八年级数学上册一次函数图像应用题(带解析版答案)
苏教版八上一次函数应用题含答案解析
八上一次函数应用题含解析一.解答题(共15小题)1.(2014•邗江区一模)某厂工人小宋某月工作部分信息如下.信息一:工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月20天信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件.生产产品的件数与所用时间之间的关系如下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元.信息四:小宋工作时两种产品不能同时进行生产.根据以上信息回答下列问题:(1)小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间?(2)小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?(习题改编)2.(2014•丹东二模)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式_________ ;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?3.(2014•泰州三校一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为_________ km/h,快车的速度为_________ km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.4.(2014•如东县模拟)甲、乙两车同时从M地出发,以各自的速度匀速向N地行驶.甲车先到达N地,停留1h后按原路以原速匀速返回,直到两车相遇,乙车的速度为50km/h.如图是两车之间的距离y(km)与乙车行驶时间x (h)之间的函数图象.(1)甲车的速度是_________ km/h,M、N两地之间相距_________ km;(2)求两车相遇时乙车行驶的时间;(3)求线段AB所在直线解析式.5.(2014•徐州模拟)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a,每条输出传送带每小时出库的货物流量如图b,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c.(1)根据图象,在0时至2时工作的输入传送带和输出传送带的条数分别为_________ ;A.8条和8条B.14条和12条C.12条和14条D.10条和8条(2)如图c,求当2≤x≤4时,y与x 的函数关系式;(3)若4时后恰好只有4条输入传送带和4条输出传送带在工作(至货物全部输出完毕为止),请在图c中把相应的图象补充完整.6.(2014•海陵区模拟)一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行).下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?7.(2014•沛县模拟)某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.8.(2014•海拉尔区模拟)某大型物流公司首期规划建造面积为2400平方米的商铺,商铺内设A种类型和B种类型的店面共80间,A种类型的店面平均面积为28平方米,每间月租费为400元,B种类型的店面平均面积为20平方米,每间月租费为360元,全部店面的建造面积不低于商铺总面积的85%.(1)设A种类型的店面数为a间,请问数量a在什么范围?(2)该物流公司管理部门通过了解,A种类型的店面的出租率为75%,B种类型的店面的出租率为90%,为使店面的月租费收入最高,应建造A种类型的店面多少间?9.(2014•天水一模)某商场计划购进冰箱、彩电进行销售,相关信息如下表售价(元/台)进价(元/台)冰箱 a 2500彩电a﹣400 2000(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值;(2)为了满足市场需求,商场决定用不超过90000元的资金采购冰箱彩电共50台,要求冰箱的数量不少于23台.①该商场有哪几种进货方案?②若该商场将购进的冰箱彩电全部售出,获得的利润为w元,求w的最大值.10.(2014•泰安模拟)为了迎接2013新年的到来,我校决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若我校决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么我们共有几种进货方案?(3)销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?11.(2014•玄武区一模)某市出租车按里程计费标准为:不超过3公里部分,计费11元,超过3公里部分,按每公里2.4元计费.现在在此基础上,如果车速不超过12公里/小时,那么再加收0.48元/分钟,这项费用叫做“双计费”.图中三段折线表示某时间段内,一辆出租车的计费总额y(元)与行驶时间x(分钟)的函数关系(出租车在每段上均匀速行驶).(1)写出AB段表示的实际意义;(2)求出线段BC所表示的y与x的函数关系式;(3)是否可以确定在CD段该辆出租车的计费过程中产生了“双计费”的费用?请说明你的理由.12.(2014•东丽区一模)A,B两个商场平时以同样的价格出售同样的产品,在中秋节期间让利酬宾.A商场所有商品8折销售,B商场消费超过200元后,可以在这家商场7折购物.试问如何选择商场购物更经济?13.(2014•江西样卷)小明家国庆期间租车到某地旅游,先匀速行驶50千米的普通公路,这时油箱内余油32升,由于国庆期间高速免费,进而上高速公路匀速行驶到达旅游目的地.下图是汽车油箱内余油量Q(升)与行驶路程s(千米)之间的函数图象,当行驶150千米时油箱内余油26升.(1)分别求出AB段和BC段图象所在直线的解析式.(2)到达旅游目的地后,司机说:“今日改走高速公路后比往日全走普通公路省油6升”,求此时油箱内的余油量.(假设走高速公路和走普通公路的路程一样)(3)已知出租车在高速公路上匀速行驶的速度是100千米/小时,求出租车在高速公路上行驶的时间.14.(2014•永康市模拟)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?15.(2014•牡丹江一模)快、慢两车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车早1小时到达甲地,快、慢两车距甲地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.请结合图象信息解答下列问题:(1)快、慢两车的速度各是多少?(2)出发多少小时,两车距甲地的路程相等?(3)直接写出在快车到达甲地前,两车相距10千米路程的次数.八上一次函数应用题含解析参考答案与试题解析一.解答题(共15小题)1.(2014•邗江区一模)某厂工人小宋某月工作部分信息如下.信息一:工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月20天信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件.生产产品的件数与所用时间之间的关系如下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元.信息四:小宋工作时两种产品不能同时进行生产.根据以上信息回答下列问题:(1)小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间?(2)小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?(习题改编)考点:一次函数的应用;二元一次方程组的应用.专题:函数思想;方程思想.分析:(1)由已知列二元一次方程组求解,(2)先设小宋该月生产甲种产品a件,收入y元,根据题意写出函数关系式求最大值,再求出生产的乙种产品.解答:解:(1)设小宋每生产一件甲种产品需要x分钟,每生产一件乙种产品需要y分钟,根据题意得:,解得,答:小宋每生产一件甲种产品需要15分钟,每生产一件乙种产品需要20分钟.(2)设小宋该月生产甲种产品a件,收入y元,y=1.5a+(160×60﹣15a)÷20×2.8(a≥60)=﹣0.6a+1344,∵k=﹣0.6<0∴y随着a的增大而减小,∴当a=60时,y取得最大值=1308,此时生产的乙种产品为:(1308﹣1.5×60)÷2.8=435,答:小宋该月最多能得1308元,此时生产的甲、乙两种产品分别是60,435件.