土力学教案
2024版《土力学》教学教案
1 2
密度和重度
土的密度是指单位体积土的质量,重度是指单位 体积土所受的重力。它们是土的基本物理性质指 标。
含水量
土的含水量是指土中水的质量与固体颗粒质量的 比值。含水量对土的工程性质有很大影响。
孔隙比和孔隙率
3
孔隙比是指土中孔隙体积与固体颗粒体积的比值, 孔隙率是指土中孔隙体积占总体积的百分比。它 们反映了土的密实程度。
课程内容
涵盖土的物理性质、土的渗透性、 土的压缩性、地基承载力、土压 力与挡土墙、边坡稳定等基础知 识。
课程意义
为土木工程专业学生提供必要的 土壤力学知识,为后续的工程设 计、施工和管理打下基础。
2024/1/29
4
教学目标与要求
知识目标
掌握土的基本物理性质、力学性质及其工程应用;理解地 基承载力、土压力、边坡稳定等基本概念和原理。
01
能力目标
能够运用土力学知识分析实际工程问题, 具备初步的工程设计和施工能力。
02
2024/1/29
03
素质目标
培养学生的工程实践能力和创新思维, 提高学生的综合素质。
5
教材及参考书目
教材
《土力学》(第X版),XXX主编,XX出版社。
参考书目
《基础工程》、《岩土工程勘察》、《土质学与土力学》等相关教材及专业书 籍。同时,鼓励学生阅读最新的学术论文和研究报告,了解土力学领域的最新 进展和动态。
有效应力是指土壤骨架所承担的那部分应力,它决定了土壤的压缩变形
特性。
02
有效应力原理内容
有效应力原理表明,土壤的总应力等于土壤孔隙中的水压力和土壤骨架
承担的有效应力之和。
2024/1/29
03
有效应力与孔隙水压力的关系
《土力学与地基基础》教案
《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、性质和分类,掌握土的三相指标及土的密度、含水率和塑性指数的概念。
学会使用土工试验仪器进行土的物理性质试验。
理解土的工程特性及其对地基基础的影响。
1.2 教学内容土壤的组成与结构土壤的物理性质:密度、含水率、塑性指数土壤的力学性质:抗剪强度、压缩性、渗透性土的分类与工程特性土工试验:密度试验、含水率试验、塑性指数试验1.3 教学方法课堂讲授:讲解土壤的性质、分类和工程特性。
实验教学:指导学生使用土工试验仪器进行土的物理性质试验。
案例分析:分析实际工程案例,理解土壤性质对地基基础的影响。
第二章:土力学基本理论2.1 教学目标掌握土力学的基本概念、原理和定律,包括剪切强度理论、压缩理论和小应变弹性理论。
学会运用土力学理论分析土壤的力学行为。
土力学的基本概念:应力、应变、应力路径剪切强度理论:抗剪强度、库仑定律、莫尔-库仑准则压缩理论:压缩性、压缩系数、压缩模量小应变弹性理论:弹性模量、泊松比、弹性应变2.3 教学方法课堂讲授:讲解土力学的基本概念、原理和定律。
数值分析:运用数值方法分析土壤的力学行为。
案例分析:分析实际工程案例,运用土力学理论解决问题。
第三章:地基基础设计原理3.1 教学目标掌握地基基础的设计原理和方法,包括浅基础、深基础和地下工程的设计。
学会运用土力学和结构力学的知识进行地基基础的设计。
3.2 教学内容浅基础设计原理:承载力计算、基础尺寸确定、沉降计算深基础设计原理:桩基础、沉井基础、地下连续墙地下工程设计原理:隧道、地铁、地下室3.3 教学方法课堂讲授:讲解地基基础的设计原理和方法。
数值分析:运用数值方法分析地基基础的设计问题。
案例分析:分析实际工程案例,运用土力学和结构力学的知识进行地基基础设计。
第四章:地基承载力与稳定性分析掌握地基承载力和稳定性的分析方法,包括极限平衡法、数值方法和实验方法。
学会运用地基承载力和稳定性分析方法解决实际工程问题。
土力学及地基基础教案
2024/1/30
31
地基处理的效果评价
承载力评价
沉降评价
通过静载荷试验等方法,检测地基处理后 的承载力是否满足设计要求。
通过沉降观测等方法,检测地基处理后的 沉降量是否在设计允许范围内。
稳定性评价
环境影响评价
对于不良地质条件的地基处理,需要进行 稳定性评价,确保地基处理后的稳定性满 足要求。
2024/1/30
基础底面压力计算
根据上部结构荷载和基础自重计算基础底面压力。
2024/1/30
地基承载力验算
比较基础底面压力与地基承载力特征值,确保满足规范要求。若不 满足,需调整基础尺寸或采取地基处理措施。
23
05 深基础设计
2024/1/30
24
深基础的类型与特点
2024/1/30
桩基础
由桩和连接桩顶的承台共同组成,桩身全部或部分埋于土中,承台底面与土体接触。具有 高承载力、沉降小且均匀、能承受一定的水平力和上拔力等特点。
土的压缩性
土在压力作用下体积减小的性质 称为土的压缩性。土的压缩性用 压缩系数表示,压缩系数越大,
土的压缩性越高。
土的抗剪强度
土抵抗剪切破坏的能力称为土的 抗剪强度。土的抗剪强度与土的 组成、结构和含水量等因素有关
。
土的渗透性
土允许水通过的能力称为土的渗 透性。土的渗透性用渗透系数表 示,渗透系数越大,土的渗透性
地基处理技术
包括换填法、强夯法、排水固 结法等常用地基处理方法及其
适用条件。
2024/1/30
35
课程学习成果展示
学生能够熟练掌握土力学及地基 基础的基本概念和理论,具备分 析和解决实际工程问题的能力。
学生能够运用所学知识进行地基 基础设计,合理选择基础类型,
《土力学》教案》课件
《土力学》教案课件一、教学目标:1. 让学生了解土力学的基本概念和研究对象。
2. 使学生掌握土的物理性质、力学性质和工程应用。
3. 培养学生运用土力学知识解决实际问题的能力。
二、教学内容:1. 土力学的基本概念和研究对象讲解土力学的定义、研究内容和方法。
2. 土的物理性质介绍土的组成、颗粒大小、湿度、密度等性质。
3. 土的力学性质讲解土的压缩性、抗剪强度、剪切变形等性质。
4. 土的工程应用探讨土在建筑工程、道路工程、水利工程等方面的应用。
三、教学方法:1. 讲授法:讲解土力学基本概念、性质和工程应用。
2. 案例分析法:分析实际工程中的土力学问题,引导学生运用所学知识解决实际问题。
