锂离子电池热失控过程!不同种类锂电池热失控反应动力学机制研究
锂电池热失控的过程
锂电池热失控的过程锂电池是目前应用最广泛的电池之一,其具有高能量密度、长寿命等优点,被广泛应用于移动电子设备、电动汽车等领域。
然而,随着锂电池规模化应用的不断推进,锂电池热失控的问题也逐渐凸显。
锂电池热失控,是指在电池充电或放电时,由于电池内部产生的热量无法及时散发,导致电池温度不断升高,最终导致电池内部化学反应失控,引发火灾或爆炸等严重后果。
锂电池热失控的过程可以分为三个阶段:热失控前期、热失控加速期和热失控终止期。
热失控前期,是指锂电池内部开始出现局部过热现象,但尚未引发化学反应失控。
此时,电池内部的高温区域会不断扩大,导致电池内部的化学反应速率加快,进而加剧内部温度的升高。
如果此时不能及时采取有效措施,电池就会进入热失控加速期。
热失控加速期,是指电池内部的化学反应速率和温度同时急剧升高,电池内部的能量密度也会迅速增加。
此时,如果电池内部的温度超过了一定的阈值,就会引发化学反应失控,导致电池发生爆炸或着火等严重后果。
热失控终止期,是指在化学反应失控后,电池内部的温度和压力会急剧升高,但随着电池内部能量的逐渐释放,温度和压力也会逐渐降低,最终趋于稳定。
为了避免锂电池热失控的发生,我们可以从以下几个方面入手:1. 选择合适的电池材料和结构,以提高电池的耐高温性能和安全性能。
2. 加强电池的设计和制造过程控制,确保电池的质量和一致性。
3. 采用适当的充放电策略,以降低电池内部的温度和化学反应速率。
4. 配备有效的温度和压力监测系统,及时发现电池内部的异常情况。
5. 配备有效的安全保护系统,以避免电池热失控后的严重后果。
锂电池热失控是一个复杂的过程,需要我们从多个方面入手,才能有效避免电池的安全问题。
随着电池技术的不断发展,相信我们能够找到更加有效的方法,保障电池的安全和可靠性。
三元锂离子电池高温诱导热失控试验研究
三元锂离子电池高温诱导热失控试验研究作者:窦文娟王栋王正超贾隆舟郑莉莉戴作强来源:《青岛大学学报(工程技术版)》2021年第04期摘要:針对频频发生的锂电池热失控事故,本文使用绝热加速量热仪(accelerating rate calometry,ARC)的“Ramp”程序,外部热诱导一款2.6 Ah的圆柱形Li(Ni0.5Co0.2Mn0.3)O2(简称NCM523)电池触发热失控,探究了100%,75%和50%不同荷电状态(state of charge,SOC)电池热失控的特征参数,并比较了“Ramp”程序和广泛使用的“HWS”程序的差异。
同时,对100%,75%和50%不同SOC电池热失控起始温度T1、触发温度T2和最高温度T3进行比较分析。
研究结果表明,电池SOC越高,电池的热稳定性和安全性越差,热失控爆炸所释放的能量越大,热失控最高温度为715.4 ℃。
三者热失控过程中所释放的能量分别为32.68,32.5和14.27 kJ,相当于7.37,7.32,3.22 g三硝基甲苯(trinitortoluene, TNT)爆炸的威力。
“Ramp”程序较“HWS”程序试验耗时较短,可模拟环境升温对电池的影响。
该研究为电池热失控的预警及防控提供了理论指导。
关键词:三元锂离子电池; 安全性; 热失控中图分类号: TM912 文献标识码: A2021年是我国“十四五”规划的第一年,为坚持推动绿色发展,促进人与自然和谐共生,李克强总理在3月5日的全国两会中提出:“加快发展方式绿色转形,2030年单位国内生产总值能耗和二氧化碳排放分别降低13.5%和18%。
”[1]在节能减排政策的驱动下,新形能源产业链迅速发展。
锂离子电池因具有能量密度高、工作电压平台高、无记忆效应、自放电率低以及使用寿命长等优势,已广泛应用于电动汽车、混合动力汽车和储能电网[24]等领域。
但是电池安全事故的发生,制约了高能量密度电池在新能源汽车领域的应用。
锂离子电池热失控过程
锂离子电池热失控过程锂离子电池是现代电子设备和电动车等广泛应用的重要电源。
但是,由于其容易发生热失控反应,其应用场景会受到一定限制,影响其发展速度。
因此,进一步了解锂离子电池的热失控过程非常重要。
一、锂离子电池的构成锂离子电池的基本构成是正极、负极、隔膜和电解液。
正极是由锂、过渡金属氧化物和碳酸物质构成。
负极是由石墨、金属锂和锂合金等物质构成。