点评:此题考查的知识点是一次函数的应用及二元一次方程组的应用,解题的关键是首先列二元一次方程组求出小宋每生产一件甲种产品,每生产一件乙种产品分别需要的时间,然后写出函数关系式求最大值.2.(2014•丹东二模)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式y=60x ;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?考点:一次函数的应用.分析:(1)利用待定系数法求一次函数解析式即可;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可;(3)首先利用当0≤x≤2时,当2<x≤2.8时,以及当2.8<x≤4.8时,当4.8<x≤6时,求出x的值,进而得出答案即可,再假设出再经过x小时恰好装满第1箱,列出方程即可.解答:解:(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);故答案为:y=60x(0<x≤6);(2)乙2小时加工100件,∴乙的加工速度是:每小时50件,∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+100(x﹣2.8)=100x﹣180,当0≤x≤2时,60x+50x=300,解得:x=(不合题意舍去);当2<x≤2.8时,100+60x=300,解得:x=(不合题意舍去);∵当2.8<x≤4.8时,60x+100x﹣180=300,解得x=3,∴经过3小时恰好装满第1箱.答:经过3小时恰好装满第一箱.点评:此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.3.(2014•泰州三校一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为80 km/h,快车的速度为120 km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.考点:一次函数的应用.分析:(1)先利用前0.5小时的路程除以时间求出一辆车的速度,再利用相遇问题根据2.7小时列式求解即可得到另一辆车的速度,从而得解;(2)点D为快车到达乙地,然后求出快车行驶完全程的时间从而求出点D的横坐标,再求出相遇后两辆车行驶的路程得到点D的纵坐标,从而得解;(3)分相遇前相距300km和相遇后相遇300km两种情况列出方程求解即可.解答:解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80;120.(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.点评:本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.4.(2014•如东县模拟)甲、乙两车同时从M地出发,以各自的速度匀速向N地行驶.甲车先到达N地,停留1h后按原路以原速匀速返回,直到两车相遇,乙车的速度为50km/h.如图是两车之间的距离y(km)与乙车行驶时间x (h)之间的函数图象.(1)甲车的速度是75 km/h,M、N两地之间相距300 km;(2)求两车相遇时乙车行驶的时间;(3)求线段AB所在直线解析式.考点:一次函数的应用.分析:(1)由图可知,在x=4小时,两车相距100千米,由此可求甲车从M到N的行驶速度和M、N两地之间的距离;(2)设出两车相遇时乙车行驶的时间,根据两车相遇行的路程和为300×2列方程解答即可;(3)设出AB所在直线解析式为y=kx+b(k≠0),将A、B点坐标代入求得函数解析式即可.解答:解:(1)甲车的速度是100÷4+50=75km/h,M、N两地之间相距75×4=300km;(2)两车相遇时乙车行驶的时间即为t,75(t﹣1)+50t=300×2解得t=5.4,答:两车相遇时乙车行驶的时间5.4小时.(3)根据题意得:A(5,50),B(5.4,0)设AB所在直线解析式为y=kx+b(k≠0),将A、B点坐标代入,解得.则AB所在直线解析式为y=﹣125x+675.点评:考查了一次函数的运用,注意结合图象,理解题意,利用行程问题的基本数量关系解决问题.5.(2014•徐州模拟)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a,每条输出传送带每小时出库的货物流量如图b,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c.(1)根据图象,在0时至2时工作的输入传送带和输出传送带的条数分别为 B ;A.8条和8条B.14条和12条C.12条和14条D.10条和8条(2)如图c,求当2≤x≤4时,y与x 的函数关系式;(3)若4时后恰好只有4条输入传送带和4条输出传送带在工作(至货物全部输出完毕为止),请在图c中把相应的图象补充完整.考点:一次函数的应用.分析:(1)设在0时至2时内有x条输入传送带和y条输出传送带在工作,根据图已列出二元一次方程,根据取值范围,且都是正整数,探讨得出答案即可;(2)设出y与x的函数关系式y=kx+b,代入(2,12)、(4,32)求得函数解析式即可;(3)4条输入传送带和4条输出传送带在工作,因为每小时相当于输出(15﹣13)×4=8吨货物,所以把仓库中的32吨输出完毕需要32÷8=4小时,由此画出图形即可.解答:(1)设在0时至2时内有x条输入传送带和y条输出传送带在工作,则13x﹣15y=2,因为x≤20,y≤20,且都是正整数,所以x=14,y=12;故选:B;(2)由图象可知:当2≤x≤4时,y是x的一次函数,设y=kx+b,将(2,12)、(4,32)代入得:,解得:∴当2≤x≤4时,y=10x﹣8(3)画图如下:点评:此题主要考查了函数的图象的应用,解题的关键是根据图象得到相关的信息,根据题意列出方程,结合未知数的实际意义求解.6.(2014•海陵区模拟)一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行).下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?考点:一次函数的应用.分析:(1)根据函数图象可以得出是一个分段函数,当0≤t≤5时,5<t≤8时,8<t≤13时,由待定系数法就可以求出结论;(2)由待定系数法求出渔政船离港口的距离S和它离开港口的时间t的函数关系式,再建立不等式组求出其解即可.解答:解:(1)当0≤t≤5时,设渔船离港口的距离S和它离开港口的时间t的关系式为S=k1t,由题意,得150=5k1,解得:k1=30∴S=30t;5<t≤8时,S=150当8<t≤13时,设渔船离港口的距离S和它离开港口的时间t的关系式为S=k2t+b,由题意,得,解得:,∴S=﹣30t+390.∴S=;(2)渔政船离港口的距离S和它离开港口的时间t的函数关系式为S1=k3t+b1,由题意,得,解得:,∴S1=45t﹣360,∴,∴9.6≤t≤10.4,∴9.6≤t≤10.4时,两船距离不超过30海里.点评:本题考查了分段函数的在实际问题中的运用,待定系数法求一次函数的解析式的运用,列不等式组解实际问题的运用,解答时求出一次函数的解析式是关键.7.(2014•沛县模拟)某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.考点:一次函数的应用.分析:(1)利用甲船与B港的距离y1(km)与行驶时间x(h)的函数图象如图所示.结合已知条件“B港位于A港、C岛之间,且A、B、C在一条直线上”来求A港与C岛之间的距离;(2)利用速度=来求甲、乙两舰艇的航速;点M即为y1、y2与交点;(3)需要分类讨论:甲舰艇追上乙舰艇之前、后两种情况下,两舰艇处于最佳通讯距离时x的取值范围.解答:解:(1)40+160=200(km),即A港与C岛之间的距离为200km;(2)甲航速为=80(km/h),乙航速为=60(km/h).当0.5≤x≤时,y1=80x﹣40 ①,当0≤x≤2时,y2=60x ②,①②联立成方程组解得即M点坐标为(2,120);(3)当甲舰艇追上乙舰艇之前两舰艇处于最佳通讯距离时,(80﹣60)x≥40﹣20,解得 x≥1.当甲舰艇追上乙舰艇之后两舰艇处于最佳通讯距离时,(80﹣60)(x﹣2)≤20,解得,x≤3.∴在演习第一阶段两舰艇处于最佳通讯距离时的x的取值范围是1≤x≤2.点评:本题考查了一次函数的应用.解题时,需要学生具备识别函数图象的能力.