3. 互动教学法:鼓励学生提问、发表观点,提高课堂参与度。
四、教学准备:1. 教材:选用权威、实用的土力学教材。
2. 课件:制作精美、清晰的课件,辅助讲解。
3. 案例资料:收集相关工程案例,用于分析讨论。
五、教学过程:1. 导入:简要介绍土力学的背景和发展,激发学生兴趣。
2. 讲解土力学的基本概念和研究对象,让学生掌握土力学的定义和研究内容。
3. 介绍土的物理性质,通过实验、图片等方式展示土的组成和性质。
4. 讲解土的力学性质,结合实际工程案例,让学生了解土的压缩性、抗剪强度等性质。
5. 探讨土的工程应用,分析土在建筑工程、道路工程、水利工程等方面的作用。
6. 课堂互动:鼓励学生提问、发表观点,解答学生疑问。
8. 布置作业:布置适量作业,巩固所学知识。
六、教学目标:1. 让学生理解土的分类及其工程特性。
2. 使学生掌握土的渗透性质及其在工程中的应用。
3. 培养学生运用土的渗透知识解决实际问题的能力。
七、教学内容:1. 土的分类讲解土的分类标准、各类土的工程特性。
2. 土的渗透性质介绍土的渗透系数、渗透定律、渗透力等概念。
3. 土的渗透应用探讨土的渗透性质在建筑工程、水利工程等方面的应用。
八、教学方法:1. 讲授法:讲解土的分类、渗透性质及其应用。
土力学地基基础教案参考
土力学地基基础教案参考一、教学目标1. 了解土力学的基本概念和研究内容2. 掌握地基基础的设计原则和方法3. 理解土的物理性质和力学性质4. 学会进行地基承载力和稳定性分析5. 能够应用土力学原理解决实际工程问题二、教学内容1. 土力学基本概念和研究内容土力学的定义和发展历程土力学的研究对象和方法土的分类和性质2. 地基基础设计原则和方法地基的概念和作用地基基础的设计原则不同类型地基的处理方法3. 土的物理性质土的组成和结构土的密度和湿度土的粒径分布和渗透性4. 土的力学性质土的抗剪强度土的压缩性和膨胀性土的粘聚力和内摩擦角5. 地基承载力和稳定性分析地基承载力的定义和计算方法地基稳定性的判断和提高方法地基变形和沉降的控制措施三、教学方法1. 讲授法:讲解土力学基本概念、原理和方法,通过案例分析加深学生理解2. 实验法:安排土工试验,让学生亲自操作和观察土的性质和行为3. 讨论法:组织学生进行小组讨论,分享各自的学习心得和经验4. 案例分析法:引入实际工程案例,让学生学会应用土力学原理解决问题四、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的学习兴趣和积极性2. 作业和测验:布置相关作业和测验,评估学生对土力学知识的理解和应用能力4. 小组讨论:评估学生在讨论中的合作和沟通能力,以及提出的观点和解决方案的质量五、教学资源1. 教材和参考书:选用合适的土力学地基基础教材和参考书籍,提供系统的理论知识2. 课件和教案:准备详细的课件和教案,辅助学生理解和记忆土力学知识3. 土工试验设备:安排实验室和土工试验设备,让学生亲手操作和观察土的性质和行为4. 实际工程案例:收集相关工程案例,用于案例分析和讨论,帮助学生学会应用土力学原理解决实际问题六、教学活动1. 导入新课:通过引入实际工程案例,引发学生对土力学地基基础的兴趣和关注。
2. 知识讲解:详细讲解土力学的基本概念、原理和方法,结合图示和动画演示,增强学生的理解。
《土力学教案》word版
《土力学教案》word版一、教案概述1. 课程名称:土力学2. 适用年级:大学本科一年级3. 课时安排:本学期共32课时,每课时45分钟4. 教学目标:使学生了解土力学的基本概念、基本原理和基本方法,培养学生分析和解决土力学问题的能力。
二、教学内容1. 第一章土的性质与分类土的组成与结构土的物理性质土的力学性质土的工程分类2. 第二章土的渗透性渗透定律土的渗透系数土的渗透性影响因素渗透问题在工程中的应用3. 第三章土的压力与支撑力土的自重压力静止侧压力主动土压力被动土压力支撑力的计算与应用4. 第四章土的剪切强度与变形特性剪切强度定律土的抗剪强度指标土的变形特性土的变形模量土的泊松比5. 第五章土的稳定性分析土体稳定性的影响因素滑动面与安全系数土的抗滑稳定性分析方法土体稳定性计算实例三、教学方法1. 讲授法:讲解土力学基本概念、原理和公式,阐述土力学问题的解决方法。
2. 案例分析法:分析实际工程案例,使学生更好地理解土力学的应用。
3. 实验法:组织学生进行土力学实验,培养学生的实践操作能力。
4. 小组讨论法:分组讨论土力学问题,提高学生的团队合作能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等情况。
2. 期中考试:测试学生对土力学基本概念、原理和方法的掌握程度。
3. 期末考试:全面考察学生对本课程知识的掌握和应用能力。
4. 实验报告:评价学生在实验过程中的操作技能和分析问题能力。
五、教学资源1. 教材:推荐《土力学》(第四版),作者:李广信。
2. 辅助教材:推荐《土力学教程》,作者:李俊。
3. 网络资源:搜集相关土力学的学术论文、工程案例等,为学生提供丰富的学习资料。
4. 实验室设备:进行土力学实验,验证土力学原理。
5. 投影仪、PPT等教学设备:辅助课堂教学。
六、第四章土的剪切强度与变形特性(续)土的剪切带发展土的应变软化现象土的残余强度三轴剪切试验土的剪切模量土的剪切强度公式的应用七、第五章土的稳定性分析(续)边坡稳定性分析地基承载力分析土体稳定性设计方法土体稳定性分析的数值方法稳定性分析在工程中的应用实例八、第六章土的动力特性土的动应力与动应变动三轴试验土的动力模量土的阻尼比地震作用下的土动力学问题土的动力特性在工程中的应用九、第七章土的工程应用土在基础工程中的应用土在地下工程中的应用土在道路工程中的应用土在水利工程中的应用土在边坡工程中的应用土在环境工程中的应用十、第八章土力学的实验技术与方法土的物理性质试验土的力学性质试验土的渗透性试验土的剪切强度试验土的动力特性试验实验数据处理与分析十一、第九章土力学数值分析方法土力学数值分析的基本原理有限元法在土力学中的应用有限差分法在土力学中的应用离散元法在土力学中的应用土力学数值分析软件