隔膜是由聚合物、陶瓷或复合材料制成。
电解液通常是有机溶液,由碳酸酯、聚醚、酮等组成。
二、锂离子电池热失控的原因锂离子电池热失控的原因是电池内部的热效应过于剧烈无法承受,导致电池内部出现极度的高温,导致正负极材料的分解和电解液异常剧烈的反应。
通常,锂离子电池的热失控可以由以下原因引起:(1)过充或过放:如果电池充电的时间过长或者其放电的深度太大,电池的内部结构就会发生变化。
正极和负极上的材料可能会被过度氧化或过度还原,生成高温和有害的气体,导致热失控。
(2)过渡金属的析出:如果电池内部的过渡金属被过氧化或者快速的沉积,就会导致电池内部的温度升高,进而引起热失控。
(3)电解液的分解:在高温和高压的情况下,电解液中的混合物可能会发生分解和分解产物的燃烧,从而导致电池的热失控。
三、锂离子电池的热失控过程当电池内部温度处于一个可以接受的范围内时,电池在使用时是安全的。
但是,一旦电池开始发生热失控时,它很快就会引起极度不稳定的反应,将电池从一个相对平静的状态转变为一个极度暴力的状况。
通常,锂离子电池的热失控会经过以下过程:(1)晶体外壳崩溃,电极短路当电池内部发生热失控时,其内部产生的高温和高压很快就会引起电池表面的晶体外壳崩溃。
这会导致正负极之间的短路,因此在这一阶段,电池内电流会迅速增加。
(2)电解液极度加热电解液是导电性很强的物质,当电极短路后,电解液中的离子很快就会开始跑动。
这将导致电解液受热,并从而生成大量的热能。
如果这一步骤未及时处理,电池内的热能将会呈几何级数加大。
车用锂离子动力电池热失控诱发与扩展机理、建模与防控
车用锂离子动力电池热失控诱发与扩展机理、建模与防控一、本文概述随着新能源汽车市场的迅猛发展和普及,车用锂离子动力电池作为其核心动力源,其安全性和稳定性日益受到人们的关注。
然而,近年来车用锂离子动力电池热失控事件频发,给人们的生命财产安全带来了严重威胁。
因此,深入探究车用锂离子动力电池热失控的诱发与扩展机理,建立准确的热失控模型,以及研发有效的防控措施,已成为当前新能源汽车领域亟待解决的关键问题。
本文旨在全面系统地研究车用锂离子动力电池热失控的诱发与扩展机理,通过建立精确的热失控模型,为防控策略的制定提供科学依据。
文章首先将对车用锂离子动力电池的基本结构和工作原理进行简要介绍,然后重点分析热失控的诱发因素,包括电池内部短路、外部热冲击等。
在此基础上,深入探讨热失控的扩展过程,包括热失控的链式反应、热量传递与扩散等机制。
为了更好地理解热失控现象,本文将建立车用锂离子动力电池的热失控模型。
该模型将综合考虑电池内部化学反应、热传递、材料性能等因素,以揭示热失控过程中的关键参数和影响因素。
通过模型验证和仿真分析,可以为防控策略的制定提供有力支持。
本文将提出一系列有效的防控措施,旨在降低车用锂离子动力电池热失控的风险。
这些措施包括优化电池设计、提升电池材料性能、加强电池管理系统智能化等。
通过实施这些措施,有望为新能源汽车的安全运行提供有力保障。
本文的研究成果不仅对于提升车用锂离子动力电池的安全性具有重要意义,同时也为新能源汽车产业的可持续发展提供了有力支撑。
二、锂离子动力电池热失控诱发机理锂离子动力电池的热失控是一个复杂的过程,涉及电池内部的多个物理和化学变化。
理解这些变化及其相互作用对于预防和控制热失控至关重要。
热失控的诱发机理主要包括电池内部短路、电池滥用、外部热源、材料老化和制造缺陷等。
电池内部短路:电池内部短路是热失控最常见的诱发因素之一。
这可能是由于电池内部隔膜的损坏、锂枝晶的生长或电池内部的金属杂质等原因导致的。
锂电池热失控机理、原因分析及防护措施
锂电池热失控机理、原因分析及防护措施热失控指的由各种诱因引发的链式反应现象,导致电池在短时间内散发出的大量热量和有害气体,严重时甚至会引起电池着火和爆炸。
导致热失控发生的原因有很多,比如过热、过充、内短路、碰撞等。
电池热失控往往从电池电芯内的负极SEI膜分解开始,继而隔膜分解熔化,导致负极与电解液发生发应,随之正极和电解质都会发生分解,从而引发大规模的内短路,造成了电解液燃烧,进而蔓延到其他电芯,造成了严重的热失控,让整个电池组产生自燃。
一、热失控阶段的划分热失控的阶段的划分方法存在着不同的说法,核心应该是,跨越了哪个点,热趋势将无法逆转。
有理论认为这个点是隔膜的大规模溶解。
在此之前,温度降下来,物质活性下降,反应会减缓。
