AD转换器及其外围电路设计.
AD转换器课程设计
A D转换器 课程设计一、课程目标知识目标:1. 让学生理解A/D转换器的基本原理,掌握其工作流程和转换方法。
2. 使学生掌握不同类型的A/D转换器,如逐次逼近型、积分型等,并了解其优缺点。
3. 帮助学生了解A/D转换器的技术参数,如分辨率、转换速率、线性度等。
技能目标:1. 培养学生运用A/D转换器进行模拟信号数字化处理的能力。
2. 使学生能够根据实际需求选择合适的A/D转换器,并完成相应电路设计与搭建。
3. 培养学生运用相关软件(如Multisim、Protel等)进行A/D转换器电路仿真与测试。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们学习热情和求知欲。
2. 培养学生具备团队协作精神,学会与他人共同分析与解决问题。
3. 引导学生关注A/D转换器在现实生活中的应用,认识到知识对社会发展的贡献。
本课程针对高中年级学生,结合电子技术课程内容,注重理论知识与实际应用相结合。
课程性质为理论教学与实践操作相结合,旨在培养学生的电子技术素养,提高他们解决实际问题的能力。
根据学生的认知水平和兴趣特点,课程目标设定具有针对性、实用性和可操作性,以便为后续教学设计和评估提供明确依据。
二、教学内容1. A/D转换器基本原理:介绍A/D转换器的作用,对比数字信号与模拟信号的差异,讲解A/D转换器的工作流程。
- 教材章节:第二章第二节“模拟信号与数字信号的转换”2. A/D转换器类型及特点:分析逐次逼近型、积分型等常见A/D转换器的原理、优缺点及适用场合。
- 教材章节:第二章第三节“常见A/D转换器类型及其特点”3. A/D转换器技术参数:讲解分辨率、转换速率、线性度等参数的含义,分析各参数对A/D转换器性能的影响。
- 教材章节:第二章第四节“A/D转换器的主要技术参数”4. A/D转换器应用实例:介绍A/D转换器在日常生活和工业生产中的应用,分析实际电路设计中的注意事项。
- 教材章节:第二章第五节“A/D转换器的应用实例”5. A/D转换器电路设计与仿真:指导学生运用Multisim、Protel等软件进行A/D转换器电路设计与仿真。
AD转换器
6)内部具有三态输出缓冲器,可直接与8位、 12位或16位微处理器直接相连。 7)具有+10.000V的高精度内部基准电压源, 只需外接一只适当阻值的电阻,便可向DAC 部分的解码网络提供参考输入。内部具有 时钟产生电路,不须外部接线。 8 ) 需 三 组 电 源 : + 5 V、VCC(+12V~+ 15V)、VEE(-12V~-15V)。 由 于 转 换 精 度高,所提供电源必须有良好的稳定性,并 进行充分滤波,以防止高频噪声的干扰。
按输出方式分可分为:并行、串行、串并行。 按转换原理可分为:计数式、双积分式、逐次 逼近式。 按转换速度可分为:低速(转换时间≥1s)、 中速(转换时间≤lms)、高速(转换时间 ≥1μ s)和超高速(转换时间≤1ns) 按转换精度和分辨率可分为:3位、4位、8位、 10位、12位、14位、16位
能将模拟电压成正比的转换成数字量。
是模拟信号和数字信号接口的关键部件。
2、应用
雷达、通信、电子对抗、声纳、卫星、导弹、测控系统、地 震预测、医疗、仪器仪表、图像和音频等领域。
一、A/D转换的一般步骤及基本原理 3、 A/D转换的一般步骤
A/D转换过程为:采样、保持、量化和编码。
(1)采样与保持
一、A/D转换的一般步骤及基本原理
3、高于8位的并行输出A/D转换器接口
接口的一般形式
数据分两次输入,需增加一个并行接口。除此之外,其接口 形式和工作原理与8位ADC相同。
图2-32Байду номын сангаас
高于8位ADC接口的一般形式
【例2】 ADC574与8031/8051 PC机接口设计
(1).硬件连线 接口可以采用查询和中断二种控制方式。
(2).软件设计
12位AD转换器与单片机的接口电路设计
12位AD转换器与单片机的接口电路设计AD转换器是具有高度集成化电路的模数转换器。
它将模拟信号转换
为数字信号,这种转换是实现模拟与数字系统的接口,实现模拟信号的采
集与处理的必要前提。
常用的AD转换器有12位AD转换器,它与单片机的接口电路设计包括:
1、驱动电路。
12位AD转换器与单片机之间需要通过电压驱动线在
两个芯片间传送模拟电压信号。
为了节省电源能量损耗,一般采用低功耗、高精度的滤波电路来保证电压平稳、不受外界干扰。
2、AD转换器控制信号。
模数转换器本身需要诸如转换触发、转换完成、复位和读取等一系列控制信号,控制信号的设计通常采用三态逻辑。
3、电压信号转换。
常用的12位AD转换器输出的是2的12次方个电
压信号值,而单片机的数据输入室通常是8位或者16位的二进制码,在
此种情况下,需要将AD转换器输出的电压信号转换为可识别的数字信号,这就需要设计一个称为电压转换器的电路。
4、时钟控制电路。
AD转换
模拟电压输入 1LSB
模拟电压输入 1/2LSB
5
3、偏移误差
偏移误差是指输入信号为零时,输出信号不为零的 值,所以有时又称为零值误差。假定ADC没有非线 性误差,则其转换特性曲线各阶梯中点的连线必定 是直线,这条直线与横轴相交点所对应的输入电压 值就是偏移误差。
积分器输出
VIN
时钟
T1 T T2
t
3