介绍数值分析在土力学问题中的应用实例十二、第十章土力学与地基基础地基的概念与分类地基承载力理论地基变形控制原则地基处理技术地基基础设计方法地基基础在工程中的应用实例十三、第十一章边坡工程边坡稳定的影响因素边坡稳定性分析方法边坡稳定控制技术边坡加固与维护边坡工程实例分析十四、第十二章地下工程地下工程概述地下工程设计原则地下工程支护技术地下工程施工方法地下工程实例分析十五、第十三章土力学在环境工程中的应用土力学在土地利用规划中的应用土力学在地质灾害防治中的应用土力学在土壤污染控制中的应用土力学在生态系统保护中的应用土力学在环境工程实例分析中的应用十一、第十四章土力学在岩土工程中的应用岩土工程概述岩土工程设计原则岩土工程勘察方法岩土工程支护与加固技术岩土工程实例分析十二、第十五章土力学在结构工程中的应用结构工程概述结构工程设计原则结构工程与土力学的关系结构工程的地基处理技术结构工程实例分析十三、第十六章土力学在交通运输工程中的应用交通运输工程概述交通运输工程设计原则交通运输工程的土力学问题交通运输工程的地基处理技术交通运输工程实例分析十四、第十七章土力学在水利工程中的应用水利工程概述水利工程设计原则水利工程的土力学问题水利工程的地基处理技术水利工程实例分析十五、第十八章土力学发展趋势与展望土力学研究的新进展土力学在新技术中的应用土力学在可持续发展中的作用土力学教育与人才培养土力学未来发展趋势与挑战重点和难点解析土力学作为一门研究土壤性质及其与工程结构相互作用的学科,具有很强的实践性和应用性。
2024版《土力学》授课教案
详细阐述条分法的计算步骤,包括确定滑动面、划分条块、计算条 块重力、确定条块间作用力、建立平衡方程并求解等。
条分法的优缺点及适用范围
分析条分法的优缺点,并指出其适用范围及局限性。
边坡稳定分析实例讲解
01
02
03
04
实例背景介绍
介绍一个具体的边坡稳定分析 实例,包括工程背景、地质条
件等。
以一个典型的挡土墙设计为例, 详细介绍设计过程中需要考虑的 因素、采用的设计方法以及最终 的设计结果。
经验教训
总结挡土墙设计过程中的经验教 训,如合理选择土压力计算方法、 充分考虑地质条件对设计的影响、 注意施工过程中的质量控制等。
PART 07
边坡稳定分析方法及应用
REPORTING
边坡稳定分度较大或土壤颗粒较粗时,渗流可能进入紊流状态,此时达西
定律不再适用。此外,对于非饱和土壤的渗流问题,达西定律也需要进
行修正。
渗透系数的测定方法
室内试验法
通过室内试验测定土壤的渗透系数,常用的方法有常水头法和变水头法。这些方法可以在控 制条件下模拟实际渗流情况,获得较为准确的渗透系数值。
在计算主动土压力时,需考虑土的侧压 力系数、墙背倾斜度、墙的位移量及土 的内摩擦角对土压力的影响。
被动土压力计算方法
定义与特性
计算公式
注意事项
被动土压力是指挡土墙在被动状 态下(即墙体向靠近土体方向偏 移或转动),土体对墙体的水平 压力。其大小与土的性质、墙的 高度、墙的位移量等因素有关。
被动土压力的计算公式为 Ep = Kp × γ × H,其中 Ep 为被动土 压力,Kp 为被动土压力系数, γ 为土的容重,H 为墙高。
PART 02
FK1362土力学课程设计
FK1362土力学课程设计一、教学目标本课程的教学目标是使学生掌握FK1362土力学的基本概念、原理和方法,培养学生运用土力学知识分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)掌握土的物理性质、力学性质和工程特性;(2)理解土力学的基本原理,如土压力、地基承载力、渗透力等;(3)熟悉土力学的应用领域,如土工合成材料、地基处理、边坡稳定性分析等。
2.技能目标:(1)能够运用土力学知识分析和解决实际工程问题;(2)具备一定的实验操作能力,掌握土力学实验方法和技术;(3)具备较强的文献查阅和论文撰写能力。
3.情感态度价值观目标:(1)培养学生对土力学的兴趣和热情,提高学生的人文素养;(2)培养学生团结协作、创新精神和终身学习的意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.土的物理性质和力学性质:包括土的颗粒分布、密度、含水率、抗剪强度等;2.土力学基本原理:包括土压力、地基承载力、渗透力等;3.土力学应用领域:包括土工合成材料、地基处理、边坡稳定性分析等;4.土力学实验:包括土的物理性质实验、力学性质实验等。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:教师讲解土力学的基本概念、原理和方法;2.讨论法:学生分组讨论土力学问题,培养学生的思考和表达能力;3.案例分析法:分析实际工程案例,使学生更好地理解和应用土力学知识;4.实验法:学生动手进行土力学实验,提高学生的实验操作能力。
四、教学资源为实现教学目标,我们将采用以下教学资源:1.教材:选用权威、实用的土力学教材,为学生提供系统、全面的学习资料;2.参考书:提供相关领域的参考书籍,帮助学生拓展知识面;3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:配置完善的实验设备,确保学生能够顺利进行实验操作。
五、教学评估本课程的教学评估采用多元化方式,全面、客观地评价学生的学习成果。
土力学地基基础教案参考
土力学地基基础教案参考一、教学目标1. 让学生了解土力学地基基础的基本概念,理解土力学在工程中的重要性。
2. 掌握地基的分类及特点,了解地基处理的方法和技术。
3. 培养学生分析问题、解决问题的能力,能够运用土力学知识对地基问题进行判断和处理。
二、教学内容1. 土力学地基基础的基本概念土力学的研究对象和内容地基的定义和作用地基与基础的区别与联系2. 地基的分类及特点天然地基与人工地基刚性基础与柔性基础不同类型地基的特点及适用范围3. 地基处理的方法和技术地基处理的目的是什么常用的地基处理方法(如压实、排水、加固等)地基处理技术的选择和应用三、教学方法1. 采用讲授法,系统讲解土力学地基基础的基本概念、地基分类及特点、地基处理的方法和技术。