一旦突破这个点,正负极已经直接相对,电芯内部温度不可能被降低,无法终止反应的继续了。
该理论将热失控划分为三个阶段,自生热阶段(50℃-140℃),热失控阶段(140℃-850℃),热失控终止阶段(850℃-常温),一些文献提供的隔膜大规模融化温度起始于140℃。
自生热阶段,又被叫做热积累阶段,它开始于SEI膜的溶解。
SEI膜在温度达到90℃左右的时候,其溶解现象就会被明显的观察到SEI膜的溶解,使得负极以及负极内包含的嵌锂碳成分直接暴露在电解液里,嵌锂碳与电解液发生放热反应,造成温度升高。
温度的上升反过来促进了SEI膜的进一步分解。
如果没有外部降温手段的作用,这个过程会滚动向前,直至SEI膜全部分解。
热失控阶段是指温度超过140℃以后,正负极材料都加入了电化学反应的行列,反应物质量的增加,使得温度的提升速度更快了。
外部可以观测到的参数变化,是电压的急剧下跌,其过程被描述为:达到这个温度区间后,隔膜开始大量融化,正负极直接连通,造成大规模短路的发生。
至此,热失控已经开始,不会再停下来。
短时间内,剧烈的反应生成大量气体的同时生成大量的热,热量又给气体加热,膨胀的气体冲破电芯壳体,发生物质喷射之类的现象,四散的物质也带走了部分热量。
锂离子动力电池系统热失控检测原理及方案
锂离子动力电池系统热失控检测原理及方案
秦李伟;姜点双;徐爱琴;汪梦远;刘舒龙
【期刊名称】《汽车电器》
【年(卷),期】2024()3
【摘要】锂离子电池的热失控问题一直是制约电动汽车发展的因素之一,因此需要及时对热失控电池进行预警,避免发生起火等车辆安全事故。
动力电池热失控过程通常伴随有烟雾产生,可通过烟雾检测识别故障信号。
文章首先汇总6种锂离子动力电池系统热失控检测原理及方案,并对不同方案的优劣进行对比,重点分析烟雾传感器的功能验证和市场情况,以期为提高锂离子电池的热失控检测提供指导。
【总页数】3页(P17-19)
【作者】秦李伟;姜点双;徐爱琴;汪梦远;刘舒龙
【作者单位】安徽江淮汽车集团股份有限公司
【正文语种】中文
【中图分类】U469.72
【相关文献】
1.锂离子动力电池系统热失控扩展特性试验研究
2.三元锂离子动力电池热失控及蔓延特性实验研究
3.锂离子动力电池系统热失控检测方法和技术综述
4.三元锂离子动力电池包热失控蔓延数值分析
5.锂离子动力电池热失控特性实验研究
因版权原因,仅展示原文概要,查看原文内容请购买。
锂离子电池热失控原因及对策研究进展
锂离子电池热失控原因及对策研究进展程琦,兰倩,赵金星,刘畅,曹元成*(江汉大学光电化学材料与器件教育部重点实验室,化学与环境工程学院,柔性显示材料与技术湖北省协同创新中心,湖北武汉430056)摘要:综述了高安全型锂离子电池研究的最新进展和发展前景。
主要从电解质和电极的高温稳定性方面介绍了锂离子电池热不稳定性产生原因及其机制,阐明了现有商用锂离子电池体系在高温时的不足,提出开发高温电解质、正负极修饰以及外部电池管理等来设计高安全型锂离子电池。
对开发安全型锂电池的技术前景进行了展望。
关键词:锂离子电池;热稳定;安全性;阻燃添加剂;固态电解质中图分类号:TQ152文献标志码:A 文章编号:1673-0143(2018)01-0011-06DOI :10.16389/42-1737/n.2018.01.002Research Progress of Causes and Countermeasures on Thermal Runaway of Lithium Ion BatteryCHEN Qi ,LAN Qian ,ZHAO Jinxing ,LIU Chang ,CAO Yuancheng *(Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education ,School of Chemistry and Environmental Engineering ,Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province ,Jianghan University ,Wuhan 430056,Hubei ,China )Abstract :The recent progress and development prospects of high safety