三、A/D转换器的主要技术指标 1、分辨率 ADC的分辨率是指使输出数字量变化一个 相邻数码所需输入模拟电压的变化量。常用 二进制的位数表示。例如12位ADC的分辨率 就是12位,或者说分辨率为满刻度FS的 1/2 1 2 。一个10V满刻度的12位ADC能分辨输 入电压变化最小值是10V×1/ 2 1 2 =2.4mV。
ADC_CONTR寄存器
ADC_RES、 ADC_RESL寄存器
ADC中断控制寄存器
ADC典型应用电路
电压基准源
ADC实现按键输入功能
10VIN 20VIN AG
CE STS
-5V~+5V -10V~+10V
23
采用双极性输入方式,可对±5V或±10V的模拟信号
进行转换。当AD574A与80C31单片机配置时,由于 AD574A输出12位数据,所以当单片机读取转换结果 时,应分两次进行:当A0=0时,读取高8位;当A 0=1时,读取低4位。
需三组电源:+5V、VCC(+12V~+15V)、
VEE(-12V~-15V)。由于转换精度高,所 提供电源必须有良好的稳定性,并进行充分滤波, 以防止高频噪声的干扰。 低功耗:典型功耗为390mW。
AD
A/D转换器芯片及接口电路1.8位A/D转换器芯片ADC0809是CMOS单片型逐次逼近式A/D转换器,ADC0809的主要特性:● 它是具有8路模拟量输入、8位数字量输出功能的A/D转换器。
● 转换时间为100μs。
● 模拟输入电压范围为0V~+5V,不需零点和满刻度校准。
● 低功耗,约15mW。
(1)ADC0809结构框图及引脚说明图4.24 的结构框图和引脚通道选择开关通道地址锁存和译码逐次逼近A/D转换器8位锁存器和三态门(2)ADC0809的工作过程对ADC0809的控制过程是:① 首先确定ADDA、ADDB、ADDC三位地址,决定选择哪一路模拟信号;② 使ALE端接受一正脉冲信号,使该路模拟信号经选择开关到达比较器的输入端;③ 使START端接受一正脉冲信号,START的上升沿将逐次逼近寄存器复位,下降沿启动A/D 转换;④ EOC输出信号变低,指示转换正在进行。
⑤ A/D转换结束,EOC变为高电平,指示A/D转换结束。
此时,数据已保存到8位三态输出锁存器中。
此时CPU就可以通过使OE信号为高电平,打开ADC0809三态输出,由ADC0809输出的数字量传送到CPU。
(3)CPU读取A/D转换器数据的方法① 查询法优点:接口电路设计简单。
缺点:A/D转换期间独占CPU,致使CPU运行效率降低。
② 定时法:优点:接口电路设计比查询法简单,不必读取EOC的状态。
缺点:A/D转换期间独占CPU,致使CPU运行效率降低;另外还必须知道A/D转换器的转换时间。
CPU读取A/D转换器数据的方法③ 中断法优点:A/D转换期间CPU可以处理其它的程序,提高CPU的运行效率。
图4.25 接口电路缺点:接口电路复杂。
(4)ADC0809接口电路图 4. 25 接口电路[例4.1]利用图4.25,采用无条件传送方式,编写一段轮流从IN0~IN7采集8路模拟信号,并把采集到的数字量存入0100H开始的8个单元内的程序。
几款模数转换器芯片电路原理
模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。
通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。
本文介绍几款模数转换器芯片电路原理。
1、AD9280AD9280器件是一款单芯片、8位、32 MSPS模数转换器(ADC),主要介绍了AD9280特性、应用范围、参考设计电路以及电路分析,帮助大家缩短设计时间。
AD9280介绍:AD9280是一款单芯片、8位、32 MSPS模数转换器(ADC),采用单电源供电,内置一个片内采样保持放大器和基准电压源。
它采用多级差分流水线架构,数据速率达32 MSPS,在整个工作温度范围内保证无失码。
AD9280特点:与AD876-8引脚兼容功耗:95 mW(3 V电源)工作电压范围:+2.7V至+5.5V微分非线性(DNL)误差:0.2 LSB省电(休眠)模式AD9280内部结构框图:图1 AD9280的内部结构框图,展示了内部的构成AD9280参考设计电路:图2 AD9280典型应用电路2、AD7541AD7541器件是一款低成本、高性能12位单芯片乘法数模转换器,主要介绍了AD7541特性、应用范围、参考设计电路以及电路分析,帮助大家缩短设计时间。
AD7541介绍:AD7541A是一款低成本、高性能12位单芯片乘法数模转换器。
该器件采用先进的低噪声薄膜CMOS技术制造,并提供标准18引脚DIP和20引脚表贴两种封装。
AD7541A与业界标准器件AD7541在功能和引脚上均相兼容,并且规格和性能都有所改进。
此外,器件设计得到改进,可确保不会发生闩锁,因此无需输出保护肖特基二极管。
AD7541特点:AD7541的改进版本完整的四象限乘法12位线性度(端点)所有器件均保证单调性TTL/CMOS 兼容型低成本无需保护肖特基二极管低逻辑输入泄漏AD7541内部结构框图:图3 AD7541的内部结构框图,展示了内部的构成AD7541参考设计电路:图4 AD7541典型应用电路3、AD7694AD7694器件是一款3通道、低噪声、低功耗、24位Σ-Δ型ADC,内置片内仪表放大器,主要介绍了AD7694特性、应用范围、参考设计电路以及电路分析,帮助大家缩短设计时间。
单片机AD转换实验
一、实验目的1、掌握单片机与ADC0809的接口设计方法。
2、掌握Proteus软件与Keil软件的使用方法。