2. 结合案例分析,让学生更好地理解地基处理技术的应用和实际效果。
3. 开展课堂讨论,鼓励学生提问、发表观点,提高学生的参与度和积极性。
四、教学准备1. 教案、教材、课件等教学资源2. 相关案例资料3. 投影仪、白板等教学设备五、教学评价1. 课堂问答:检查学生对土力学地基基础基本概念的理解和掌握情况。
2. 课后作业:布置相关练习题,检验学生对地基分类、特点及处理技术的掌握。
3. 课程报告:要求学生选择一个地基处理案例进行分析,评估学生的分析和实际应用能力。
六、教学内容1. 土的性质与分类土的组成与结构土的物理性质(如密度、含水率、粒径分布等)土的力学性质(如抗剪强度、压缩性、渗透性等)土的分类标准及常见土类特性2. 土力学基本定律应力与应变的关系土的抗剪强度理论土的压力传递规律土的压缩性理论七、教学方法1. 采用互动教学法,通过提问、讨论等方式引导学生思考土的性质与分类的重要性。
2. 利用实验或模拟实验,让学生直观地了解土的物理和力学性质。
3. 通过案例分析,讲解土力学基本定律在实际工程中的应用。
八、教学准备1. 教案、教材、课件等教学资源2. 土的性质与分类的实验器材或模拟实验设备3. 土力学基本定律的相关案例资料4. 投影仪、白板等教学设备九、教学评价1. 课堂问答:评估学生对土的性质与分类的理解程度。
土力学地基基础教案
一、教案基本信息教案名称:土力学地基基础教案课时安排:45分钟教学目标:1. 让学生了解土力学地基基础的基本概念和原理;2. 使学生掌握地基的分类和性质;3. 培养学生运用土力学原理分析和解决实际问题的能力。
教学方法:1. 讲授法:讲解土力学地基基础的基本概念、原理和分类;2. 案例分析法:分析实际工程中的地基问题,引导学生运用土力学知识解决实际问题;3. 讨论法:分组讨论地基处理方法和优缺点,促进学生互动交流。
教学内容:1. 土力学基本概念:土的组成、土的物理性质、土的力学性质;2. 地基与基础的概念:地基的定义、地基的分类、基础的定义与分类;3. 地基的性质:承载力、压缩性、不均匀性、透水性;4. 地基处理方法:换填法、压实法、排水法、加固法;5. 地基验算:承载力验算、沉降验算。
教学步骤:1. 引入新课:通过提问方式引导学生回顾土力学基本概念,引出地基与基础的概念;2. 讲解土力学基本概念:详细讲解土的组成、土的物理性质、土的力学性质;3. 讲解地基与基础的概念:阐述地基的定义、地基的分类、基础的定义与分类;4. 讲解地基的性质:详细介绍承载力、压缩性、不均匀性、透水性的概念和特点;5. 讲解地基处理方法:介绍换填法、压实法、排水法、加固法的原理和适用条件;6. 讲解地基验算:阐述承载力验算和沉降验算的方法和步骤;7. 案例分析:选取实际工程案例,分析地基问题及其解决方法;8. 小组讨论:让学生分组讨论地基处理方法的优缺点,分享讨论成果;10. 布置作业:布置练习题,巩固所学知识。
教学评价:1. 课堂问答:检查学生对土力学基本概念、地基与基础的理解程度;2. 案例分析:评估学生运用土力学知识分析实际问题的能力;3. 小组讨论:评价学生在讨论中提出观点的合理性和合作意识;4. 作业完成情况:检验学生对地基与基础知识的掌握和运用能力。
二、课时安排第一课时:土力学基本概念、地基与基础的概念第二课时:地基的性质、地基处理方法第三课时:地基验算、案例分析第四课时:小组讨论、课堂小结、布置作业三、教学资源1. 教材或教学参考书;2. 课件或黑板;3. 实际工程案例资料;4. 练习题。
土力学地基基础教案
土力学地基基础教案第一章:土力学概述1.1 教学目标让学生了解土力学的定义、研究对象和意义。
让学生掌握土的分类和性质。
让学生了解土力学的基本原理和研究方法。
1.2 教学内容土力学的定义和研究对象土的分类和性质土力学的基本原理和研究方法1.3 教学方法讲授法:讲解土力学的定义、研究对象和意义。
互动法:引导学生掌握土的分类和性质。
案例分析法:分析土力学的基本原理和研究方法。
第二章:土的物理性质2.1 教学目标让学生掌握土的密度、孔隙比、颗粒分析等基本物理性质。
让学生了解土的渗透性及其影响因素。
2.2 教学内容土的密度、孔隙比、颗粒分析等基本物理性质土的渗透性及其影响因素2.3 教学方法讲授法:讲解土的基本物理性质。
实验法:进行土的密度、孔隙比、颗粒分析等实验。
互动法:引导学生了解土的渗透性及其影响因素。
第三章:土的力学性质3.1 教学目标让学生掌握土的压缩性、剪切强度、变形模量等力学性质。
让学生了解土的力学性质的测试方法。
3.2 教学内容土的压缩性、剪切强度、变形模量等力学性质土的力学性质的测试方法3.3 教学方法讲授法:讲解土的力学性质。
实验法:进行土的压缩性、剪切强度、变形模量等实验。
互动法:引导学生了解土的力学性质的测试方法。
第四章:土的渗透性质4.1 教学目标让学生掌握土的渗透系数、渗透规律等渗透性质。
让学生了解渗透性质的影响因素和应用。
4.2 教学内容土的渗透系数、渗透规律等渗透性质渗透性质的影响因素和应用4.3 教学方法讲授法:讲解土的渗透性质。
实验法:进行土的渗透实验。
互动法:引导学生了解渗透性质的影响因素和应用。
第五章:土的工程应用5.1 教学目标让学生了解土在工程中的作用和重要性。
让学生掌握土的工程应用方法和技术。
5.2 教学内容土在工程中的作用和重要性土的工程应用方法和技术5.3 教学方法讲授法:讲解土在工程中的作用和重要性。
案例分析法:分析土的工程应用方法和技术。
互动法:引导学生讨论土的工程应用中的问题和解决方案。
《土力学》教案》课件