另外,解答(3)题时,采用了“分类讨论”的数学思想.8.(2014•海拉尔区模拟)某大型物流公司首期规划建造面积为2400平方米的商铺,商铺内设A种类型和B种类型的店面共80间,A种类型的店面平均面积为28平方米,每间月租费为400元,B种类型的店面平均面积为20平方米,每间月租费为360元,全部店面的建造面积不低于商铺总面积的85%.(1)设A种类型的店面数为a间,请问数量a在什么范围?(2)该物流公司管理部门通过了解,A种类型的店面的出租率为75%,B种类型的店面的出租率为90%,为使店面的月租费收入最高,应建造A种类型的店面多少间?考点:一次函数的应用;一元一次不等式的应用.分析:(1)关键描述语为:全部店面的建造面积不低于商铺总面积的85%.关系式为:A种类型店面面积+B种类型店面面积≥3200×85%.(2)店面的月租费=A种类型店面间数×75%×400+B种类型店面间数×90%×360,然后按取值范围来求解.解答:解:(1)设A种类型店面的数量为a间,则B种类型店面的数量为(80﹣a)间,根据题意得 28a+20(80﹣a)≥2400×85%,解得a≥55.又A种类型和B种类型的店面共80间,得a≤80故数量a的范围55≤a≤80.(2)设应建造A种类型的店面x间,则店面的月租费为w,则W=400×75%•x+360×90%•(80﹣x)=300x+25920﹣324x=﹣24x+25920,∴k=﹣24<0,∴y随x的增大而减小,∴x=55时,y最大=24600所以应建造A种类型的店面55间.点评:考查了一次函数的应用和一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组,及所求量的等量关系.注意本题的不等关系为:建造面积不低于商铺总面积的85%;并会根据函数的单调性求最值问题.9.(2014•天水一模)某商场计划购进冰箱、彩电进行销售,相关信息如下表售价(元/台)进价(元/台)冰箱 a 2500彩电a﹣400 2000(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值;(2)为了满足市场需求,商场决定用不超过90000元的资金采购冰箱彩电共50台,要求冰箱的数量不少于23台.①该商场有哪几种进货方案?②若该商场将购进的冰箱彩电全部售出,获得的利润为w元,求w的最大值.考点:一次函数的应用.分析:(1)根据总价÷单价=数量由80000元购进冰箱的数量与用64000元购进彩电的数量相等建立方程求出其解即可;(2)①设购买冰箱x台,则购买洗衣机(50﹣x)台,根据总费用不超过90000元和冰箱的数量不少于23台建立不等式组求出其解即可;②根据利润=冰箱的利润+洗衣机的利润求出W与x的解析式,由一次函数的性质求解即可.解答:解:由题意,得,解得:a=2000,经检验,a=2000是原方程的解,且符合题意.∴a=2000;(2)①设购买冰箱x台,则购买洗衣机(50﹣x)台,由题意,得,解得:23≤x≤25,∵x为整数,∴x=23,24,25,∴有3种购买方案:方案1,购买冰箱23台,购买洗衣机27台;方案2,购买冰箱24台,购买洗衣机26台;方案3,购买冰箱25台,购买洗衣机25台;②由题意,得W=(2500﹣2000)x+(2000﹣1600)(50﹣x),=100x+20000.∵k=100>0,∴W随x的增大而增大,∴x=25时,W最大=22500,∴w的最大值为22500元.点评:本题考查了列分式方程解实际问题的运用,列不等式组解设计方案题型的运用,一次函数的解析式的性质的运用,解答时根据总利润═冰箱的利润+洗衣机的利润建立解析式是关键.10.(2014•泰安模拟)为了迎接2013新年的到来,我校决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若我校决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么我们共有几种进货方案?(3)销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据条件建立二元一次方程组求出其解即可;(2)设我校购进A种纪念品x个,购进B种纪念品y个,根据条件的数量关系建立不等式组求出其解即可;(3)设总利润为W元,根据总利润=两种商品的利润之和建立解析式,由解析式的性质就可以求出结论.解答:解:(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,由题意,得,∴解方程组得:答:购进一件A种纪念品需要50元,购进一件B种纪念品需要100元.(2)设我校购进A种纪念品x个,购进B种纪念品y个,由题意,得则,解得,解得:20≤y≤25∵y为正整数∴y=20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W元,由题意,得W=20x+30y=20(200﹣2 y)+30y,=﹣10y+4000(20≤y≤25)∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值W最大=﹣10×20+4000=3800(元)答:当购进A种纪念品160件,B种纪念品20件时,可获最大利润,最大利润是3800元.点评:本题考查了待定系数法求一次函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.已知函数y=-x+1与函数y=-2x+3,当x为________时,两函数值相等.【答案】2【解析】由题意得-x+1=-2x+3,解得x=2.2.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.3.直线y=3x+9与x轴的交点是( )A.(0,-3)B.(-3,0)C.(0,3)D.(3,0)【答案】B【解析】当y=0时,3x+9=0,解得x=-3.4.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A.x>0B.x<0C.x>1D.x<1【答案】B【解析】不等式kx+b>1,就是一次函数y=kx+b的函数值大于1,这部分图象在(0,1)的上方,此时,x<0.故选B.5.如图所示,利用函数图象回答下列问题:(1)方程组的解为________.(2)不等式2x>-x+3的解集为________.【答案】(1) (2)x>1【解析】(1)直线y=2x与x+y=3的交点坐标即为方程组的解.(2)不等式2x>-x+3的解集即为直线y=2x在直线y=-x+3上方时所对应的x的取值集合.6.用画函数图象的方法解不等式3x+2>2x-1.【答案】解法一:原不等式可化为x+3>0.画出函数y=x+3的图象(如图1所示).由图象可以看出:当x>-3时,这条直线上的点在x轴上方,即此时y>0.∴不等式3x+2>2x-1的解集为x>-3.解法二:在同一直角坐标系中分别画出函数y=3x+2与函数y=2x-1的图象(如图2所示),可以看出,它们交点的横坐标为-3.当x>-3时,对于同一个x值,直线y=3x+2上的点总在直线y=2x-1上相应点的上方,这时3x+2>2x-1,故不等式的解集为x>-3.【解析】从函数角度看不等式,画出函数的图象,观察图象即可求出不等式的解集.7.已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数解析式:y1=-4x+190,y2=5x-170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量.(2)当该商品的价格为45元/件时,该商品的供求关系如何?【答案】(1)40元/件 30件(2)供过于求【解析】(1)当y1=y2时,-4x+190=5x-170,解得x=40.当x=40时,y1=-4×40+190=30.答:稳定价格为40元/件,稳定需求量为30件.(2)当x=45时,y1=-4×45+190=10,y2=5×45-170=55.因为y1<y2,所以供过于求.8.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得函数y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A.∵一次函数y=-2x+4中k=-2<0,∴函数值y随x的增大而减小,故本选项正确,不符合题意;B.∵一次函数y=-2x+4中k=-2<0,b=4>0,∴此函数的图象经过第一、二、四象限,不经过第三象限,故本选项正确,不符合题意;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故本选项正确,不符合题意;D.