lithium ion batteries were re⁃viewed in this paper.The writer mainly introduced the reasons and mechanism of lithium ion battery′sthermal instability from the aspects of high temperature stability of electrode and electrolyte.The deficiency of the existing commercial lithium ion battery system at high temperature was explained.Thedevelopment of high temperature electrolyte ,positive and negative electrode′s modification and external battery management were proposed to design a high security lithium ion battery.Finally ,the writerdiscussed the expectation of the safety lithium ion battery.Key words :lithium ion battery ;thermal stability ;security ;flame retardant additive ;solid electrolyte0引言锂离子电池因其低成本、高性能、大功率、绿环境等诸多优势,成为一种新型能源的典型代表,广泛应用于3C 数码产品、移动电源以及电动工具等领域。
冯旭宁. 车用锂离子动力电池系统热失控机理
冯旭宁. 车用锂离子动力电池系统热失控机
理
冯旭宁是一位中国的电池专家,他的研究主要集中在电动汽车用锂离子电池的安全性和可靠性方面。
对于车用锂离子动力电池系统热失控机理,以下是他的一些研究成果:
1. 热失控原因:冯旭宁认为,车用锂离子动力电池热失控的主要原因是电池过热。
这可能是由于电池过充、过放、短路等原因导致的。
2. 热失控过程:当电池过热时,会加速电池的内阻增加,从而导致电池的温度进一步升高。
同时,过热也会引发电池的正负极反应,产生更多的热量,形成一个恶性循环,最终导致电池的热失控。
3. 热失控预防:冯旭宁认为,预防车用锂离子动力电池热失控的主要方法是通过温度监测和控制。
例如,可以通过温度传感器监测电池的温度,然后通过控制电路减少电池的充电量或者提高电池的冷却效率,以防止电池过热。
以上只是冯旭宁的一些研究成果,具体的热失控机理可能会因为具体的电池类型和使用条件不同而有所不同。
车用锂离子动力电池热失控诱发与扩展机理、建模与防控
车用锂离子动力电池热失控诱发与扩展机理、建模与防控车用锂离子动力电池热失控诱发与扩展机理、建模与防控引言车用锂离子动力电池作为新能源汽车的核心部件,具有高能量密度、长寿命和环境友好等优势。
然而,在长时间使用或异常情况下,锂离子动力电池可能会出现热失控的情况,导致严重的安全问题。
不了解热失控的诱发与扩展机理,不能有效地进行建模与防控,这将对新能源汽车的发展带来重大障碍。
一、热失控的诱发机理1. 过充电与过放电过充电和过放电是引发锂离子动力电池热失控的主要原因之一。
过充电会引起电池内部发生副反应,产生大量热量,导致电池温度升高;过放电会导致锂离子析出金属锂,形成锂枝和锂塑料,造成电池内短路并升温。
2. 电池内部短路电池内部短路是热失控的另一个主要诱发因素。
当电池内部发生结构破坏、电解液泄露或隔膜被破坏时,正负极之间会发生短路,导致电池温度升高,并且可能引发火灾。
3. 外部因素的影响外部因素,如高温环境、机械撞击、震动和电池老化等,也会引发锂离子动力电池的热失控。
高温环境会增加电池内部自发热的速率,机械撞击和震动会导致电池内部物质的移位和损伤,电池老化会导致电池内部结构和材料的退化。
二、热失控的扩展机理一旦锂离子动力电池发生热失控,温度升高快速释放的大量热量将会导致热失控的扩展。
在扩展过程中,主要有以下机理:1. 热反应的链式反应锂离子动力电池的热失控是一个自加速的过程。
在高温下,电池内部发生的自燃和爆炸反应产生更多的热量,进一步加剧电池的热失控,形成链式反应。