《土力学》教案课件第一章:土力学概述1.1 土力学的定义和研究对象1.2 土的分类和性质1.3 土力学的研究方法和基本原理1.4 土力学在工程中的应用第二章:土的物理性质2.1 土的组成和结构2.2 土的粒径分布和孔隙率2.3 土的密度和相对湿度2.4 土的渗透性和毛细作用第三章:土的力学性质3.1 土的压缩性和固结理论3.2 土的剪切强度和剪切变形3.3 土的弹性模量和泊松比3.4 土的粘聚力和内摩擦角第四章:土的压力和稳定性4.1 土的自重压力和有效压力4.2 土的浮力4.3 土的抗剪强度和稳定性分析4.4 土的压力分布和支撑结构的设计第五章:土的动力性质5.1 土的动力响应和动力特性5.2 土的动剪切强度和动模量5.3 土的动力压缩和动力固结5.4 土的动力稳定性和地震工程第六章:土工测试方法6.1 土样采集和制备6.2 土的物理性质测试6.3 土的力学性质测试6.4 土的渗透性测试第七章:土的工程应用7.1 土在基础工程中的应用7.2 土在地下工程中的应用7.3 土在水利工程中的应用7.4 土在道路工程中的应用第八章:土的加固和改良8.1 土的加固方法和技术8.2 土的改良方法和材料8.3 土的加固和改良效果评价8.4 土的加固和改良在工程中的应用第九章:土力学数值分析9.1 土力学数值模型的建立9.2 土力学数值分析的方法和算法9.3 土力学数值分析在工程中的应用案例9.4 土力学数值分析的局限性和发展趋势第十章:土力学发展趋势与展望10.1 土力学研究的新理论和新方法10.2 土力学在可持续发展和环境保护中的应用10.3 土力学在智能化和数字化技术的发展趋势10.4 土力学在工程实践中的挑战和机遇重点解析本文档详细介绍了《土力学》教案课件的十个章节内容,涵盖了土力学的概述、物理性质、力学性质、压力和稳定性、动力性质、土工测试方法、土的工程应用、土的加固和改良、土力学数值分析以及土力学的发展趋势与展望等方面的基础知识、应用技术和研究动态。
2024年土质学与土力学授课教案
土质学与土力学授课教案教案土质学与土力学一、教学目标本课程旨在让学生了解土质学与土力学的基本概念、基本理论和基本方法,掌握土的物理性质、力学性质和工程性质,能够运用所学知识解决实际工程问题。
二、教学内容1.土的物理性质(1)土的三相组成:固相、液相、气相。
(2)土的密度:干密度、饱和密度、浮密度。
(3)土的含水量:有效含水量、饱和含水量。
(4)土的孔隙性:孔隙比、孔隙率。
2.土的力学性质(1)土的抗压强度:无侧限抗压强度、三轴抗压强度。
(2)土的抗拉强度:直剪抗拉强度、三轴抗拉强度。
(3)土的剪切强度:直剪试验、三轴剪切试验。
(4)土的压缩性:压缩系数、压缩模量。
3.土的工程性质(1)土的稳定性:边坡稳定、基础稳定。
(2)土的渗透性:渗透系数、渗透力。
(3)土的固结性:固结系数、固结时间。
(4)土的沉降:瞬时沉降、固结沉降。
三、教学方法1.讲授法:讲解基本概念、基本理论和基本方法。
2.实验法:通过实验让学生了解土的物理性质、力学性质和工程性质。
3.案例分析法:分析实际工程案例,让学生了解土质学与土力学在实际工程中的应用。
四、教学安排1.学时安排:本课程共计32学时,每周2学时。
2.教学进度:每学时讲解一个或多个知识点,共计16周。
五、考核方式1.平时成绩:占30%,包括出勤、课堂表现、作业等。
2.实验成绩:占30%,包括实验报告、实验操作等。
3.期末考试:占40%,采用闭卷考试形式,考试内容涵盖本课程所有知识点。
六、教学资源1.教材:《土质学与土力学》(作者:X,出版社:X)2.参考书籍:《土力学》(作者:X,出版社:X)、《土质学》(作者:X,出版社:X)3.网络资源:中国知网、维普网等相关学术论文和资料。
七、教学效果预期通过本课程的学习,学生能够掌握土质学与土力学的基本概念、基本理论和基本方法,具备解决实际工程问题的能力,为后续课程学习和未来工作奠定基础。
重点关注的细节:土的物理性质1.土的三相组成土是由固相、液相和气相三相组成的复杂体系。
2024年度土力学电子教案
2024/3/23
5
土的力学性质及指标
力学性质
土的力学性质主要包括变形特性、强度特性和渗透特性。
力学指标
反映土的力学性质的指标有压缩系数、压缩模量、抗剪强度、内摩擦角、黏聚力等。
2024/3/23
6
土中应力与变形关系
应力状态
土体中的应力状态包括自重应力、构造应力 和附加应力等。
2024/3/23
2024/3/23
26
挡土墙稳定性验算方法
2024/3/23
抗滑稳定性验算
通过计算挡土墙基底抗滑力(摩擦力)与滑动力(土压力产生的水平分力)的比值,判 断挡土墙是否满足抗滑稳定性要求。一般采用增大基底摩擦系数或设置抗滑桩等措施来
提高抗滑稳定性。
抗倾覆稳定性验算
通过计算挡土墙重心到倾覆点的距离(稳定力矩)与倾覆力矩的比值,判断挡土墙是否 满足抗倾覆稳定性要求。一般采用增大墙身断面尺寸或设置扶壁等措施来提高抗倾覆稳
地基承载力影响因素
地基承载力受土的物理性质、力学性质、水理性质以及基础形状、 荷载类型等多种因素影响。
19
地基承载力确定方法
01
现场载荷试验
通过在实际场地进行载荷试验, 直接测定地基承载力,这是最可 靠的方法。
02
03
理论公式计算
经验公式法
根据地基土的物理力学性质及基 础形状等条件,采用理论公式计 算地基承载力。
渗透原理
水流在土孔隙中的流动受土颗粒大小和排列、孔隙大 小和分布等因素的影响。
渗透性指标
渗透系数(k)是表示土的渗透性大小的指标,其大 小取决于土的孔隙比和水的黏滞度。
2024/3/23
9
渗流定律与达西定律
渗流定律
土力学教程
土力学教程一、课题土力学教程二、教学目标1. 让学生了解土力学的基本概念,包括土的组成、结构等。
2. 使学生掌握土的物理性质的测定方法,像土的密度、含水量等。
3. 培养学生运用土力学知识解决简单工程问题的能力。
三、教学重点&难点1. 教学重点土的三相组成及其相互关系。
这是土力学的基础,就像盖房子的地基一样重要。
同学们得清楚土是由固体颗粒、水和气体组成的,它们之间的比例关系会影响土的很多性质呢。
土的压缩性原理。
在工程建设中,了解土的压缩性对基础设计等有着关键意义。
2. 教学难点土的有效应力原理。
这个原理比较抽象,同学们可能很难想象土中的有效应力是怎么回事,就好像是在看不见的微观世界里发生的复杂事情。
土的抗剪强度理论。
这个理论涉及到一些复杂的公式和概念,同学们可能会在理解和应用上遇到困难。
四、教学方法1. 讲授法我会用通俗易懂的语言把土力学的概念、原理等讲清楚。
比如把土的三相组成比喻成一个小家庭,固体颗粒是房子的骨架,水就像房子里的水管道里的水,气体就像房子里的空气。