∵令y=0,得x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误,符合题意.故选D.9.一次函数y=kx+b的图象经过点(3,0),则关于x的方程kx+b=0的解为()A.x=3B.x=-3C.x=3或x=-3D.x=-1【答案】A【解析】y=kx+b的图象和x轴交点的横坐标为3,所以方程kx+b=0的解为x=3.10.(2013武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【答案】【解析】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,∴b=-1.故不等式2x+b≥0即2x-1≥0,解得.11.下列函数关系式:①y=-x;②y=2x+11;③y=x2+x+1;④,其中一次函数的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的形式,故不是一次函数.故选B.12. (2014湖南娄底)一次函数y=kx-k(k<0)的图象大致是( )A.B.C.D.【答案】A【解析】∵k<0,∴-k>0,∴一次函数y=kx-k(k<0)的图象经过第一、二、四象限,故选A.13. (2013江苏徐州)下列函数中,y随x的增大而减小的函数是( )A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x【答案】C【解析】因为y随x的增大而减小时,一次函数y=kx+b(k≠0)必须满足k<0,故选C.14. (2014江苏徐州)将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)【答案】A【解析】函数y=-3x的图象沿y轴向上平移2个单位长度后对应的函数关系式为y=-3x+2.故选A.15.在同一平面直角坐标系中画出下列函数的图象.(1)y=2x与y=2x+3;(2)y=2x+1与.【答案】(1)列表:(2)列表:描点、连线,图象如图②所示.【解析】所给函数的自变量x可以是任意实数,列表表示两组对应值,描出两个点,连成直线即可.16.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.(1)求这个一次函数的解析式;(2)此函数的图象经过哪几个象限?(3)求此函数的图象与坐标轴围成的三角形的面积.【答案】(1)对于一次函数y=4x-3,当y=0时,.∴直线y=4x-3与x轴的交点坐标为(,0),∴直线y=kx+b经过点(3,-3)和点(,0),∴解得∴一次函数的解析式为.(2)∵,b=1>0,∴一次函数的图象经过第一、二、四象限.(3)对于,当x=0时,y=1;当y=0时,,∴该一次函数的图象与坐标轴围成的三角形的面积为.【解析】(1)先确定直线y=4x-3与x轴的交点坐标,然后利用待定系数法求出一次函数解析式;(2)由k、b的符号确定一次函数的图象所经过的象限;(3)求三角形的面积时要先求出一次函数的图象与两坐标轴的交点坐标.17.为了保护学生的视力,课桌椅的高度都是按一定比例配套设计的.假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,且y是x的一次函数.下表列出了两套符合条件的课桌椅的高度:椅子的高度x/(1)请确定y关于x的函数解析式;(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.【答案】(1)由题意可设函数的解析式为y=kx+b(k≠0).将x=40.0,y=75.0;x=37.0,y=70.2代入上式,得方程组解得所以y关于x的函数解析式为y=1.6x+11.0.(2)配套.理由如下:把x=42.0代入函数解析式,得y=1.6×42.0+11.0=78.2,与课桌的实际高度相等.所以一把高42.0cm的椅子和一张高78.2cm的课桌刚好配套.【解析】先用待定系数法求出一次函数的解析式,再检验是否满足一次函数的解析式.18.点P(3,-1)、Q(-3,-1)、R(,0)、S(,4)中,在函数y=-2x+5的图象上的点有()A.1个B.2个C.3个D.4个【答案】C【解析】题目中所给的点中在函数y=-2x+5的图象上的有点P、R、S,共3个.19.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,那么它的图象不经过第________象限.【答案】四【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.20.(2013资阳)在一次函数y=(2-k)x+b中,y随x的增大而增大,则k的取值范围为________.【答案】k<2【解析】因为y随x的增大而增大,所以2-k>0,所以k<2.21.(2013眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【答案】C【解析】根据题中所给条件可判断c>0,a<0.22.(2013山东临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x 的部分对应值如下表:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系,该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)【答案】(1)设y与x之间的函数解析式为y=kx+b,根据题意,得解得∴y与x之间的函数关系式为(10≤x≤70).(2)根据题意,得,解得x1=50,x2=80.∵10≤x≤70,∴x=50.即该机器的生产数量为50台.(3)设销售数量z(台)与售价a(万元/台)之间的函数关系式为z=ma+n,根据题意,得解得∴z=-a+90.当z=25时,a=65.故该厂第一个月销售这种机器的利润为(万元).【解析】(1)利用待定系数法求一次函数解析式.(2)生产数量×每台的成本-总成本.(3)利润=售价-成本.23.已知一次函数y=kx+b,当x=2时,y=-1,当x=-1时,y=2,则此函数的解析式为________.【答案】y=-x+1【解析】由题意得解得即y=-x+1.24.(2013陕西)“五一”期间,申老师一家自驾游去了离家170千米的某地,图是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图象.(1)他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式.(3)他们出发2小时时,离目的地还有多少千米?【答案】解:(1)由图象可设OA段图象的函数表达式为y=kx(k≠0).当x=1.5时,y=90,所以1.5k=90,解得k=60,即y=60x(0≤x≤1.5).当x=0.5时,y=60×0.5=30.答:他们出发半小时时,离家30千米.(2)由图象可设AB段图象的函数表达式为y=k′x+b,将A(1.5,90),B(2.5,170)的坐标代入,得解得所以y=80x-30(1.5≤x≤2.5).(3)当x=2时,y=80×2-30=130.170-130=40(千米).答:他们出发2小时时,离目的地还有40千米.【解析】此题主要是将实际问题转化为函数的问题来解决,利用待定系数法来确定一次函数的表达式,给出自变量的值来求出相应的函数值.25.下列函数中,是正比例函数的是()①;②;③y=1+5x;④y=x2-5x;⑤y=2x.A.①⑤B.①②C.③⑤D.②④【答案】A【解析】由正比例函数的概念知①⑤是正比例函数.26.下列四个点中,在正比例函数的图象上的点是( )A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)【答案】D【解析】要判断点是否在正比例函数的图象上,只需把点的横坐标代入函数解析式检验纵坐标,若两者相同,则该点在这一正比例函数的图象上,否则不在.因此把选项中各点的坐标分别代入验证,只有(5,-2)适合.27.写出一个正比例函数,使其图象经过第二、四象限:________.【答案】答案不唯一,如:y=-x【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为y=-x(答案不唯一).28.已知关于x的函数y=kx+4k-2(k≠0).若其图象经过原点,则k=________,若y随x的增大而减小,则k的取值范围是________.【答案】;k<0【解析】∵函数的图象经过原点,∴4k-2=0.∴.当k<0时,y随x的增大而减小.29. (2014陕西)若点A(-2,m)在正比例函数的图象上,则m的值是( )A.B.C.1D.-1【答案】C【解析】将(-2,m)代入中,得m=1,故选C.30.如图所示,正比例函数图象经过点A,求这个正比例函数的解析式.【答案】设该正比例函数的解析式为y=kx(k≠0),由图象可知,该函数图象过点A(1,3),∴3=k,∴该正比例函数的解析式为y=3x.【解析】可设该正比例函数的解析式为y=kx(k≠0),然后结合图象可知,该函数图象过点A(1,3),再利用方程求出k的值,进而解决问题.。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
