一元与多元线性回归模型的主要计算公式
多元线性回归模型公式
二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3.2.11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3.2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3.2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15)方程组(3.2.15)式,被称为正规方程组。
多元线性回归的计算模型
多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。
1.每个自变量与因变量之间是线性关系。
2.自变量之间相互独立,即不存在多重共线性。
3.误差项ε服从正态分布。
4.误差项ε具有同方差性,即方差相等。
5.误差项ε之间相互独立。
为了估计多元线性回归模型的回归系数,常常使用最小二乘法。
最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。
具体步骤如下:1.收集数据。
需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。
2.建立模型。
根据实际问题和理论知识,确定多元线性回归模型的形式。
3.估计回归系数。
利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。
4.假设检验。
对模型的回归系数进行假设检验,判断自变量对因变量是否显著。
5. 模型评价。
使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。
6.模型应用与预测。
通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。
多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。
这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。
在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。
总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。
通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。
一元与多元线性回归
1.1 1.2 1.3 1.4 1.5 一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 预测与估计
什么是回归分析?
1. 从一组样本数据出发,确定变量之间的数学 关系式 2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度
2. 回归平方和(SSR—sum squares of regression)
3. 残差平方和(SSE—sum squares of error)
–
判定系数R2
1. 回归平方和占总误差平方和的比例
2. 反映回归直线的拟合程度 3. 取值范围在 [ 0 , 1 ] 之间 4. R2 1,说明回归方程拟合的越好;R20, 说明回归方程拟合的越差
8 6 4 2 0 0 10 20 30 40 贷款项目个数
不良贷款
10
10 8 6 4 2 0 0 50 100 150 200 固定资产投资额
不良贷款与贷款项目个数的散点图
不良贷款与固定资产投资额的散点图
相关系数
(例题分析)
用Excel计算相关系数
估计方程的求法
(例题分析)
【例】求不良贷款对贷款余额的回归方程
ˆ 0 t 2 (n 2) S xy y 1 + n
x0 x n 2 xi x
2 i 1
式中: Sy 为估 计标准误差
利用回归方程进行估计和预测
(预测区间估计)
• y 的个别值的预测区间 估计 1. 利用估计的回归方程 ,对于自变量 x 的一 个给定值 x0 ,求出因 变量 y 的一个个别值 的估计区间,这一区 间称为预测区间 2. y0在1-置信水平下的 预测区间为
多元线性回归模型原理
多元线性回归模型原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:设随机y 与一般变量12,,k x x x 的线性回归模型为: 其中01,,k βββ是1k +个未知参数,0β称为回归常数,1,k ββ称为回归系数;y 称为被解释变量;12,,k x x x 是k 个可以精确可控制的一般变量,称为解释变量。
当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。
ε是随机误差,与一元线性回归一样,通常假设同样,多元线性总体回归方程为01122k k y x x x ββββ=++++系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。
其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
多元线性样本回归方程为:01122ˆˆˆˆˆk ky x x x ββββ=++++ 多元线性回归方程中回归系数的估计同样可以采用最小二乘法。
由残差平方和:ˆ()0SSE y y∑=-= 根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。
欲使SSE 达到最小,SSE 对01,,k βββ的偏导数必须为零。
将SSE 对01,,k βββ求偏导数,并令其等于零,加以整理后可得到1k +各方程式:ˆ2()0i SSE y yβ∂=--=∂∑ 通过求解这一方程组便可分别得到01,,k βββ的估计值0ˆβ,1ˆβ,···ˆkβ回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。