2. 气体生成与扩散电池内部的热失控过程中,会产生大量的气体,如氢气和氧气等。
这些气体的生成和扩散会加速电池的扩展过程,导致火灾和爆炸的发生。
3. 热通道和热传导热通道和热传导是热失控扩展的重要机理之一。
电池内部结构的设计、材料的选择以及电池组的组装方式会影响热通道的形成与热传导的速率,进而影响热失控的扩展速度和范围。
三、建模与防控策略建立准确的锂离子动力电池热失控模型是进行防控的基础。
锂离子电池内短路诱发热失控机制研究
锂离子电池凭借其优良的性能已广泛应用于电子产品、电动汽车和储能系统等领域,然而由于锂离子电池主要由易燃电解液和活性电极材料组成,在滥用条件下很容易引发电池自放热反应从而导致电池热失控甚至起火爆炸,这正是锂离子电池安全事故时有发生而不能杜绝的根本原因。
内短路是一种常见的锂离子电池热失控成因,与过充、过热和外短路等电池热失控的成因相比,内短路造成的危害更大、监测和预防难度更大且更易发。
锂离子电池内短路的常见诱因有机械滥用(针刺、挤压和重物冲击等)、生产缺陷和锂枝晶生长。
为了进一步揭示锂离子电池的内短路机理,本文采用实验手段和有限元数值模拟方法对针刺和锂枝晶导致的锂离子电池内短路过程进行了研究。
本文首先使用实验和数值模拟对传统钢针针刺导致的锂离子电池内短路过程进行了研究,分析了电池荷电状态、刺针直径和针刺速度等参数对电池温升的影响,并对电池内部各热源产热功率和刺针散热功率进行了研究。
结果显示传统钢针导致的锂离子电池内短路过程中,刺针扮演两方面的作用,决定短路电流和散热。
一方面,刺针直径越大则短路电流和焦耳产热功率愈大;另一方面,刺针直径越大其从短路点散热的能力也越大。
针刺时电池极耳电压随时间呈指数衰减,电压的波动和回升是由短路电流突降导致的过电势造成的。
未热失控情况下电池内部的总产热量主要由短路点的焦耳产热贡献。
基于对传统钢针导致电池内短路过程的研究结果,本文提出了一种用低导热系数和低电导率的聚甲醛材料制作的电池针刺测试刺针,并采用针刺实验和数值模拟相结合的方法分析了聚甲醛刺针和传统的钨钢针触发电池内短路时电池电热响应的区
别,比较了这两种刺针在电池内短路过程中所扮演角色的差异。
锂离子电池热失控原理及火灾特征
锂离子电池热失控原理及火灾特征1、锂离子电池热失控原理锂电池由于自身制造缺陷,或受外界温度、机械、充电异常等激励,电池内部会发生不可逆的副反应,如SEI膜分解、正极材料分解和电解液的分解,产生大量热,并释放出小分子气体。
由于反应剧烈,产生的热量不能有效传递到电池外部,引起电池内部温度和压力的急剧上升,而温度的上升又会极大地加速副反应的进行,产生更大量的热和气体,此时电池进入无法控制的自加速状态,即所谓的热失控。
热失控是锂电池内部发生的剧烈不可逆的氧化还原反应,并伴随着温度和压力的急剧升高,宏观表现为喷射状火焰特征,反应速度快,火焰强度大。
引起电池热失控的主要原因有以下几个。
(1)碰撞原因导致的热失控电动汽车发生交通事故时会产生不同程度的碰撞,而强烈的外力因素也会同时作用到锂离子电池,使得锂离子电池外部壳体变形、破损,电池本身的配件被移位或损坏,电池的隔膜被撕裂导致电池内部短路,易燃的电解质泄漏出来。
在所有的碰撞伤害对电池性能产生的破坏中,最为严重的当属穿刺伤害,严重的穿刺伤害会直接插入电池本体,造成电池的正负极直接短路并加剧热量集中生成爆发,引起发热失控,严重破坏电池的正常性。
(2)使用不当导致的热失控使用不当也是引起锂离子电池热失控的主要原因,具体体现在充电过度、放电过度、外部短路等几大原因。
相较于外部短路和充电过度,放电过度对锂离子电池的危害相对较小,放电过程中的锂枝晶增长会降低电池的安全性,间接增加热失控的概率。
外部短路时,电池的热量不能有效散去,电池温度升高并引发热失控。
充电过度是对锂离子电池危害最大也是引起电池热失控最主要的原因,充电过度会造成过量的锂嵌入,锂枝晶在阳极表面生长,锂的过度脱嵌导致阴极结构因发热和氧释放而崩溃,氧气的释放会加速电解质的分解,从而产生大量气体,随着内部压力的增加让排气阀打开,电池开始排气。
此时,电芯中的活性物质与空气接触并发生剧烈反应,放出大量的热,从而导致电池燃烧起火。
锂电池热失控的原因及预防措施
锂电池热失控的原因分析及预防措施对于锂电池热失控的研究,众多研究者一直都在不断深入研究,以此来预防和降低锂电池在使用过程中的风险。