二、实验要求1、用Proteus软件画出电路原理图,在单片机的外部扩展片外三总线,并通过片外三总线与0809接口。
2、在0809的某一模拟量输入通道上接外部模拟量。
3、在单片机的外部扩展数码管显示器。
4、分别采用延时和查询的方法编写A/D转换程序。
5、启动A/D转换,将输入模拟量的转换结果在显示器上显示。
三、实验电路图四、实验程序流程框图和程序清单1、查询ORG 0000H START:LJMP MAINORG 0100HMAIN: MOV SP, #6FHCLR EALOOP: MOV DPTR, #0fef8H MOVX @DPTR, ALOOP1:JNB P3.2, LOOP1MOVX A, @DPTRMOV B, #51DIV ABMOV 23H, AMOV A, #10MOV 22H, AMOV A, BLCALL CHULIMOV 21H, AMOV A, BLCALL CHULIMOV 20H, A LCALL DIRLJMP LOOPDIR: PUSH ACCPUSH DPHPUSH DPLPUSH PSWSETB RS1SETB RS0MOV R0, #20HMOV R3, #0FEH LOOP2:MOV P2, R3 MOV DPTR, #TAB1MOV A, @R0MOVC A, @A+DPTRMOV P1, ALCALL DELAYINC R0MOV A, R3JNB ACC.3, LOOP3RL AMOV R3, ALJMP LOOP2LOOP3:POP PSWPOP DPLPOP DPHPOP ACCRETTAB1:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,07FH DELAY:MOV R7, #01HDL1: MOV R6, #8EHDL0: MOV R5, #02HDJNZ R5, $DJNZ R6, DL0DJNZ R7, DL1RETCHULI:CJNE A, #25, LPLJMP LP2LP: JNC LP1LP2: MOV B, #10MUL ABMOV B, #51DIV ABLJMP LP3LP1: CLR CSUBB A, #25MOV B, #10MUL ABCLR CSUBB A, #5MOV B, #51DIV ABADD A, #5LP3: RETEND2、延时ORG 0000HSTART:LJMP MAINORG 0100HMAIN: MOV SP, #6FHCLR EALOOP: MOV DPTR, #0fef8HMOVX @DPTR, ALCALL DELAY100MOVX A, @DPTRMOV B, #51DIV ABMOV 23H, AMOV A, #10MOV 22H, AMOV A, BLCALL CHULIMOV 21H, AMOV A, BLCALL CHULIMOV 20H, ALCALL DIRLJMP LOOPDIR: PUSH ACCPUSH DPHPUSH DPLPUSH PSWSETB RS1SETB RS0MOV R0, #20HMOV R3, #0FEHLOOP2:MOV P2, R3MOV DPTR, #TAB1MOV A, @R0MOVC A, @A+DPTRMOV P1, ALCALL DELAYINC R0MOV A, R3JNB ACC.3, LOOP3RL AMOV R3, ALJMP LOOP2LOOP3:POP PSWPOP DPLPOP DPHPOP ACCRETTAB1:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,07FH DELAY:MOV R7, #01HDL1: MOV R6, #8EHDL0: MOV R5, #02HDJNZ R5, $DJNZ R6, DL0DJNZ R7, DL1RETCHULI:CJNE A, #25, LPLJMP LP2LP: JNC LP1LP2: MOV B, #10MUL ABMOV B, #51DIV ABLJMP LP3LP1: CLR CSUBB A, #25MOV B, #10MUL ABCLR CSUBB A, #5MOV B, #51DIV ABADD A, #5LP3: RETDELAY100: MOV R6,#01H;误差 0usDL0:MOV R5,#2FHDJNZ R5,$DJNZ R6,DL0RETEND3、中断ORG 0000HSTART:LJMP MAINORG 0003HLJMP INTT0ORG 0100HMAIN: MOV SP, #6FHSETB EASETB EX0MOV DPTR, #0000HMOVX @DPTR, AHERE: LJMP HEREINTT0:MOVX A, @DPTRMOV B, #51DIV ABMOV 23H, A //整数部分放22H中MOV A, #10MOV 22H, A //小数点放22H中MOV A, BLCALL CHULIMOV 21H, A //小数点后第一位放21H中 MOV A, BLCALL CHULIMOV 20H, A //小数点后第一位放21H中 LCALL DIRMOV DPTR, #0000HMOVX @DPTR, ARETIDIR: PUSH ACCPUSH DPHPUSH DPLPUSH PSWSETB RS1SETB RS0MOV R0, #20HMOV R3, #01HLOOP2:MOV P2, R3 //位控码初始值MOV DPTR, #TAB1MOV A, @R0MOVC