八年级上册数学《单个一次函数图象的应用》专项练习题及答案
八年级上册数学《单个一次函数图象的应用》专项练习题及答案一、单项选择1.如图,图象l表示的是某植物生长t天后的高度y(单位:cm)与t之间的关系,根据图象,下列结论不正确的是( )A.该植物初始的高度是3cm B.该植物10天后的高度是10cmC.该植物平均每天生长0.7cm D.y与t之间的函数关系式是y=t+3(t≥0) 2. 下列图象中,能反映等腰三角形的顶角y(度)与底角x(度)之间的函数关系的是( )3. 一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )A.150km B.165km C.125km D.350km4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( )5. 直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为( )A.x=0 B.x=1 C.x=2 D.x=36. 如图①是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数表达式为P=kh+P0,其图象如图②所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是( )A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数表达式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数表达式为P=9.8×105h+76二、填空题7. 已知关于x的方程3x+b=0的解是x=5,则一次函数y=3x+b的图象与x 轴的交点坐标是________.8. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是________.9. 如图,一辆轿车离某城市的距离y(km)与行驶时间t(h)之间的关系式为y=kt +30,在1h到3h之间,轿车行驶的路程是 _____ km.10. 一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前 ____ h到达B地.11.已知方程3x+9=0的解是x=-3,则一次函数y=3x+9的图象与x轴的交点坐标是 __________.12.如图是一次函数y=kx+2的图象,则关于x的方程kx=-2的解为__________.13. 如图,一次函数y=ax+b的图象为直线l,(1)关于x的方程ax+b=0的解为__________.(2)关于x的方程ax+b=1的解为__________.14. 一根粗细均匀的蜡烛开始燃烧后剩下的长度y(cm)与燃烧的时间x(min)的关系如图所示.(1)这根蜡烛的总长度为 ____ cm;(2)燃烧10 min后这根蜡烛剩下的长度为 ____cm;(3)这根蜡烛每分钟燃烧 ____cm;(4)y与x之间的函数关系式为 ________________,自变量x的取值范围为___________.三、解答题15. 某公司市场营销部的营销员的个人月收入y(元)与该营销员每月的销售量x(万件)成一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)若该公司的营销员李平5月份的销售量为4.2万件,求李平5月份的收入.16. 一辆汽车在某次行驶过程中,油箱中的剩余油量y(L)与行驶路程x(km)之间是一次函数关系,其部分图象如图所示.(1)求y与x之间的函数关系式;(2)当油箱中的剩余油量为8L时该汽车会开始提示加油,问提示加油时汽车行驶的路程是多少千米?17. 如图是函数y=kx+b(k,b是常数,且k≠0)的图象.(1)求方程kx+b=0的解;(2)求方程kx+b=-3的解;(3)求式子k+b的值.18. 某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,骑自行车匀速前往奥体中心,小君13:05从离奥体中心6000m的家中出发,骑自行车匀速行驶.已知小君骑车速度是小敏骑车速度的1.5倍.设小敏出发xmin后,到达离奥体中心y m的地方,图中线段AB表示y与x之间的函数关系.(1)小敏家离奥体中心的距离为 ______ m,她骑自行车的速度为 ______ m/min;(2)求线段AB所在直线的函数表达式;(3)小敏与小君谁先到达奥体中心?要等另一个人多久?19. 某游泳池的平面图如图①所示,宽30m,深水区长40m,浅水区长8m,游泳池定期换水.图②是小明给游泳池放水时游泳池的存水量Q(m3)与放水时间t(h)之间的函数图象,其中点P(2.5,1152)表示正好放到浅水区底部时的状态.(1)深水区的面积是 ________ m2,浅水区的面积是 _______ m2,放水的速度是______ m3/h;(2)求Q关于t的函数表达式,并写出自变量t的取值范围;(3)游泳池清理干净后又将水放到原来的高度,若进水速度与放水速度相同,请在图③中画出游泳池中的水深h(m)关于进水时间t(h)的函数图象(请标注关键点的坐标).20. 某食品加工厂需要一批食品包装盒,要获得这种包装盒有两种方案可供选择,方案一:从包装盒加工厂直接购买,购买所需的费用y1与所需包装盒数量x 满足如图1所示的函数关系;方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与所需包装盒数量x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是 ____ 元;(2)方案二中租赁机器的费用是 ______ 元,生产一个包装盒的费用是____元;(3)分别求出y1,y2与x之间的函数关系式;(4)如果你是决策者,加工厂需要10000个这样的包装盒,你认为应该选择哪种方案更省钱?并说明理由.答案;一、1-6 DCACA C二、7. (5,0)8. x=29. 12910. 211. (-3,0)12. x=-113. (1) x=2(2) x=414. (1) 15(2) 10(3) 0.5(4) y=-0.5x+15 0≤x≤3三、15. 解:(1)设y=kx+b,将点(0,800),(2,2800)分别代入y=kx+b,得800=b,2800=2k+b,解得k=1000,b=800,所以y与x之间的函数关系式为y =1000x+800(x≥0)(2)当x=4.2时,y=1 000x+800=5000,所以李平5月份的收入为5000元16. 解:(1)设y=kx+b,将点(0,60),(150,45)分别代入y=kx+b,得60=b,45=150k+b,解得k=-0.1,b=60,所以y=-0.1x+60.当y=-0.1x +60=0时,解得x=600,所以y与x之间的函数关系式为y=-0.1x+60(0≤x ≤600)(2)当y=-0.1x+60=8时,解得x=520,所以提示加油时汽车行驶的路程是520km17. 解:(1)方程kx +b =0的解是x =2 (2)方程kx +b =-3的解是x =-1 (3)k +b =1-2=-118. 解:(1) 6000 200(2)设线段AB 所在直线的函数表达式为y =kx +b ,根据题意,得b =6000①,30k +b =0②.将①代入②,得k =-200.所以线段AB 所在直线的函数表达式为y =-200x +6000(3)因为小君骑车速度是小敏骑车速度的1.5倍,所以小君骑车的速度是200×1.5=300(m/min).6000÷300=20(min).所以小君到达奥体中心的时间是13:25.因为小敏骑自行车到奥体中心需要30min ,所以小敏到达奥体中心的时间是13:30.所以小君先到达奥体中心,小君要等小敏5min 19. 解:(1) 1200 240 576(2)Q 关于t 的函数表达式为Q =2 592-576t(0≤t ≤4.5)(3)当0≤t ≤2时,h =5761 200t =0.48t ;当2<t ≤4.5时,h =0.48×2+5761 200+240(t -2)=0.4t +0.16,所以游泳池中的水深h(m)关于进水时间t(h)的函数图象如图所示 20. 解:(1) 5(2) 2000 14(3)设图1中的函数表达式为y 1=k 1x ,由图象知函数经过点(100,500),所以500=100k 1,解得k 1=5.所以图1中的函数表达式为y 1=5x.设图2中的函数表达式为y 2=k 2x +b.根据题意,得b =2000①,4000k 2+b =3000②.将①代入②,得k 2=14 .所以图2中的函数表达式为y 2=14x +2000 (4)当x =10000时,y 1=50000,y 2=14×10000+2000=4500.因为4500<50000,所以选择方案二更省钱。