以下锂电池的失控原理也是一些研究者的看法。
一.热失控的原理分析对于热失控的原理,分为了三个阶段:第1阶段:热失控开始阶段:125℃左右,这个阶段是一般认为是负极SEI膜反应分解,使得负极与电解液直接接触,从而导致了电解液与负极中的锂反应并生成气体。
第2阶段:电池内部气体释放和升温加速,温度在125~180℃左右,这个阶段正极材料分解释氧,锂盐也会分解,如LiPF6分解生成LiF和路易斯酸PF5。
而路易斯酸会在高温下与电解液反应产生大量的气体。
第3阶段:热失控阶段,大约为180℃以上。
在这个阶段正/负电极材料与电解液发生盛剧烈的放热反应和电解液分解放热,电池内部温度急剧升高,电池泄压阀打开或引发自燃。
也有研究者将热失控细分为如下范围:一般动力电池的热失控有三个特征温度,起始发热温度T1,热失控引发温度T2,热失控最高温度T3。
T1:指的是SEI膜分解的温度,T3:它取决于整个反应焓,T2:这个温度跟电池本身的状态,电池体系,使用状态相关,这个温度会由一个缓慢的升热会突然引发急剧的升热,这个生热速率可以达到几百到1000度/秒,这是引发热失控的关键。
通过一些研究发现,它主要有3个方面的原因,内部短路,正极释氧,负极析锂。
二、热失控的原因分析1、机械滥用破坏性变形和位移是机械滥用的两个共同特征,在外力的作用下导致的锂电池(电芯)发生形变,隔膜被破坏,正负极之间短路而诱发热失控,比如挤压、碰撞、针刺等。
2、热滥用比如长期使得锂电池在高温环境下工作,比如:外界高温环境,大电流过程中使用产生的了很多的极化热、反应热、分解热等。
3、电滥用锂电池过充电导致活性物质结构遭到破坏,电解液分解产气,导致电池内部压强增大。
除此之外,还包括过放电、大倍率(超过规格)充电等。
1)外短路锂电池的正负极不通过负载直接导通连接。
车用锂离子动力电池热失控诱发与扩展机理、建模与防控
车用锂离子动力电池热失控诱发与扩展机理、建模与防控一、概述随着全球能源危机和环境污染问题的日益严重,清洁、高效的电动汽车(EV)已成为未来交通出行的重要选择。
而车用锂离子动力电池作为电动汽车的核心部件,其性能直接决定了电动汽车的续航里程、安全性能以及使用寿命。
电池热失控问题一直是制约车用锂离子动力电池性能提升和安全运行的关键因素。
深入研究车用锂离子动力电池热失控的诱发与扩展机理、建立精确的热失控模型以及探索有效的防控策略,对于提升电动汽车的安全性、可靠性和经济性具有重要意义。
本文首先对车用锂离子动力电池热失控的基本概念进行界定,明确热失控的诱发因素和扩展过程。
接着,从材料学、电化学和传热学等多个角度出发,详细阐述热失控的诱发与扩展机理,包括电池内部短路、热失控触发条件、热量传递与积聚等方面。
在此基础上,本文将介绍热失控模型的建立方法,包括基于物理原理的模型、基于数据驱动的模型等,并对各种模型的优缺点进行比较分析。
本文将探讨车用锂离子动力电池热失控的防控策略,包括电池材料改进、电池管理系统优化、热隔离与散热技术等。
通过综合运用这些策略,有望降低车用锂离子动力电池热失控的风险,提高电动汽车的安全性和可靠性,为电动汽车的广泛应用和可持续发展提供有力保障。
1. 车用锂离子动力电池的重要性和应用背景随着全球能源危机和环境污染问题日益严重,新能源汽车作为一种环保、节能的交通方式,逐渐受到了广泛的关注和应用。
作为新能源汽车的核心部件之一,车用锂离子动力电池的性能直接影响着整车的续航里程、安全性能以及使用寿命。
深入研究车用锂离子动力电池的热失控诱发与扩展机理、建模与防控技术,对于提高新能源汽车的安全性和可靠性,推动新能源汽车产业的健康发展具有重要意义。
车用锂离子动力电池具有高能量密度、长寿命、无记忆效应等优点,被广泛应用于各类新能源汽车中。
随着电池能量密度的提高和使用环境的复杂化,电池热失控事件时有发生,给人们的生命财产安全带来了严重威胁。
锂电池的热失控及技术分析
总结和展望
1. 热失控的反应十分复杂,大体来说,SEI膜的分解给予电池初始 的热量积累,导致隔膜的熔断分解,由此带来正负极和电解液、 电解液自身的放热、产气反应。 2. 在反应过程中的任何步骤改善都能带来更高的热稳定性和电池 安全性:
① 比如对SEI膜进行界面改造,可以提高初始放热温度;