A, @A+DPTRMOV P1, ALCALL DELAYINC R0MOV A, R3JB ACC.3 LOOP3RL AMOV R3, ALJMP LOOP2LOOP3:POP PSWPOP DPLPOP DPHPOP ACCRETTAB1:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,07FH DELAY:MOV R7, #01HDL1: MOV R6, #8EHDL0: MOV R5, #02HDJNZ R5, $DJNZ R6, DL0DJNZ R7, DL1RETCHULI:CJNE A, #25, LPLJMP LP2LP: JNC LP1MOV B, #10MUL ABMOV B, #51DIV ABLJMP LP3LP1: CLR CSUBB A, #25MOV B, #10MUL ABCLR CSUBB A, #5MOV B, #51DIV ABADD A, #5LJMP LP3LP2: MOV A, #5MOV B, #0LP3: RETEND五、实验结果六、实验总结通过本次试验掌握了A/D转换的电路设计,掌握了AD0808的使用以及编址技术,熟悉了A/D转换的方法和A/D转换的程序设计方法。
AD转换与显示电路设计
AD转换与显示电路设计AD转换与显示电路是将模拟信号转换为数字信号,并通过显示器显示出来的电路。
在各种电子设备中,AD转换与显示电路被广泛应用,例如数码相机、手机、电视机等。
本文将详细介绍AD转换与显示电路的设计原理和方法。
一、AD转换电路设计1.1AD转换理论基础AD转换是模拟信号转换为数字信号的过程,其核心在于使用采样和量化的方法。
采样是指将模拟信号按照一定时间间隔进行采集,将连续的模拟信号离散化。
量化是指将采样得到的信号根据一定的量化步长进行量化,将模拟信号转换为一系列有限离散的数字值。
1.2AD转换器选择与连接AD转换器有很多种类,常用的有逐次逼近型AD转换器(SAR-ADC)、比较型AD转换器(CMP-ADC)、积分型AD转换器(INT-ADC)等。
选择AD转换器需要根据系统需求、精度要求以及成本预算等因素进行综合考虑。
在连接AD转换器时,需要注意采样电容的选择和电源的稳定性。
采样电容的选择应根据模拟信号的频率进行合理匹配,以保证采样精度。
电源的稳定性对于AD转换的精度有着重要的影响,应尽量选择稳压电源或者添加滤波电路来保证电源的稳定性。
1.3电路布局与设计AD转换电路的设计要考虑信号的接地,对电路的布局进行合理规划,减少模拟信号与数字信号的干扰。
在布局设计时,应将模拟部分与数字部分相分离,分别布置,并通过适当的屏蔽手段减少干扰。
2.1显示器选择与连接显示器的选择与连接需要根据具体应用场景和要求进行综合考虑。
常用的显示器有数码管、液晶显示器(LCD)、有机发光二极管(OLED)等。
选择显示器时需要考虑显示分辨率、功耗、驱动电压等因素。
显示器连接电路一般包括驱动芯片、显示控制器和显示缓冲器。
驱动芯片负责控制显示器的驱动电压和显示模式,显示控制器负责将数字信号转换为驱动芯片所需的信号格式,显示缓冲器用于提供驱动芯片所需的电流和电压。
2.2显示电路布局与设计显示电路的布局设计需要考虑显示元件之间的互相干扰以及显示质量。
单片机课设AD转换
外部程序存储器寻址空间为64KB,外部数据存储器寻址空间为64KB。
111条指令,大部分为单字节指令。
单一+5V电源供电,双列直插40引脚DIP封装。
5.2.3 复位电路
复位电路有两种:上电自动复位和上电/按键手动复位。在这里我们采用上电/按键手动复位,如图所示按下按键SW,电源对电容C充电,使RESET端快速达到高电平。松开按键,电容向芯片的内阻放电,恢复为低电平,从而使单片机可靠复位。既可上电复位,又可按键复位。一般R1选470欧姆,R2选8.2K欧姆,C选22uF。
6.2 主程序
主程序主要是设置数据区的起始地址为60H,模拟路数为8路,设置外部中断方式是下降沿触发,开总中断,向ADC0809写数据启动AD转换。
图1主流程图的设计框架
6.3中断服务程序
中断服务程序主要完成取AD转换结果存储,模拟路数自增1,存储区自增1,判断8路是否转换完毕,若完毕则返回。
图2 T0中断服务程序流程图
MOV @DPTR,A
就启动了AD转换。
8051的P2.7(A15)和 经或非门后的信号YOE与ADC0809的OE端相连,但单片机执行如下程序后,
MOV DPTR,#7FF8H
MOV A,@DPTR
就可以获取AD的转换结果。
转换数据的传送可以有定时传送方式,查询方式和中断方式,在这里我们采用中断方式。因为ADC0809的转换时间为100us,而单片机执行一条指令的时间为1us,它们之间相差两个数量级。而且采用中断方式的好处在于可以不占用CPU硬件资源,使CPU可以在转换的过程中完成其他的工作。将ADC0809的EOC引脚经或非门后与8051的INT0相连,这样就能在外部中断子程序中实现对采集来的数据进行存储。
微机原理综合性实验报告-AD转换器ADC0809数字温度计设计
微机原理与汇编语言综合性实验报告实验项目名称:A/D转换器 ADC0809数字温度计设计实验目的:掌握A/D转换原理,掌握0809A/D转换芯片的硬件电路和软件编程。
实验要求:包括开发环境要求,技术文档要求两部分。
开发环境要求:软件环境:windows98/windowsXP/windows2000,QTH-8086B环境硬件环境:计算机(Pen4CPU, 256MRAM,60G以上硬盘,输入输出设备)技术文档要求:按照实验报告编写要求进行。
