角坐标系3. 直线与线段的概念与性质4. 角的概念与性质5. 多边形的概念与性质6. 等边三角形、等腰三角形与直角三角形7. 正方形、长方形与菱形8. 平行四边形与梯形四、数据统计1. 数集的概念与分类2. 数据的收集与整理3. 平均数、众数与中位数的计算4. 数据的分布与分组5. 直方图与折线图的制作与分析6. 统计调查与概率五、几何1. 三角形的概念与性质2. 三角形的内角和3. 直角三角形的性质4. 等腰三角形的性质5. 相似三角形的概念与性质6. 平行线与平行四边形7. 初步认识圆与圆的性质8. 圆的面积与周长的计算9. 学习使用简单的几何工具六、函数1. 函数的概念与性质2. 函数的自变量与函数值3. 一次函数的概念与性质4. 一次函数的表示与应用5. 按比例分配与保本销售6. 一次函数的图象与性质7. 利润与一次函数的关系七、比例与相似1. 比与比例的概念与性质2. 定比例作图3. 倒数的概念与性质4. 倒数的应用5. 两条直线的比例关系6. 相似的概念与性质7. 相似三角形的判定与性质8. 比例与相似的综合运用总结归纳:初二数学上册的知识点非常分散且广泛,包括有理数、代数、图形、数据统计、几何、函数、比例与相似等多个方面的知识。

其中,有理数部分主要介绍了整数和有理数的性质以及加减乘除、乘方等运算,代数部分主要涵盖了代数式的概念与运算,线性方程的解法,平方根与二次根式,以及勾股定理的应用等内容。

图形部分主要包括了各种图形的概念与性质,以及与图形相关的计算问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上册知识点总结
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(ASA有两角和它们的夹边对应相等的两个三角形全等
24推论(AAS有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角
31 推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46 勾股定理直角三角形两直角边a 、b 的平方和、等于斜边 c 的平方,即a A2+b A2=c A2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系aA2+bA2=cA2,那么这个三角形是直角三角形
48 定理四边形的内角和等于360 °
49 四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)X180°
51推论任意多边的外角和等于360°
52 平行四边形性质定理1 平行四边形的对角相等
53 平行四边形性质定理2 平行四边形的对边相等
54 推论夹在两条平行线间的平行线段相等
55 平行四边形性质定理平行四边形的对角线互相平分
56 平行四边形判定定理两组对角分别相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形 对角线互相平分的四边形是平行四边形
60 矩形性质定理 1 矩形的四个角都是直角 平行四边形判定定理 一组对边平行相等的四边形是平行四边形 平行四边形判定定理
平行四边形判定定理。

相关文档
最新文档