② 比如陶瓷隔膜更高的熔断温度、更低的内阻; ③ 比如更优良的散热方式,特别是相变材料散热。 3. 这些技术都能增加电池热稳定性,给新能源汽车的未来保驾护 航。
产生。
热失控的影响因素1
① 充放电倍率 充放电倍率越高,电流越大,内阻越大,产热越高。所以在 高倍率充电时候,电池生热速率更快,如果散热体系没有及 时排出热量,产热将会逐步堆积。 ② 内阻
内阻的形成原因和功率输出、DOD、温度等有关,内阻越大,
电效率降低,产生更多的热量堆积。特别是在SOC低于20%的 时候,内阻急剧升高,此时需要降低电池输出功率,保护电 池安全。
热失控的状态研究2
3. 155摄氏度以后 隔膜熔断之后,温度迅速升高,期间负极和电解液反应、正极 与电解液反应、电解液自身分解,材料不同,反应顺序不同, 反应温度也不同。热失控的判断标准是电池表面达到100℃, 由隔膜熔断,正负极短路,电池表面很快达到300℃,最高升
温速率达到220℃/min,反应十分剧烈,电池因此起火爆炸燃
热失控的影响因素2
③ 容量 电池容量越大,电化学反应越多,产热越多。需要的散热功 率越大,如果散热不能满足,产热会越积越多。 ④ 环境温度 环境温度越高,导致部分风冷热交换系数越低,效果越差。
特别是大பைடு நூலகம்量纯电动汽车,风冷很难满足散热需求了。
⑤ 散热方式 为了避免热失控,通过风冷、液冷和相变材料等的散热的方 式,不同的散热方式效果不同,但今天我们只是研究引发热 失控的原因,究其原理,才能对症下药。
锂离子电池热失控机理
锂离子电池热失控是一个复杂的过程,涉及到多个物理和化学机制。
以下是一些关键的机理:
1. 温度升高:当电池的热量无法有效散去时,温度会持续上升。
高温会导致电池内部物质分解和反应速度加快,产生更多的热量。
这种温度上升与物质分解的恶性循环是热失控的关键过程之一。
2. 正负极材料分解:在高温下,正负极材料会分解成各自的成分,如石墨和钴酸锂分解成锂离子和碳。
这些分解产物可能导致电池性能下降,并释放出更多的热量。
3. 电解液的分解和氧化:电解液在高温下会分解成气体和残余物。
此外,电解液也可能氧化,这个过程中会释放出大量的热。
4. 隔膜融化或收缩:在高温下,隔膜可能会融化或收缩,导致正负极之间的短路。
这种短路会导致电池内部电流增加,产生更多的热量。
5. 外部短路或过度充电:外部短路或过度充电会导致电池电流过大,产生大量的热。
这个过程中,电解液会分解并释放出可燃气体,增加了电池燃烧或爆炸的风险。
6. 机械滥用:如挤压、碰撞或针刺等外力作用导致电池形变或隔膜破坏等,这些都可能引发热失控。
总的来说,锂离子电池热失控是一个涉及到多个因素的复杂过程。
为了防止热失控的发生,需要采取一系列的预防措施,包括控制电池温度、优化电池结构和制造工艺、规范电池使用和充电等。
锂离子电池热失控过程!不同种类锂电池热失控反应动力学机制研究
锂离子电池热失控过程!不同种类锂电池热失控反应动力学机制研究导读:锂电池的安全性是动力电池最关注的问题之一。
电池的安全性和电池组的设计、滥用条件有很大关系。
对于单电池来讲,安全性除了和正极材料有关,与负极,隔膜以及电解液都有很大关系。
锂离子电池热失控过程电池热失控都是由于电池的生热速率远高于散热速率,且热量大量累积而未及时散发出去所引起的。
从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热后温度升高,又反过来让系统变得更热。
不严格的划分,电池热失控可以分为三个阶段:锂离子电池热失控过程图不同种类锂电池热失控反应动力学机制研究第1阶段:电池内部热失控阶段由于内部短路、外部加热,或者电池自身在大电流充放电时自身发热,使电池内部温度升高到90℃~100℃左右,锂盐LiPF6开始分解;对于充电状态的碳负极化学活性非常高,接近金属锂,在高温下表面的SEI膜分解,嵌入石墨的锂离子与电解液、黏结剂会发生反应,进一步把电池温度推高到150℃,此温度下又有新的剧烈放热反应发生,例如电解质大量分解,生成PF5,PF5进一步催化有机溶剂发生分解反应等。
第2阶段:电池鼓包阶段电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。
250-350℃嵌锂态负极开始与电解液发生反应。
第3阶段:电池热失控,爆炸失效阶段在反应发生过程中,充电态正极材料开始发生剧烈分解反应,电解液发生剧烈的氧化反应,释放出大量的热,产生高温和大量气体,电池发生燃烧爆炸。