八年级数学:一次函数的图像练习(含解析)
八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。
八年级数学:一次函数(应用题)练习(含解析)
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.
八年级数学一次函数应用题(10年真命题和规范标准答案)
一次函数应用题专题训练(2010.10.28)1.一辆快车从甲地驶往乙地.一辆慢车从乙地驶往甲地.两车同时出发.匀速行驶.设行驶的时间为x(时).两车之间的距离为y(千米).图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息.求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米.若快车从甲地到达乙地所需时间为t时.求t的值;(3)若快车到达乙地后立刻返回甲地.慢车到达甲地后停止行驶.请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间.某客运站旅客流量不断增大.旅客往往需要长时间排队等候购票.经调查发现.每天开始售票时.约有400人排队购票.同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人.每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示.已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时.售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票.以便后来到站的旅客随到随购.至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口.甲、乙两船同时分别从A 、B 港口出发.沿直线匀速驶向C 港.最终达到C 港.设甲、乙两船行驶x (h )后.与.B .港的距离....分别为1y 、2y (km ).1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km. a ; (2)求图中点P 的坐标.并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见.求甲、乙两船可以相互望见时x 的取值范围.O y/km 9030 aPx/h4.一家蔬菜公司收购到某种绿色蔬菜140吨.准备加工后进行销售.销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨.但两种加工不能同时进行.受季节等条件的限制.公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜.则公司应安排几天精加工.几天粗加工?⑵如果先进行精加工.然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内.将140吨蔬菜全部加工完后进行销售.则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行.并以各自的速度匀速行驶.途径配货站C.甲车先到达C 地.并在C 地用1小时配货.然后按原速度开往B 地.乙车从B 地直达A 地.图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像 (1)A 、B 两地的距离是 千米.甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中.y 与x 的函数关系式及x 的取值范围.并在图16中补全函数图像;(3)乙车出发多长时间.两车相距150千米6升.行驶若干小时后.途中在加油站加油(3)已知加油前、后汽车都以70千米/小时匀速行驶.如果加油站距目的地210千米.要到达目的地.问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动.带有行李170件.计划租用甲、乙两种型号的汽车10辆.经了解.甲车每辆最多能载40人和16件行李.乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元.乙车的租金为每辆1800元.问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策.消费者在购买政策限定的新家电时.每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失.补贴部分由政府提供.其中三种家电的补贴方式如下表:为此.某商场家电部准备购进电视、洗衣机、冰箱共100台.这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x台.这100台家电政府需要补贴y元.商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台.则有几种进货方案?若商场想获得最大利润.应该怎样安排进货?若这100台家电全部售出.政府需要补贴多少元钱?1.(2010浙江湖州)【答案】(1)线段AB 所在直线的函数解析式为:y =kx +b. 将(1.5.70)、(2.0)代入得: 1.57020k b k b +=⎧⎨+=⎩.解得:140280k b =-⎧⎨=⎩.所以线段AB 所在直线的函数解析式为:y =-140x +280.当x =0时. y =280.所以甲乙两地之间的距离280千米. (2)设快车的速度为m 千米/时.慢车的速度为n 千米/时.由题意得:222802240m n m n +=⎧⎨-=⎩.解得:8060m n =⎧⎨=⎩.所以快车的速度为80千米/时. 所以2807802t ==. (3)如图所示.2.(1)由图象知.400423320a a +-⨯=.所以40a =;(2)设BC 的解析式为y kx b =+.则把(40.320)和(104.0)代入.得403201040k b k b +=⎧⎨+=⎩.解得5520k b =-⎧⎨=⎩.因此5520y x =-+.当60x =时.220y =.即售票到第60分钟时.售票厅排队等候购票的旅客有220人;(3)设同时开放m 个窗口.则由题知330400430m ⨯+⨯≥.解得529m ≥.因为m 为整数.所以6m =.即至少需要同时开放6个售票窗口。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
八年级数学一次函数图象性质 专项练习题(含答案)
参考答案 1、B 2、C ; 3、A 4、C 5、C 6、B 7、A 8、C 9、A 10、C 11、A 12、D 13、B 14、A 15、A 16、A 17、A 18、C 19、D 20、A 21、 22、y=23、答案为 1. 24、-3 25、一、二、三. 26、2 . 27、3 28、答案是:3. 29、答案为 y=3x+4. 30、(0,-1) ;
m313将直线ykx1向上平移2个单位长度可得直线的解析式为aykx3bykx1cykx3dykx114直线y2xb与x轴的交点坐标是20则关于x的方程2xb0的解是ax2bx4cx8dx1015如图直线ykxb与x轴y轴分别相交于点a30b02则不等式kxb0的解集是ax3bx3cx2dx216同一直角坐标系中一次函数y1k1xb与正比例函数y2k2x的图象如图所示则满足y1y2的x取值范围是ax2bx2cx2dx217点ax1y1点bx2y2是一次函数y2x4图象上的两点且x1x2则y1与y2的大小关系是ay1y2by1y20cy1y2dy1y218已知a320则一次函数yaxb的图象不经过6)在 y=k1x 上∴﹣6=3k1∴k1=﹣2 ∵点 P(3,﹣6)在 y=k2x﹣9 上∴﹣6=3k2﹣9∴k2=1; (2)∵k2=1,∴y=x﹣9∵一次函数 y=x﹣9 与 x 轴交于点 A 又∵当 y=0 时,x=9∴A(9,0). 33、(1) ;(2)23;