2. 演示法我会通过一些简单的实验演示来展示土的物理性质的测定方法。
例如,用一个小容器和天平来演示土的密度测定,就像咱们在厨房称东西一样简单有趣。
3. 讨论法提出一些关于土力学在工程中的应用问题,让同学们分组讨论。
比如问大家在盖房子的时候,如何根据土的性质来设计基础,然后每个小组派代表发言。
五、教学过程1. 导入我会这样说:“同学们,咱们每天都在土地上走来走去,可是你们有没有想过土地也有很多学问呢?今天咱们就来一起探索土力学这个神奇的领域。
”然后给同学们看一些工程中与土有关的图片,像高楼大厦的地基、道路的填方等,引起他们的兴趣。
2. 土的基本概念讲解首先讲土的三相组成。
我会拿一个小土样,说:“同学们看,这个小土样虽然小,但是里面可有大文章。
它里面有固体颗粒,就像沙子、小石子这些东西;还有水,就像咱们喝的水一样,不过在土里的水有点不一样哦;还有气体呢,就像咱们周围的空气。
《土力学》教案》课件
《土力学》教案课件第一章:土力学概述1.1 土力学的定义解释土力学的概念,它是研究土壤的性质、应力分布和变形规律以及土与其他材料相互作用的科学。
1.2 土力学的研究对象讨论土壤的组成、分类和土壤颗粒的特性。
介绍土力学在不同领域中的应用,如建筑工程、水利工程和道路工程等。
第二章:土的物理性质2.1 土的组成与结构解释土壤的颗粒组成,包括砂、粘土和有机质等。
探讨土壤的微观结构和宏观结构。
2.2 土的物理参数介绍土的密度、孔隙比、饱和度和含水率等基本物理参数。
解释这些参数对土壤性质和工程应用的影响。
第三章:土的力学性质3.1 土的剪切强度介绍土的抗剪强度概念,包括内摩擦角和剪切强度曲线。
探讨影响土剪切强度的因素,如应力历史、颗粒大小和结构等。
3.2 土的变形特性解释土的弹性模量和粘弹性特性。
讨论土的压缩性和膨胀性,以及这些性质对土体稳定性的影响。
第四章:土的压力和应力分布4.1 土的自重应力计算土的自重应力,包括有效应力和总应力。
探讨土的自重应力对土体稳定性的影响。
4.2 土的孔隙水压力解释孔隙水压力的概念和计算方法。
讨论孔隙水压力对土的应力状态和渗透性的影响。
第五章:土的渗透性5.1 渗透定律介绍达西定律和渗透系数的概念。
探讨影响土渗透性的因素,如颗粒大小、结构和孔隙率等。
5.2 土的渗透稳定性讨论土的渗透稳定性和渗透破坏现象。
解释如何通过改善土的渗透性来提高土体的稳定性。
第六章:土的力学模型6.1 土的力学模型概述介绍土的力学模型的重要性,包括模型在工程设计和分析中的应用。
讨论不同的土力学模型,如弹性模型、塑性模型和粘弹性模型。
6.2 土的应力应变关系解释土的应力应变曲线的特点,包括初始阶段、弹性阶段和塑性阶段。
探讨不同的应力应变关系模型,如线性模型、非线性模型和应变硬化模型。
第七章:土的稳定性分析7.1 土的抗倾覆稳定性介绍土的抗倾覆稳定性的概念和计算方法。
讨论影响土抗倾覆稳定性的因素,如土壤的重度、水文条件和基础形状等。
土力学与地基基础教案
一、教案基本信息教案名称:土力学与地基基础教案课时安排:本章共需4课时,每课时45分钟教学目标:1. 让学生了解土力学与地基基础的基本概念和重要性。
2. 让学生掌握土的分类和性质。
3. 让学生了解地基与基础的设计原则和计算方法。
教学内容:1. 土力学与地基基础的基本概念。
2. 土的分类及其性质。
3. 地基与基础的设计原则。
4. 地基与基础的计算方法。
教学方法:1. 采用讲授法,讲解土力学与地基基础的基本概念、土的分类及其性质。
2. 采用案例分析法,分析地基与基础的设计原则和计算方法。
3. 采用互动讨论法,引导学生思考和提问。
教学准备:1. 教案、教材、课件等教学资料。
2. 相关案例资料。
二、教学过程第一课时:1. 导入新课:介绍土力学与地基基础的基本概念及其重要性。
2. 讲解土的分类及其性质。
3. 课堂互动:学生提问,教师解答。
第二课时:1. 讲解地基与基础的设计原则。
2. 案例分析:分析实际工程中的地基与基础设计案例。
3. 课堂互动:学生提问,教师解答。
第三课时:1. 讲解地基与基础的计算方法。
2. 案例分析:分析实际工程中的地基与基础计算案例。
3. 课堂互动:学生提问,教师解答。
第四课时:1. 总结本章内容。
2. 布置作业:让学生复习本章内容,完成相关练习题。
三、教学评价评价方式:课堂互动、作业完成情况、课后调查。
评价指标:1. 学生对土力学与地基基础基本概念的理解程度。
2. 学生对土的分类及其性质的掌握程度。
3. 学生对地基与基础设计原则的掌握程度。
4. 学生对地基与基础计算方法的掌握程度。
四、教学反思在教学过程中,教师应关注学生的学习反馈,根据实际情况调整教学内容和教学方法。
结合实际工程案例,让学生更好地理解和掌握土力学与地基基础的知识。
五、课后作业1. 复习本章内容,整理学习笔记。
2. 完成教材后的练习题。
3. 搜索相关土力学与地基基础的工程案例,了解其设计原理和计算方法。
六、教案基本信息教案名称:土力学与地基基础教案课时安排:本章共需4课时,每课时45分钟教学目标:1. 让学生了解土的力学性质,包括抗剪强度、压缩性和渗透性。
《土力学》授课教案
《土力学》课程授课教案课程编号:0333121331课程中文/英文名称:土力学/Soil Mechanics课程总学时/学分: 44学时/3学分适用专业:建筑工程及道桥专业一、课程地位本课程是土木工程的一门专业必修课,其主要目的是使学生掌握土的物理性质及工程分类,粘性土的矿物成分对性质影响,土得强度特性,土中应力和沉降计算,土压力计算方法和土坡稳定性分析,地基承载力的基本理论及计算,掌握室内几种常见的土木试验,了解土的动力特性和原位测试方法。
通过本课程的学习,使学生对于土力学基本理论有深入了解,能熟练操作常见的土木仪器,为以后的学习打下扎实的基础。
二、教材及主要参考资料1.教材:高大钊主编.《土质学与土力学》(第三版)北京人民交通出版社. 20022.主要参考资料:洪毓康主编.《土质学与土力学》(第二版)北京人民交通出版社. 19931.考核方式:考试2.成绩核定办法:卷面考试占80%,实验占10%,平时作业占10%。