锂离子电池材料的安全性负极材料负极材料虽然比较稳定,但嵌锂状态下的碳负极在高温下会负极与电解液之间的反应包括以下三个部分:SEI的分解;嵌入负极的锂与电解液的反应;嵌入负极的锂与黏结剂的反应。
常温下电子绝缘的SEI膜能够防止电解液的进一步分解反应。
但在100℃左右会发生SEI膜的分解反应。
SEI放热分解反应的反应式如下:尽管SEI分解反应热相对较小,但其反应起始温度较低,会在一定程度上增加负极片的“燃烧”扩散速度。
三元锂电池热失控机制探究
三元锂电池热失控机制探究三元锂电池热失控机制探究三元锂电池作为现代电动汽车和便携电子设备中最常见的电池类型之一,具有高能量密度、长寿命和较低的自放电率等优势。
然而,该电池在充放电过程中存在一定的热失控风险,可能导致电池的过热、燃烧甚至爆炸。
了解三元锂电池的热失控机制对于提高电池的安全性和稳定性至关重要。
首先,三元锂电池的正极材料是由镍、钴和锰等金属氧化物组成的。
在电池的充放电过程中,正极材料会发生氧化还原反应,释放出大量的热量。
这些反应产生的热量被称为放热。
如果电池的热量无法有效散发,温度会不断上升,导致电池内部的化学反应加速,进一步产生更多热量,形成恶性循环。
其次,三元锂电池的负极材料是由石墨或硅等材料构成的。
在充放电过程中,负极材料会与电解液中的锂离子发生嵌入和脱嵌反应。
这些反应也会产生一定的热量,并可能导致负极材料的脱离、脱层或钝化。
当电池受到外部因素的影响时,如过充电、过放电、温度过高、物理损伤或设计缺陷等,就可能引发电池的热失控。
一旦电池内部温度超过了其安全范围,热失控的过程就会迅速发生。
热失控过程中的主要机制是热解反应和氧化反应。
首先,当电池内部温度升高到一定程度时,正极和负极材料开始发生热解反应。
这些反应会产生一系列的气体和高分子化合物,进一步加剧电池的热失控。
其次,电池内部的氧化反应会产生大量的热量,进一步加剧热失控的过程。
这些反应产生的高温和气体会导致电池内部的压力升高,最终引发电池的破裂、燃烧甚至爆炸。
为了防止三元锂电池的热失控,可以采取一系列的措施。
首先,合理设计电池的结构和材料,提高电池的散热性能和耐热性能。
其次,控制电池的充放电速率,避免过快过慢的充放电过程。
此外,温度监测和控制系统也是非常重要的,可以及时发现并控制电池的温度升高。
总之,三元锂电池的热失控机制是一个复杂而严重的问题。
通过了解和研究这一机制,可以采取相应的措施来提高电池的安全性和稳定性。
未来的研究应重点关注电池材料的改进和电池系统的智能化控制,以进一步提高电池的性能和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池热失控过程!不同种类锂电池热失控反应动力学机制研究导读:锂电池的安全性是动力电池最关注的问题之一。
电池的安全性和电池组的设计、滥用条件有很大关系。
对于单电池来讲,安全性除了和正极材料有关,与负极,隔膜以及电解液都有很大关系。
锂离子电池热失控过程
电池热失控都是由于电池的生热速率远高于散热速率,且热量大量累积而未及时散发出去所引起的。
从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热后温度升高,又反过来让系统变得更热。
不严格的划分,电池热失控可以分为三个阶段:
锂离子电池热失控过程图
不同种类锂电池热失控反应动力学机制研究
第1阶段:电池内部热失控阶段
由于内部短路、外部加热,或者电池自身在大电流充放电时自身发热,使电池内部温度升高到90℃~100℃左右,锂盐LiPF6开始分解;对于充电状态的碳负极化学活性非常高,接近金属锂,在高温下表面的SEI膜分解,嵌入石墨的锂离子与电解液、黏结剂会发生反应,进一步把电池温度推高到150℃,此温度下又有新的剧烈放热反应发生,例如电解质大量分解,生成PF5,PF5进一步催化有机溶剂发生分解反应等。
第2阶段:电池鼓包阶段
电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。
250-350℃嵌锂态负极开始与电解液发生反应。
第3阶段:电池热失控,爆炸失效阶段
在反应发生过程中,充电态正极材料开始发生剧烈分解反应,电解液发生剧烈的氧化反应,释放出大量的热,产生高温和大量气体,电池发生燃烧爆炸。