线 性 回 归 方 程 推 导
线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。
分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。
一元线性回归分析
(n
2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1
S2
n
(Xt X )2
t 1
(n
2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
进而得出了0的置信水平为1-区间估计为
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”
0
n
2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0
nˆ0
n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n
ˆ0
t 1
Xt
ˆ1
t 1
X
2 t
多元线性回归模型
多元线性回归模型1.假定条件、最小二乘估计量和高斯—马尔可夫定理 多元线性回归模型:y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t , (1.1)其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。
)1(21)1(110)(111222111111)1(21111⨯⨯-⨯---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡T T k k k T k T TjT k j k j T Tu u u x x x x x x x x x y y yβββ (1.3)Y = X β + u , (1.4)为保证得到最优估计量,回归模型(1.4)应满足如下假定条件。
假定 ⑴ 随机误差项u t 是非自相关的,每一误差项都满足均值为零,方差 σ2相同且为有限值,即E(u ) = 0 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00 , V ar (u ) = E(u ˆu ˆ' ) = σ 2I = σ 2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000001假定 ⑵ 解释变量与误差项相互独立,即 E(X 'u ) = 0假定 ⑶ 解释变量之间线性无关。
rk(X 'X ) = rk(X ) = k 其中rk (⋅)表示矩阵的秩。
假定⑷ 解释变量是非随机的,且当T → ∞ 时T – 1X 'X → Q其中Q 是一个有限值的非退化矩阵。
最小二乘 (OLS) 法的原理是求残差(误差项的估计值)平方和最小。
代数上是求极值问题。
min S = (Y - X βˆ)' (Y - X βˆ) = Y 'Y -βˆ'X 'Y - Y ' X βˆ +βˆ'X 'X βˆ= Y 'Y - 2βˆ'X 'Y + βˆ'X 'X βˆ (1.5)因为Y 'X βˆ是一个标量,所以有Y 'X βˆ = βˆ'X 'Y 。
第三章多元线性回归模型
第三章 多元线性回归模型一、名词解释1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数2R :又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了2R 随解释变量的增加而增大的缺陷,与2R 的关系为2211(1)1n R R n k -=----。
3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。
4、正规方程组:采用OLS 方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为ˆX X X Y β''=。
5、方程显著性检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出判断。
二、单项选择题1、C :F 统计量的意义2、A :F 统计量的定义3、B :随机误差项方差的估计值1ˆ22--=∑k n e iσ4、A :书上P92和P93公式5、C :A 参看导论部分内容;B 在判断多重共线等问题的时候,很有必要;D 在相同解释变量情况下可以衡量6、C :书上P99,比较F 统计量和可决系数的公式即可7、A :书P818、D :A 截距项可以不管它;B 不考虑beta0;C 相关关系与因果关系的辨析 9、B :注意!只是在服从基本假设的前提下,统计量才服从相应的分布10、D :AB 不能简单通过可决系数判断模型好坏,还要考虑样本量、异方差等问题;三、多项选择题1、ACDE :概念性2、BD :概念性3、BCD :总体显著,则至少一个参数不为04、BC :参考可决系数和F 统计量的公式5、AD :考虑极端情况,ESS=0,可发现CE 错四、判断题、 1、√2、√3、×4、×:调整的可决系数5、√五、简答题 1、 答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。
多元线性回归的计算方法
多元线性回归的计算方法 摘要在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
线性回归计算公式
线性回归计算公式
简介
线性回归是机器学习中常用的一种方法,用于建立输入变量 x 和输出变量 y 之
间的线性关系。
该方法通过拟合一个线性函数来预测连续型变量的值。
本文将介绍线性回归的计算公式及其相关概念。
线性回归模型
在线性回归模型中,我们假设因变量 y 与自变量 x 之间存在一个线性关系。
简