五、授课方案第一章土的物理性质及工程分类(4学时)1.教学内容(2学时)第一节土的三相组成第二节土的颗粒特征第三节土的三相比例指标2.教学要求(1)掌握土的三相比例指标的概念和计算方法,掌握土的三相组成;(2)熟悉粒度成分的表示方法:表格法、累计曲线法、三角坐标法,以及描述土的级配的指标:不均匀系数Cu, 曲率系数Cs(3)了解土的颗粒特征3.教学重点、难点重点:土的三相比例指标的概念和计算方法。
难点:三项比例指标的换标。
4.教学策略要掌握三项比例指标换标这个难点,主要要教会学生绘制三相换标草图。
5.习题1-1,1-21.教学内容(2学时)第四节粘性土的界限含水量第五节砂土的密实度第六节土的工程分类2.教学要求(1)掌握评定粘性土状态的四个指标: Wp. Wl. Ip. Il掌握评定砂土密实度方法和指标;(2)熟悉土的工程分类以及方法;(3)了解Wp. Wl.室内测定方法和标准贯入试验。
土力学实验教案(5篇)
土力学实验教案(5篇)第一篇:土力学实验教案实验一液、塑限试验一、目的测定细粒土的液限含水率、塑限含水率、塑性指数、液性指数、确定土的工程分类。
二、试验方法液塑限联合测定法三、仪器设备1、光电式液限、塑限联合测定仪,试样杯2、天平,称量200g,最小分度值0.1g。
3、其它:烘箱、铝盒、调土刀、刮土刀、凡士林等。
四、试验步骤1、本次试验原则上应采用天然含水率的土样进行,也允许用风干土制备土样,土样过0.5mm筛后,喷洒配制一定含水率的土样,然后装入密闭玻璃广口瓶内,润湿一昼夜备用(土样制备工作实验室已预先做好)。
2、将已制备好的土样取出调匀后,密实地装入试样杯中(土中不能有孔洞),高出试样杯口的余土,用刮土刀刮平,随即将试样杯放在升降底座上。
3、接通电源,调平底座,吸放安扭调到“吸”的状态,把装有透明光学微分尺的圆锥仪,在锥体上抹以薄层凡士林,使电磁铁吸稳固锥仪。
并使光学微分尺垂直于光轴(可从屏幕上观察,刻度线清晰,并在屏幕居中位置)。
4、调节零点,使读数屏幕上的零线与光学微分尺影像零线重合,按下“手”(即手动)按钮,使仪器处于备用状态。
5、转动升降座,待试样杯上升到土面刚好与圆锥仪锥尖接触时,按“放”按钮,圆锥仪自由下落,历时5秒,当音响讯号自动发出声响时,立即从读数屏幕上读出圆锥仪下沉深度,平行两组试验。
6、把升降座降下,细心取出试样杯,剔除锥尖处含有凡士林的土,取出锥体附近的试样不少于15-30g放入称量铝盒内,称量得质量m1,并记下盒号,测定含水率。
7、将称量过的铝盒,放入烘箱;在105℃~110℃的温度下烘至恒量,取出土样盒放入玻璃干燥皿内冷却,称干土的质量m2。
8、重复2~7条的步骤,测试另二种含水率土样的圆锥入土深度和含水率9、以含水率为横坐标,以圆锥入土深度为纵坐标在双对数坐标纸上绘制含水率与相应的圆锥入土深度关系曲线,如图1-2所示。
三点应在一根直线上,如图中A线。
如果三点不在同一直线上,通过高含水率的一点与其余两点连两根直线,在圆锥入土深工为2mm处查得相应的两个含水率,用该两含水率的平均值的点与高含水率的测点作直线,在含水率与圆锥下沉深度的关系图上查得下沉深度为17mm对应的含水率为液限,查得下沉深度为2mm对应的含水率为塑限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《土力学》教案课次:第十四次主要内容:土坡的定义、种类、失稳的原因及影响因素;无粘性土坡稳定性分析;粘性土坡稳定性分析重点内容:土坡失稳的原因及影响因素;无粘性土坡稳定性分析;条分法教学方法:精讲启发式与逻辑推理式作业:P214:第1题;第2题;第3题第八章土坡稳定性分析§8.1 概述一、土坡二、边坡失稳(滑坡破坏)坡面局部土体下滑称为边坡失稳或叫滑坡破坏。
三、土坡失稳的原因由于坡面倾斜,在自重或其它外力作用下,近坡面的部分土体有向下滑动的趋势。
土坡失稳常常是在外界不利因素影响下一触即发的,其根本原因在于土体内的剪应力在某时刻大于土的抗剪强度。
土中剪应力和土体的抗剪强度随时间是变化的。
1.促使剪应力增加的原因有:(1)土坡变陡;(2)渗透水流的动水压力过大;(3)坡顶有超载作用;(4)打桩、爆破、地震、火车、汽车等动荷载作用均会增加剪应力。
2.造成土抗剪强度降低的原因有:(1)冻胀再融化;(2)振动液化;(3)浸水后土的结构崩解;(4)土中含水量增加等。
土坡失稳一般多发生在雨天,因为水渗入土中一方面使土中剪应力增加了;另一方面又使土的抗剪强度降低了,特别是坡顶出现竖向大裂缝时,水进入竖向裂缝对土坡产生侧向压力,从而导致土坡失稳。
因此,土坡产生竖向裂缝常常是土坡失稳的预兆之一。
173四、影响土坡稳定性的主要因素(1)边坡坡角β。
坡角β越小愈安全,但是采用较小的坡角β,在工程中会增加挖填方量,不经济。
(2)坡高H。
H越大越不安全。
(3)土的性质。
γ、ϕ和c大的土坡比γ、ϕ和c小的土坡更安全。
(4)地下水的渗透力。
当边坡中有地下水渗透时,渗透力与滑动方向相反时,土坡则更安全;如两者方向相同时,土坡稳定性就会下降。
(5)震动作用的影响。
如地震、工程爆破、车辆震动等。
(6)人类活动和生态环境的影响。
§8.2 无粘性土坡稳定分析由粗颗粒土(c=0)所堆筑的土坡称为无粘性土坡。
无粘性土坡的稳定分析比较简单,下面分两种情况进行讨论。
一、无渗流作用时的无粘性土坡在分析无粘性土的土坡稳定时,根据实际观测结果,通常均假设滑动面为平面。
上图为一简单土坡,土坡高为H,坡角为β,土的重度为γ,土的抗。
剪强度ϕτtanσ=f若假定滑动面是通过坡角A的平面AC,AC的倾角为α,并沿土坡174175长度方向截取单位长度进行分析,则其滑动土楔体ABC 的重力为:()ABC W ∆⨯=γ则沿滑动面向下的滑动力为:αsin W T =抗滑力为摩擦力,即:tan cos tan T N W ϕαϕ'==土坡滑动稳定安全系数为:αϕαϕαtan tan sin tan cos =='==W W T T F s 滑动力抗滑力 当βα=时,滑动稳定安全系数最小,即βϕtan tan min =S F 由上式可得如下结论:(1)当坡角ϕβ=,S 1F =,即土坡处于极限平衡状态,此时β称为天然休止角;(2)只要坡角ϕβ<(S 1F >),土坡就稳定,而且与坡高无关; (3)为了保证土坡有足够的安全储备,一般要求S 1.3~1.5F >。