要求软、硬件功能描述清晰,实验总结深刻。
实验内容:1 、实验原理图1 电路原理图本实验采用 ADC0809 做 A/D 转换实验。
ADC0809 是一种8路模拟输入、8位数字输出的逐次逼近法A/D器件,转换时间约100us,转换精度为±1/512,适用于多路数据采集系统。
ADC0809片内有三态输出的数据锁存器,故可以与8088微机总线直接接口。
图中ADC0809的CLK信号接CLK=2.385MHZ,基准电压Vref(+)接Vcc。
一般在实际应用系统中应该接精确+5V,以提高转换精度,ADC0809片选信号0809CS和/IOW、/IOR经逻辑组合后,去控制ADC0809的ALE、START、ENABLE信号。
ADC0809的转换结束信号EOC未接,如果以中断方式实现数据采集,需将EOC信号线接至中断控制器8259A的中断源输入通道。
本实验以延时方式等待A/D转换结束,ADC0809的通道号选择线ADD-A、ADD-B、ADD-C 接系统A/D转换器ADC0809数字温度计设计数据线的低3位,因此ADC0809的8个通道值地址分别为00H、01H、02H、03H、04H、05H 、06H、07H。
启动本A/D转换只需如下三条命令:MOV DX,ADPORT ;ADPORT为ADC0809端口地址。
MOV AL,DATA ;DATA为通道值。
MOV DX, AL ;通道值送端口。
温控系统的信号采样放大及AD转换电路设计
温控系统的信号采样放大及A/D转换电路设计一.简介本温度控制和显示系统是一个闭环反馈控制系统,它用温度传感器将检测到的温度信号经放大,A/D转换后送进计算机中,与设定值进行比较,得到偏差。
对此偏差按PID算法进行修正,返回对应工况下的可控硅导通时间,调节电热丝的有效加热功率,从而实现对铁块的温度控制。
系统采用AT89C52芯片为CPU,外扩了8K的数据存储器6264。
AT89C52是美国A TMEL 公司生产的低电压,高性能的CMOS 8位单片机,片内含8K的可反复擦写的只读程序存储器(PEROM)和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度,非易失性存储技术生产,与标准的MCS-51指令系统及8052产品引脚兼容,片内置通用8位中心处理器(CPU)和Flash存储单元,功能强大AT89C52单片机适用于很多较为复杂控制应用场合。
AT89C52的主要性能参数有:·与MCS-51产品指令和引脚完全兼容。
·8K可重擦写的闪速存储器。
·1000次擦写周期。
·全静态操纵:0Hz-24MHz。
·三级加密程序存储器。
·256×8字节内部RAM。
·32个可编程I/O口线。
·3个16位的定时/计数器。
·8个中断源。
·可编程串行UART通道。
·低功耗空闲和掉电模式。
A T89C52提供以下标准功能:8K字节的Flash闪速存储器,256字节的内部RAM,32个I/O口线,3个16位的定时/计数器,一个6向量两极中断结构,一个全双工串行通讯口,片内振荡器及时钟电路。
同时,AT89C52可降至0Hz的静态逻辑操纵,并支持两种软件可选的节电工作模式:空闲方式停止CPU的工作,但答应RAM,定时/计数器,串行通讯口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。
片机的典型外围ADC电路
03
ADC电路的性能指标
分辨率和量化误差
分辨率
ADC的分辨率是指其能够分辨的最 小模拟电压值,通常以位数表示。例 如,一个12位的ADC能够分辨 1/4096的模拟电压值。
量化误差
量化误差是由于ADC的有限分辨率而 引起的误差,它表现为数字输出与实 际模拟输入之间的差异。
转换速率和采样频率
转换速率
详细描述
在图像信号采集和处理中,ADC电路将摄像 头等模拟图像输入设备采集的图像信号转换 为数字信号,然后通过图像处理技术进行色 彩校正、边缘检测、特征提取等操作,实现
图像的识别和分析。
工业控制和测量系统
总结词
工业控制和测量系统是ADC电路的重要应用之一,它能 够实时采集和处理各种工业控制参数和物理量,实现精 确控制和监测。
要点二
详细描述
测试内容包括分辨率、线性度、噪声、失真等指标。验证 方法包括仿真测试、实际应用测试等,以确保ADC电路在 实际应用中的性能表现。
05
ADC电路的应用实例
音频信号采集和处理
总结词
音频信号采集和处理是ADC电路的重要应用 之一,它能够将模拟的音频信号转换为数字 信号,便于存储、传输和处理。
详细描述
在音频信号采集和处理中,ADC电路将麦克 风等模拟音频输入设备采集的音频信号转换 为数字信号,然后通过数字信号处理技术进 行降噪、滤波、压缩等操作,提高音频质量。
图像信号采集和处理
总结词
图像信号采集和处理是ADC电路的另一个重 要应用,它能够将模拟的图像信号转换为数 字信号,便于图像处理、分析和识别。
编码器电路的性能直接影响ADC的输出数据格式和传输方式,因此需要选 择合适的电路参数和器件。
参考电压源电路
9位100 MSPS流水线结构AD转换器的设计
9位100 MSPS流水线结构AD转换器的设计摘要: 提出一种采用三级流水线型结构的9位100 MSPS折叠式A/D转换器,具体分析了其内部结构。
电路使用0.6 μm Bipolar工艺实现, 由5 V/3.3 V双电源供电, 经优化设计后, 实现了9位精度,100 MSPS的转换速度,功耗为650 mW,差分输入范围2.2 V。