单线性回归模型可以表示为:
linear_regression_model
其中,y 是因变量,x 是自变量,β0 是截距,β1 是斜率。
最小二乘法
在线性回归中,我们使用最小二乘法来估计模型参数。
最小二乘法的目标是使
观测数据与模型预测值之间的误差平方和最小化。
误差函数可以表示为:
least_squares
我们需要找到使误差函数最小化的β0 和β1 的值。
计算公式
通过最小二乘法,我们可以得到β0 和β1 的计算公式。
β1 的计算公式
β1 的计算公式如下:
beta_1_formula
其中,n 是观测数据的数量,xi 和 yi 分别是第 i 个观测数据的自变量和因变量。
β0 的计算公式
β0 的计算公式如下:
beta_0_formula
总结
线性回归是一种常用的预测连续型变量的方法,通过拟合一个线性函数来建立自变量和因变量之间的关系。
最小二乘法被广泛应用于线性回归模型的参数估计。
本文介绍了线性回归的计算公式,其中包括β0 和β1 的计算公式。
理解线性回归的计算公式是学习和应用线性回归算法的基础,能够帮助我们更好地理解和分析数据。
第二章一元线性回归模型
;
(c)比较绝对值 t1 与 tα 2 的大小。若 t1 > tα ,则拒绝原假设,判 定 β1 ≠ 0 ,解释变量 x 解释功效显著;若 t1 < tα ,则接受原假设,
2
判定
, x β1 = 0 不是有效的解释变量。
§2.3 显著性检验
(三)一元线性回归模型示例 例2.1 y=JYL,x=DSCYCZZZL,
ˆ β1 = β1 + ∑
xi − x u 2 i ∑(xi − x)
ˆ Eβ0 = β0
ˆ Eβ1 = β1
OLS估计的统计性质 §2.2 OLS估计的统计性质
在一切线性无偏估计中, ˆ ˆ 3. 在一切线性无偏估计中, β0 , β1独具最小方差
1 x2 ˆ var(β0 ) =σ 2 ( + ) 2 n ∑(xi − x)
0 ≤ R2 ≤ 1
2 R2 = rxy
计算公式
ˆ β12 ∑(xi − x)2 2 R = ∑( yi − y)2
OLS估计的统计性质 §2.2 OLS估计的统计性质
(一)线性回归模型的基本假定:
假定1. 解释变量是确定性变量,不具有随机性 假定2. (零均值假定) 假定3. (同方差假定)
Eui = 0 , i = 1 ,2 ,L, n
y = β0 + β1x + u
yi = β0 + β1xi + ui
{yi , xi }
i =1 ,2 ,L, n
i =1 ,2 ,L, n
§2.1 普通最小平方估计
(一)普通最小平方估计(OLS) 普通最小平方估计 待定回归函数 残差 残差平方和 驻点条件
ˆ ˆ ˆ y = β0 + β1x
计量经济学一元线性回归模型总结
第一节 两变量线性回归模型一.模型的建立1.数理模型的基本形式y x αβ=+ (2.1)这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。
(2)变量之间是否是线性关系可先通过散点图来观察。
2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析?表1.上海居民收入消费情况年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.一些非线性模型向线性模型的转化一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。
例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式y Akα=(2.2)也就是人均产出是人均资本的函数。
能不能用两变量线性回归模型分析这种总量生产规律?3.计量模型的设定 (1)基本形式:y x αβε=++ (2.3) 这里ε是一个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。
一元线性回归公式
一元线性回归公式一元线性回归公式是一种基本的统计学模型,它在统计学和机器学习领域中都有广泛应用,可以用来预测和分析两个变量之间的关系。
一元线性回归的公式可以通俗地表达为:Y = +X,其中Y为因变量,X为自变量,α为截距项,β为斜率。
一元线性回归的本质就是对两个变量之间的线性关系进行拟合,同时计算出两个变量之间的斜率β和截距项α。
两个变量之间的线性关系能够概括为Y = +X,其中X是自变量,Y是因变量,α是压力,β是应力。
由于一元线性回归模型只分析两个变量之间的关系,因此该模型也称为双变量回归模型。
一元线性回归的原理是什么呢?一元线性回归的原理是使用最小二乘法(Least Squares)来找到最佳拟合参数,以使所有样本点和拟合曲线之间的总误差最小。
通过最小二乘法,系统可以根据输入数据自动计算出α和β参数,从而实现回归拟合。
一元线性回归公式是一种重要的统计模型,用于分析两个变量之间的关系。
它能够解决各种数量和定性难题,比如预测消费者行为、分析市场趋势等,以及帮助企业做出数据驱动的决策。
统计学家除了使用一元线性回归公式外,还可以使用多元线性回归来分析多个变量之间的关系,多元线性回归旨在更加准确地预测多元变量之间的关系,从而获得更准确的预测结果。
一元线性回归模型可以很容易地使用统计分析软件或者编程语言实现,它是实现数据驱动的管理层面的有力武器。
此外,一元线性回归模型在机器学习领域中也有着重要的作用,因为它可以用来训练算法,从而帮助计算机更准确地预测结果。
总的来说,一元线性回归公式是一种广泛应用的基础统计学模型,它可以帮助企业进行数据驱动的决策,也可以用于机器学习算法的训练,从而提高算法预测的准确性。
线性回归分析
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy
❖
两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。
一元线性回归模型
1. 提出假设 H0:r=0 2.