八年级数学一次函数图象性质 专项练习题
一、选择题: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y= ( ) A.4 个 2、函数 A.(3,5); B.3 个 C.2 个 D.1 个
1 ;(4)y= -8x;(5)y=5x2-4x+1 中,是一次函数的有 x
北师大版八年级数学上册 一次函数的图像及其性质(含答案)
一次函数的图像及其性质● 知识点一 一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质 ⑴ 当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵ 当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式 ⑴ 定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. ⑵ 用待定系数法求函数解析式的一般步骤: ① 根据已知条件写出含有待定系数的解析式; ② 将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③ 解方程(组),得到待定系数的值; ④ 将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.一、基本识图问题1.如图,图像(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )A 、第3分时汽车的速度是40千米/时B 、第12分时汽车的速度是0千米/时C 、从第3分到第6分,汽车行驶了120千米例题精讲D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时二、行程问题1.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是()A、B、C、D、2.如图,一只蚂蚁以均匀的速度沿台阶A1-A2-A3-A4-A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()A、B、C、D、三、行走路线问题1. 图1是韩老师早晨出门散步时,离家的距离(y)与时间(x)之间的函数图像。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③故选B.【考点】一次函数的性质.2.某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?【答案】(1)21种.(2)y=-0.2x+280.x=40时成本总额最低.【解析】(1)设生产A种饮料x瓶解出不等式方程组即可.(2)如图可得x与y的关系式,可知道x与y的关系.试题解析:(1)根据题意得:,解这个不等式组,得20≤x≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.∵k=-0.2<0,∴y随x的增大而减小.∴当x=40时成本总额最低.【考点】一元一次不等式组的应用.3.关于正比例函数y=-2x,下列说法错误的是( )A.图象经过原点B.图象经过第二,四象限C.y随x增大而增大D.点(2,-4)在函数的图象上【答案】C.【解析】A、正比例函数y=-2x,图象经过原点,正确,不合题意;B、正比例函数y=-2x,图象经过第二,四象限,正确,不合题意;C、正比例函数y=-2x,y随x增大而减小,故此选项错误,不合题意;D、当x=2时,y=-4,故点(2,-4)在函数的图象上正确,不合题意;故选C.【考点】正比例函数的性质.4.已知点A(-5,y1)和B(-4,y2)都在直线y=x-4上,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定【答案】C.【解析】∵点A(﹣5,y1)和B(﹣4,y2)都在直线y=x﹣4上,∴y1=﹣5﹣4=﹣9,y2=﹣4﹣4=﹣8,∵﹣9<﹣8,∴y1<y2,故选C.【考点】一次函数图象上点的坐标特征.5.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_________.【答案】x<2.【解析】由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=x+3,∵<0,∴当y>0时,x的取值范围是:x<2.故答案是x<2.【考点】一次函数的图象.6.已知一次函数y=kx+b的图象如图所示,则k,b的符号是 ( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】D.【解析】由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.【考点】一次函数图象与系数的关系.7.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.8.如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与轴围成的三角形的面积.【答案】 3.75【解析】解:如图,过点A作AC⊥轴于点C,则AC=3,OC=4,所以OA=OB=5,故B点坐标为(0,).设直线AO的关系式为,因为其过点A(4,3),则,解得.所以.设直线AB的关系式为,因为其过点A(4,3)、B(0,),则解得:所以关系式为.令,得,则D点坐标为(2.5,0).所以两直线与轴围成的三角形AOD的面积为2.5×3÷2=3.75.9.已知一次函数,(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点(0,).【答案】(1)9 (2)10【解析】分析:(1)把点的坐标代入一次函数关系式,并结合一次函数的定义求解即可;(2)把点的坐标代入一次函数关系式即可.解:(1)∵图象经过原点,∴点(0,0)在函数图象上,代入解析式得:,解得:.又∵是一次函数,∴,∴.故符合.(2)∵图象经过点(0,),∴点(0,)满足函数解析式,代入得:,解得:.10.某车间有甲、乙两条生产线.在甲生产线已生产了200吨成品后,乙生产线开始投入生产,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用时间(天)之间的函数关系式.(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别指出第10天和第30天结束时,哪条生产线的总产量高?【答案】(1)(2)乙生产线的总产量高【解析】解:(1)由题意可得:甲生产线生产时对应的函数关系式是;乙生产线生产时对应的函数关系式为.(2)令,解得,可知在第20天结束时,两条生产线的产量相同,故甲生产线所对应的生产函数图象一定经过点(0,200)和(20,600);乙生产线所对应的生产函数图象一定经过点(0,0)和(20,600).作出图象如图所示.由图象可知:第10天结束时,甲生产线的总产量高;第30天结束时,乙生产线的总产量高.11.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是 ( )A.﹣2B.-1C.0D.2【答案】D.【解析】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.【考点】一次函数图象与系数的关系12. A、B两码头相距150千米,甲客船顺流由A航行到B,乙客船逆流由B到A,若甲、乙两客船在静水中的速度相同,同时出发,它们航行的路程y(千米)与航行时间x(时)的关系如图所示.(1)求客船在静水中的速度及水流速度;(2)一艘货轮由A码头顺流航行到B码头,货轮比客船早2小时出发,货轮在静水中的速度为10千米/时,在此坐标系中画出货轮航程y(千米)与时间x(时)的关系图象,并求货轮与客船乙相遇时距A码头的路程。
八年级一次函数应用题汇练参考答案与试题解析