给出了在Cadence Spectre的仿真结果,讨论了流水线A/D转换器设计的关键问题。
关键词:流水线结构; A/D转换器; 采样保持电路; Cadence Spectre 中图分类号:TN911-34文献标识码:A文章编号:1004-373X(2010)22-0005-04Design of 9-bit 100 MSPS A/D Converter with Pipeline ArchitectureSHEN Kai-sheng1, LIU Su1, CHE Hong-rui2, SUOYa-qin1, ZHANG Guo-bin1(1. Institute of Microelectronics, Lanzhou University, Lanzhou 730000, China;2. Chengdu Sino Microelectronics Technology Co. Ltd., Chengdu 610041, China)Abstract: A 9-bit 100 MSPS folding A/D converter with three-stage pipeline architecture is presented. Its internalstructure is analyzed in detail. The circuit of the converter is implemented by 0.6 μm standard complementary Bipolar process. The 9-bit accuracy, 100 MSPS conversion rate were achieved after the optimization design. The circuit has a power dissipation of 650 mW at 5 V/3.3 V dual supply voltage. The differential input range of ADC is 2.2 V. The simulation results in Cadence spectre are offered. The key of the design for A/D converter with pipeline architecture is discussed. Keywords: pipeline structure; A/D converter; T/H circuit; Cadence Spectre片上系统(SoC)需要在单个硅片上实现模/数混合集成。
实验十二 AD转换实验
实验十二A/D转换实验一、实验目的1.掌握A/D转换与单片机接口的方法。
2.了解A/D芯片0809转换性能及编程方法。
3.用AT89C51单片机控制ADC0809将模拟信号(0~5V)转换成数值量(0~255),再控制LED数码管以十六进制实时显示出来。
ADC0809为模/数(A/D)转换器。
4.用PROTEUS实现该接口的电路设计和程序设计,并进行实时交互仿真。
5.要求使用查询和中断两种方式编写程序。
二、电路设计1.从PROTEUS库中选取元件①AT89C51.BUS:总线式的单片机;②RES:电阻;③LED-BLUE:蓝色发光二极管;④CAP、CAP-ELEC:电容、电解电容;⑤CRYSTAL:晶振;⑥AD0808:8位A/D转换器;⑦74LS28:四路或非门;⑧NOT :非门;⑨74LS373:八 D 锁存器;⑩POT-LIN :滑动变阻器;○11RESPACK-8:8位排阻。
2.放置元器件3.放置电源和地4.连线5.元器件属性设置6.电气检测三、源程序设计、生成目标代码文件1.流程图2.源程序设计3.源程序编译汇编、生成目标代码文件通过菜单“sourc e →Build All ”编译汇编源程序,生成目标代码文件。
若编译失败,可对程序进行修改调试直至汇编成功。
四、PROTEUS 仿真1.加载目标代码文件2.仿真 单击按钮,启动仿真。
U1X1C1C2U4U5RV1U6U7:AU7:B D1U10D2D3D4U11U12U13D5U14D6D7D8U15U16U17RP1五、思考题:1.目前应用较广泛的A/D 转换器主要有哪几种类型?它们各有什么特点?2.在一个AT89C51单片机与一片ADC0809组成的数据采集系统中,ADC0809的8个通道的地址为7FF8H~7FFFH,试画出相应的接口电路图。
ad转换器课程设计
a d转换器课程设计一、课程目标知识目标:1. 学生能理解AD转换器的基本概念,掌握其工作原理;2. 学生能掌握AD转换器的转换方法,了解不同类型AD转换器的优缺点;3. 学生能了解AD转换器在现实生活中的应用,认识到其在工程技术领域的重要性。
技能目标:1. 学生能够运用所学知识,分析并设计简单的AD转换电路;2. 学生能够运用AD转换器进行模拟信号与数字信号之间的转换实验,并处理实验数据;3. 学生能够通过实践操作,掌握AD转换器的调试与优化方法。
情感态度价值观目标:1. 学生通过学习AD转换器,培养对电子技术的兴趣,提高学习积极性;2. 学生在学习过程中,养成合作、探究的学习习惯,增强团队协作能力;3. 学生能够认识到科技发展对社会进步的重要性,激发对科技创新的热情。
课程性质:本课程为电子技术基础课程,旨在使学生掌握AD转换器的基本原理、应用及实验方法。