线性关系不显著
计算检验统计量F
3. 确定显著性水平,并根据分子自由度1和分母自由度n2找出临界值F 4. 作出决策:若F>F ,拒绝H0;若F<F ,不拒绝H0
课堂作业
1、若X表示在一家分店工作的售货人数,Y表示这家分店的年销售额 (千元),已经求出Y对X的回归方程的估计结果如下表
最小二乘法的思路
纵向距离是Y的实际值与拟合值之差,差异大拟
合不好,差异小拟合好,所以称为残差、拟合
误差或剩余。
将所有纵向距离平方后相加,即得误差平方和,
“最好”直线就是使误差平方和最小的直线。 拟合直线在总体上最接近实际观测点。 于是可以运用求极值的原理,将求最好拟合直 线问题转换为求误差平方和最小的问题。
显著性检验
1、经济意义检验 2、统计意义检验
经济意义检验
1、检验参数估计量的符号 2、检验参数估计量的大小 3、参数之间的关系
显著性检验
1、相关系数检验 2、回归系数检验 3、线性关系检验
回归系数的检验
1. 检验 x 与 y 之间是否具有线性关系, 或者说,检验自变量 x 对因变量 y 的 影响是否显著
x
最小二乘法
(
ˆ 0
和
ˆ 1
的计算公式)
ˆ ˆ 根据最小二乘法的要求,可得求解 0 和 1 的 公式如下 n Q ˆ ˆ 2(1) yi 0 1 xi 0 ˆ 0 i 1
n Q ˆ ˆ 2 yi 0 1 xi ( xi ) 0 ˆ 1 i 1
Байду номын сангаасyf
和
。
多元线性回归的计算方法
多元线性回归得计算方法摘要在实际经济问题中,一个变量往往受到多个变量得影响。
例如,家庭消费支出,除了受家庭可支配收入得影响外,还受诸如家庭所有得财富、物价水平、金融机构存款利息等多种因素得影响,表现在线性回归模型中得解释变量有多个。
这样得模型被称为多元线性回归模型。
多元线性回归得基本原理与基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归得一些基本问题。
ﻫ但由于各个自变量得单位可能不一样,比如说一个消费水平得关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)得单位显然就就是不同得,因此自变量前系数得大小并不能说明该因素得重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得得回归系数要小,但就就是工资水平对消费得影响程度并没有变,所以得想办法将各个自变量化到统一得单位上来。
前面学到得标准分就有这个功能,具体到这里来说,就就就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到得回归系数就能反映对应自变量得重要程度。
这时得回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxkﻫ注意,由于都化成了标准分,所以就不再有常数项a了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端得变量都取0时,常数项也就为0了。
多元线性回归模型得建立多元线性回归模型得一般形式为Yi=β0+β1X1i+β2X2i+…+=1,2,…,n其中 k为解释变量得数目,=(j=1,2,…,k)称为回归系数(regress ion coefficient)。
上式也被称为总体回归函数得随机表达式。
它得非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj也被称为偏回归系数(partial regression coefficient)多元线性回归得计算模型一元线性回归就就是一个主要影响因素作为自变量来解释因变量得变化,在现实问题研究中,因变量得变化往往受几个重要因素得影响,此时就需要用两个或两个以上得影响因素作为自变量来解释因变量得变化,这就就就是多元回归亦称多重回归。
一元回归方程公式
一元回归方程公式回归分析只涉及到两个变量的,称一元回归分析。
一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。
回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。
当Y=f(X)的形式是一个直线方程时,称为一元线性回归。
这个方程一般可表示为Y=A+BX。
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。
A、B确定后,有一个X的观测值,就可得到一个Y的估计值。
回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。
有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。
1、回归直线方程可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。
按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
2、回归方程是对变量之间统计关系进行定量描述的一种数学表达式。
线性回归模型,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
3、最小二乘法又称最小平方法,是一种数学优化技术。
与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。
一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同。