二、有渗流作用的无粘性土坡当降暴雨时,土坡斜面上有平行于坡面的渗流水(水位与土坡坡面基本一致),此时土坡坡面一层土体受力情况如下图所示。
176坡面上A 点的水位为:2P cos H h α=作用于AB 面上的孔隙水压力为:2w P w cos u H h γγα==土体单元ABCD 的重度为sat γ,其重力为:αγcos h W sat =作用于AB 面上的垂直压应力和下滑剪切力分别为:2sat cos cos W h σαγα==sat sin cos sin W h ταγαα==在AB 斜面上的有效应力为:αγαγαγσσ222cos cos cos h h h u W sat '=-=-=土坡稳定安全系数为:αγϕγααγϕαγτϕσττtan tan sin cos tan cos tan 112sat sat f s h h F '='==⋅⋅==滑动力抗滑力 上式中satγγ'比值一般在0.4~0.5范围内,s F 变小,可知土坡更易于滑动,这就是为什么遇暴雨时粗颗粒土坡较干燥情况下易滑动的原因。
§8.3 粘性土坡稳定分析一、粘性土坡滑动面的形式根据一些实测的资料,粘性土坡的滑动面常常为曲面。
土坡滑动前一般在坡顶先产生张力裂缝,继而沿某一曲面产生整体滑动。
为便于理论分析,可以近似地假设滑动面为一圆弧面。
圆弧滑动面的形式一般有下述三种:177示;10°20°30°40°50°60°70°80°90°10°20°30°40°50°60°α值α,θ值θ值(2)当︒=0ϕ时,且︒>53β时,滑动面也是坡脚圆,其最危险滑动面圆心位置,同样可从图7-5中的θ及α值作图求得;(3)当︒=0ϕ时,且︒<53β时,滑动面可能是中点圆,也有可能是坡178脚圆或坡面圆,它取决于硬层的深度系数HH n 1d =,需试算确定。
当d n >4时,则都为中点圆。
三、整体圆弧滑动法1915年,瑞典彼得森(K .E .Petterson )首先用圆弧滑动法分析边坡的稳定性,称为瑞典圆弧法。
上图表示一个均质粘性土坡,滑动面为AC 弧,其弧长为l ,圆弧的半径为R 。
把滑动土体当成一个刚体,滑动土块ABC 的重量为W ,土体粘聚力为c ,内摩擦角0=ϕ。
滑块ABC 滑动时相当于绕圆心O 转动,转动力矩为Wd M =s ;另一项是抗滑力矩clR M R =。
反力f R 的大小和方向应该与土的内摩擦角ϕ有关,但对于0=ϕ时,滑动面是一个光滑面,反力的方向必垂直于滑动面,即通过圆心O ,不产生力矩。
稳定安全系数为:R S S M clRF M Wd==5.1~3.1> 上式即是整体圆弧滑动法计算边坡稳定的公式,它只适用于0=ϕ的情况。
179四、瑞典条分法上述的泰勒分析方法,只适用于均质的简单土坡;而整体圆弧滑动法只适用于0=ϕ的均质土坡。
对于非均质土坡或比较复杂的土坡(如土坡形状比较复杂、或土坡上有荷载作用,或土坡中有水渗流时,或考虑动荷载作用)均不适用,费伦纽斯提出的条分法是解决这一问题的基本方法,至1半径为R 面中点的法线与竖直线的夹角为i α,宽度为i b ,高度为i Z ,作用在土条上的力有:180(1)重力()m kN Z rb W i i i = ,作用于土条的中垂线上,可分解为滑动力i i i W T αsin =和法向力i i i W N αcos =(2)法向反力i i i l N σ=' (式中i σ为土条滑裂面上法向应力,i l 为滑弧段长度),且有:i i N N ='(3)抗滑力i T ',为土条园弧面上抗剪强度总和,即:()ii i i i i i ii i i i i i W cl tg N l c l c l T ϕαϕϕστtan cos tan .+=+=+=='(4)条间力(为土条之间侧面作用力)假设大小相等方向相反,即:1+=i i F F则稳定安全系数为:∑∑∑∑====+='==ni iini i i i ii n i i ni iS W W lc RT R TF 1111sin )tan cos (αϕα滑动力矩抗滑力矩上述分析过程是对某一假定滑动面而求得的稳定安全系数,实际上它181并不一定是真正的滑动面位置,而真正的滑动面是对应于最小稳定安全系数的滑动面,因此欲求解其真正滑动面位置,必须按上述方法反复试算求取。
2.试算法确定最危险的滑动面选择多个不同位置的圆心,分别通过坡角做弧园,用上述方法分别求出相应的稳安全系数。
稳定安全系数最小的圆弧就是最危险的滑裂面。
用这种试算法,如手算,其工作量很大,可利用计算机通过相应的计算程序确定。
对于简单土坡,高为H ,首先确定B 点,然后依据,1β、2β(查P204表7-1)确定A 点。
作直线AB ,费里纽斯指出,最危险滑动面的圆心在AB 线上的A 点附近。
当0=ϕ时,最危险滑动面的圆心在A 点上;当00≥ϕ时,最危险的圆心在A 点以上,为确定出该点,首先在AB 线上A 点以上取若干点1、2、3、4,过坡脚分别作圆弧,用上述条分法分别计算各自的稳定安全系数S F ,并画出稳定安全系数曲线,由分布曲线可得到最小稳定安全系数的圆心1O 点。
危险圆心是在AB 线附近,不一定在直线AB 上。
因此,再通过1O 作AB 线的垂直线,并在此垂直线CD 上再定几个圆弧中心,求出若干个S F ,仿照在AB 线上的做法得出CD 线上最小的稳定安全系数对应圆心O 2,此时的圆弧中心O 2才认为是通过坡脚滑移时的最危险滑动圆弧的中心。
对应的稳定安全系数最小,记为min s F ,要求5.1~3.1min >s F 。
从上面分析可见,根据曼伦纽斯提出的方法,虽然可以把最危险滑动面的圆心位置缩小到一定范围,但其试算工作量还是很大的。
五、瑞毕肖甫条分法(自学)六、简布条分法(自学)七、考虑其他因素的土坡稳定性分析(自学)182。