学生特点:学生具备一定的电子技术基础知识,具有较强的动手能力和探究精神。
教学要求:结合理论教学与实验操作,注重培养学生的实际操作能力和创新意识,提高学生的综合素质。
通过分解课程目标为具体学习成果,使学生在课程学习中获得全面、深入的理解。
二、教学内容1. AD转换器基本概念:包括模拟信号与数字信号的区别,AD转换器的作用及其在电子系统中的应用。
教材章节:第一章 电子技术基础2. AD转换器工作原理:重点讲解逐次逼近法、双积分法等常见AD转换方法。
教材章节:第二章 模拟电子技术3. AD转换器类型及优缺点:介绍并行AD转换器、串行AD转换器等不同类型,对比分析其性能特点。
教材章节:第三章 数字电子技术4. AD转换器的应用:举例说明AD转换器在医疗、工业、通信等领域的应用。
教材章节:第四章 电子技术应用5. AD转换器电路设计与实践:结合Multisim等软件,设计简单的AD转换电路,并进行仿真实验。
教材章节:第五章 电子电路设计与实践6. AD转换器实验操作:包括实验步骤、实验数据处理,以及实验现象分析。
AD外围电路之IV变换
AD外围电路之IV变换
A/D外围电路之I/V变换
很多变送器的输出信号为0~10mA或4~20mA,由于A/D转换器的输⼊信号只能是电压信号,所以如果模拟信号是电流时,必须先把电流变成电压才能进⾏A/D转换。
这样就需要I/V变换电路。
下⾯讨论⼀下I/V变换的实现⽅法。
(1)⽆源I/V变换
⽆源I/V变换主要是利⽤⽆源器件电阻来实现,并加滤波和输出限幅等保护措施,如图1所⽰。
图1 ⽆源I/V变换电路
对于0~10mA输⼊信号,可取R1=100,R2=500,且R2为精密电阻,这样当I为0~10mA电流时,输出的V为0~5V;对于4~20mA输⼊信号,可取R1=100,R2=250,且R2为精密电阻,这样当输⼊的电流为4~20mA时,输出的V为1~5V。
(2)有源I/V转换
有源I/V变换主要是利⽤有源器件运算放⼤器、电阻来实现,如图2所⽰。
图2 有源I/V变换电路
该同相放⼤电路的放⼤倍数为:A=1+R4/R3
若取R3=100KΩ,R4=150KΩ,R1=200Ω,则0~10mA输⼊对应于0~5V的电压输出。
若取
R3=100KΩ,R4=25KΩ,R1=200Ω,则4~20mA输⼊对应于1~5V的电压输出。
前置放⼤器
前置放⼤器的任务是将模拟输⼊的⼩信号放⼤到A/D转换的量程范围之内,为了能适应多种⼩信号的放⼤需求,可以设计可变增益放⼤器。
现在的⼀些变送器的输出都是标准的电压信号或标准的电流信号,前置放⼤器在A/D转换电路中不常⽤。
AD转换程序设计实验报告
实验六 AD转换程序设计一、实验目的:1.掌握转换器ADC0809的使用。
2.用PROTEUS 设计,仿真基于AT89C51单片机的A/D转换实验。
3.通过改变电位器的值改变模拟量的输入,经转换为数字量在LED上显示,比对模拟量和数字量的关系。
二、PROTEUS电路设计:三、实验仪器和设备PC机、PROTEUS软件或W-A-51综合开发学习板四、源程序设计:1.程序#include<reg51.h>sbit STA=P2^5;sbit EOC=P2^6;sbit OE=P2^7;sbit CLK=P2^4;sbit led4=P2^3;sbit led3=P2^2;sbit led2=P2^1;sbit led1=P2^0;sbit point=P0^7;int ad_result;float result;unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};void delay(unsigned int time){unsigned int j=0;for(;time>0;time--)for(j=0;j<125;j++);}void ad_init(){OE=1;STA=0;CLK=0;}void time_init(){TMOD=0X02;TH0=0X94;TL0=0;EA=1;ET0=1;TR0=1;}void T0_time()interrupt 1{CLK=!CLK;}void ad_start(){ad_init();delay(10);STA=1;delay(10);STA=0;}void disp( int a){led1=0;P0=table[a/1000];point=1;delay(2);led1=1;led2=0;P0=table[a%1000/100];delay(2);led2=1;led3=0;P0=table[(a%100)/10];delay(2);led3=1;led4=0;P0=table[a%10];delay(2);led4=1;}void main(void){ad_init();time_init();while(1){ad_start();while(EOC==0);result=(P1*(5.0/255.0))*1000;ad_result=(int)(result+0.5);disp(ad_result);}}。
第九章数模(DA)和模数(AD)转换电路
第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。
ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。
三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。