一元线性回归
一、一元线性回归(一)基本公式如果预测对象与主要影响因素之间存在线性关系,将预测对象作为因变量y,将主要影响因素作为自变量x,即引起因变量y变化的变量,则它们之间的关系可以用一元回归模型表示为如下形式:y=a+bx+e其中:a和b是揭示x和y之间关系的系数,a为回归常数,b为回归系数e是误差项或称回归余项。
对于每组可以观察到的变量x,y的数值xi,yi,满足下面的关系:yi =a+bxi+ei其中ei是误差项,是用a+bxi去估计因变量yi的值而产生的误差。
在实际预测中,ei是无法预测的,回归预测是借助a+bxi得到预测对象的估计值yi。
为了确定a和b,从而揭示变量y与x之间的关系,公式可以表示为:y=a+bx公式y=a+bx是式y=a+bx+e的拟合曲线。
可以利用普通最小二乘法原理(ols)求出回归系数。
最小二乘法基本原则是对于确定的方程,使观察值对估算值偏差的平方和最小。
由此求得的回归系数为:b=[∑xiyi—x∑yi]/∑xi2—x∑xia=-b式中:xi、yi分别是自变量x和因变量y的观察值,、分别为x和y的平均值.=∑xi/ n ; = ∑yi/ n对于每一个自变量的数值,都有拟合值:yi’=a+bxiyi’与实际观察值的差,便是残差项ei=yi一yi’(二)一元回归流程三)回归检验在利用回归模型进行预测时,需要对回归系数、回归方程进行检验,以判定预测模型的合理性和适用性。
检验方法有方差分析、相关检验、t检验、f检验。
对于一元回归,相关检验与t检验、f检验的效果是等同的,因此,在一般情况下,通过其中一项检验就可以了。
对于多元回归分析,t检验与f检验的作用却有很大的差异。
1.方差分析通过推导,可以得出:∑(yi—y-)2= ∑(yi—yi’)2+∑(yi—y-)2其中:∑(yi—y-)2=tss,称为偏差平方和,反映了n个y值的分散程度,又称总变差。
∑(yi—yi’)2=rss,称为回归平方和,反映了x对y线性影响的大小,又称可解释变差。
一元与多元线性回归模型的主要计算公式
⼀元与多元线性回归模型的主要计算公式⼀元与多元线性回归模型的主要计算公式公式名称计算公式
序
号
1真实的回归模型y t = β0 + β1 x t + u t
2估计的回归模型
y t =+x t +
3真实的回归函数E(y t) = β0 + β1 x t
4估计的回归函数
=+x t
5最⼩⼆乘估计公
式
6
和的⽅差
7σ2的⽆偏估计
量= s2 =
8
和估计的
⽅差
9总平⽅和
∑(y t -) 2
10回归平⽅和
∑(-) 2
11误差平⽅和
∑(y t -)2 = ∑()2
12可决系数(确定
系数)
13检验β0,β1 是否
为零的t统计量
14β1的置信区间
-tα(T-2) ≤β1≤+tα(T-2) 15单个y T+1的点预
测=+x T+1
16E(y
T+1
)的区间预
测
17单个y
T+1
的区间
预测
18样本相关系数
1真实的回归模
型
Y= X β+ u
= X
= (X 'X)-1X 'Y
= s2 ='/ (T - k)
() =(X 'X)-1
T
+
s
是控制z t不变条件下的x t, y t的简单相关系数。
是y t与的简单相关系数。
其中是y t对x t1,x t2,…x tk–1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号
公式名称
计算公式
1
真实的回归模型
yt=0+1xt+ut
2
估计的回归模型
yt= + xt+
3
真实的回归函数
E(yt) =0+1xt
4
估计的回归函数
= + xt
5
最小二乘估计公式
6
和 的方差
7
的无偏估计量
= s2=
8
和 估计的方差
9
总平方和
(yt- )2
10
回归平方和
总平方和
SST=Y'Y-T
11
残差平方和
SSE= '
12
可决系数
13
调整的可决系数
14
F统计量
15
t统计量
16
点预测公式
C= (1xT+1 1xT+1 2…xT+1k-1)
=C = 0+ 1xT+1 1+…+ k-1xT+1k-1
17
E(yT+1)的置信区间预测
C t/2 (1,T-k)s
18
单个yT+1的置信区间预测
Y=X+u
2
估计的回归模型
Y=X +
3
真实的回归函数
E(Y) =X
4
估计的回归函数
=X
5
最小二乘估计公式
= (X'X)-1X'Y
6
回归系数的方差
Var( ) =2(X'X)-1
7
的无偏估计量
=s2= ' / (T-k)
8
回归系数估计的方差
( )= (X'X)-1
9
回归平方和
SSR= = ' -T
10
( - )2
11
误差平方和
(yt- )2=( )2
12
可决系数(确定系数)
13
检验0,1是否Leabharlann 零的t统计量141的置信区间
- t(T-2)1 + t(T-2)
15
单个yT+1的点预测
= + xT+1
16
E(yT+1)的区间预测
17
单个yT+1的区间预测
18
样本相关系数
1
真实的回归模型
Y=X+u
1
真实的回归模型
是yt与 的简单相关系数。其中 是yt对xt1,xt2,…xtk–1回归的拟合值。
C t/2 (T-k)s
19
预测误差
et= -yt,t= 1, 2,…,T
20
相对误差
PE= ,t= 1, 2,…,T
21
误差均方根
22
绝对误差平均
23
相对误差绝对值平均
24
Theil系数
25
偏相关系数
是控制zt不变条件下的xt,yt的简单相关系数。
26
yt与xt1,xt2,…,xtk–1的复相关系数