第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。
第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。
第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。
(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。
DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。
AD转换模块电路设计
AD转换模块电路设计在进行AD(模拟数字)转换模块电路设计之前,我们首先需要了解AD转换的原理和工作方式。
AD转换是将模拟信号转换成数字信号的过程。
模拟信号是连续的,在时间和幅度上都可以连续变化。
而数字信号是离散的,时间和幅度都是以固定的间隔离散表示的。
AD转换的过程一般分为三个步骤:采样、量化和编码。
采样是将连续的模拟信号在固定的时间间隔内进行取样,得到一系列离散的采样点。
量化是将每个采样点的幅度值转换成最接近的离散值,通常是使用固定数量的位数来表示幅度。
编码是将每个量化值转换成二进制码,以便存储和传输。
接下来,我们将讨论如何设计AD转换模块电路。
1.采样电路设计:采样电路的作用是将连续的模拟信号转换成一系列离散的采样点。
常用的采样电路是采用采样保持电路。
该电路通过开关控制,定期打开采样电容的充电路径以采集输入信号,然后关闭充电路径并保持电容电荷以提供采样点。
2.量化电路设计:量化电路的作用是将采样点的幅度值转换成最接近的离散值。
一种常用的量化电路是比较器电路。
比较器电路将采样点与一系列参考电压进行比较,然后输出最接近的参考电压。
比较器电路可以使用操作放大器和电阻网络来实现。
3.编码电路设计:编码电路的作用是将量化值转换成二进制码。
常用的编码电路是二进制编码器或优先编码器。
二进制编码器将量化值转换成与其等效的二进制码,而优先编码器则将量化值转换成最小的二进制码。
上述三个电路可以通过集成电路来实现。
目前,市场上提供了许多AD转换器芯片,可以直接集成上述三个电路,大大简化了电路设计和组装过程。
在进行AD转换模块电路设计时,还需要考虑一些其他要素,如输入阻抗、引导线的干扰、输入滤波等等。
此外,尽可能选择低噪声、高速度和高分辨率的组件和元件,以提高AD转换的精度和性能。
总的来说,AD转换模块电路设计较为复杂,需要考虑多个因素,如采样、量化和编码。
同时,可以选择使用集成电路来简化设计。
设计的关键在于选择合适的组件和元件,并考虑各种噪声和干扰因素,以提高AD 转换模块的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时钟
采样速率(高速时钟问题) 部分AD时钟需要差分时钟输入
模拟输入
不要超过量程范围 负压提升(加法器) 部分输入信号要求差分(AD8138)
信号的无源衰减电路
数据输出
I/O口控制 总线形式控制(SPI、USART等) 输出的速度与单片机的接口能力问题
A/D使用中的注意事项
信号的采样频率与信号本身之间的关系 (奈奎斯特采样定理) AD的采样速率应是模拟带宽的5~10倍才能 准确的重现信号。
电流转电压电路
精密电阻、低通滤波、跟随器
常用的AD芯片
ADC0804、ADC0809、ADC0832、ADS 系列(如:ADS8505、ADS803)、TLC系 列(TLC2543、TLC5510) PCF8591(集成AD和DA、IIC总线)
A/D的选择
转换器的位数 转换器的转换速率 工作电压和基准电压 输入电压范围
ADC电路的必备条件
电源 时钟 模拟输入 数字输出与控制信号
ADC的电源
电源去耦电路 避免较大电流干扰串入电路 电源端加限流电阻(100~200Ω)-晶闸管 特性(CMOS电路共性)
AD转换器及其外围 电路设计
A/D转换器基本原理
连接模拟-数字的桥梁 对模拟信号进行抽样(取样-量化-编码)
A/D转换器的性能指标
位数:AD转换对应的位数,常见的有8位、10位、12位、 14位、16位、24位 分辨率:输出数字量变化一个数字量时输入的模拟电压的 变化量,分辨率= 满刻度电压 2n -1
A/D转换器的类型
并联比较式:超高速、6~10位、几十ns转换时间、 几十MSa/s采样率(TLC5510) 分级式:高速、8~16位、几十~几百ns、几 MSa/s 逐次逼近式:综合性价比较高、8~16位、几~几 十us、几十~几百kSa/s(TLC0831) ∑-Δ式:高分辨率、高精度、16~24位、几~几十 ms、几十kSa/s(AD7705) 积分式:高精度、高抗干扰、12~16位、几十~几 百ms、几~几十Sa/s(TLC7135) V/F型 :低成本、高分辨率、8~16位、几十~几 百ms、几~几十Sa/s(AD650)
实例:ADC0809
看数据手册 看时序图
转换时间:完成一次转换需要的时间(单位:ns、us) 量化误差:由于AD的分辨率引起的误差,指量化结果和 被量化模拟量的差值,分辨率高的AD
采样率:(单位: Sa/s、kSa/s、MSa/s) 非线性度:转换器实际的转换曲线与理想转换曲 线的偏移 偏移误差:输入信号为零时,输出信号不为零的 值,由AD内部的放大器或比较器输入的失调电压 或失调电流引入 输入电压范围:不要超出电压范围,一般输入电 压<电源电压,且AD输入电压一般只有正电压