八年级一次函数应用题汇练参考答案与试题解析一.选择题(共15小题)1.(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤500【解答】解:因为油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,可得:L/km,60÷0.12=500(km),所以y与x之间的函数解析式和自变量取值范围是:y=60﹣0.12x,(0≤x≤500),故选D.2.(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,1175≤y A≤1425;1100≤y B≤1300;1075≤y C≤1225;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.3.(2015•鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,综上可知当t的值为或或时时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.4.(2015•随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.1【解答】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,故选:B.5.(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.6.(2015•哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t (单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.7.(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.8.(2015•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话分钟.【答案】12.【解析】设最多可以打x分钟的电话,则可得不等式:2.4+1×(x-3)≤12,解出即可.试题解析:设最多可以打x分钟的电话,由题意,得:2.4+1×(x-3)≤12,解得:x≤12.6.故如果有12元话费打一次电话最多可以通话12分钟.【考点】一元一次不等式的应用.3.如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()【答案】A【解析】根据三角形的面积公式,分类讨论:P在AB上运动时,三角形的面积在增大,P在BC上运动时,三角形的面积不变;P在CD上运动时,三角形的面积在减小,可得答案.【考点】动点问题的函数图象.4.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).直线l⊥y轴.于点D(0,3),与反比例函数和一次函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?【答案】(1)一次函数解析式为y=x+1;反比例解析式为=(2)S△ABC(3)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【解析】(1)将点A分别代入解析式即可求出只需求得BC的长即可求出面积,由已知可知B、C的纵坐标,代入两个解析式即可得到B、C 的坐标,从而可得BC的长只要求出两函数图象的交点坐标即可解决试题解析:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为∵D(0,3)∴点B、C的纵坐标为3,将y=3代入一次函数得:x=2,将y=3代入反比例解析式得:,即DC=2,DB=,BC=2-=,又A到BC的距离为1,则S==△ABC解方程组,得∴一次函数与反比例函数的图象的交战为A(1,2)和(-2,-1)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【考点】1、待定系数法;2、函数图象上点的坐标;3、解二元二次方程组5.直线y=kx-2与x轴的交点是(1,0),则k的值是()A.3B.2C.-2D.-3【答案】B.【解析】∵直线y=kx-2与x轴的交点是(1,0),∴k-2=0,解得k=2.故选B.【考点】一次函数图象上点的坐标特征.6.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的解析式是()A.y=B.y=C.y=D.y=﹣【答案】D.【解析】设一次函数的解析式为y=kx+b,把Q(0,3.5)、P(1,2)代入得,解得,所以一次函数解析式为.故选D.【考点】两条直线相交或平行问题.7.将直线y=﹣2x向右平移2个单位所得直线的解析式为()A.y=﹣2x+2B.y=﹣2x﹣4C.y=﹣2x﹣2D.y=﹣2x+4【答案】D.【解析】根据“左加右减”的平移规律可由已知的解析式写出新的解析式:将直线y=﹣2x向右平移2个单位所得直线的解析式为y=﹣2(x﹣2),即y=﹣2x+4.故选D.【考点】一次函数图象与平移变换.8.一次函数的图象如图所示,当-3<<3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4【答案】C.【解析】由函数的图象可知,当y=3时,x=0;当y=-3时,y=4,故当-3<y<3时,x的取值范围是0<x<4.故选C.【考点】一次函数的性质.9.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)、甲、乙两人的速度各是多少?(2)、求甲距A地的路程S与行驶时间t的函数关系式。
北师大版八年级(上)数学《一次函数》应用题练习(含答案)
第四章 一次函数1.某商场购进一批内衣,经试验发现,若每件按20元销售时,每月能卖360件;若每件按25元销售时,每月能卖210件,假定每月销售数y (件)是销售单价x (元)的一次函数,求y 与x 之间的函数关系式.2.已知甲、乙两人分别从相距18km 的A 、B 两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y (km )和所用时间x (小时)的函数关系式;(2)求出函数图像与x 轴、y 轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时间.3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 和2y 元.(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?4.某城市按以下规定收取每月煤气费:用煤气不超过603m ,按0.8元/3m 收费;如果超过603m ,超过部分按1.2元/3m 收费.(1)设煤气用量为)60(m 3 x x ,应交煤气资为y 元,写出y 关于x 的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米0.88元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km 的P地出发向C站匀速前进,15分钟后,离A站20km.(1)设出发x小时后,(2)当汽车行驶到离A站150km 汽车离A站y km,写出y与x之间的函数关系式;的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高多少?6.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?年份(x)2000 2001 2002 …入学儿童人数(y)2520 2330 2140 …7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某甲的月工资、薪金所得为x 元(28001300<<x ),需缴交的所得税款为y 元,试写出y 与x 的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额1y (万元)和总利润比2y (万元)关于新家电的总产量x (台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中2y 与x 的函数关系式,分析该公司的盈亏情况. (注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.2元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.10.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元,做一套N型号的时装需用A种布料1.1m,B 种布料0.4m,可获利润50元,若设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案1..96030+-=x y2.(1)189+-=x y (2)(2,0),(0,18),20≤<x (3)34小时 3.(1).6.04.05021x y x y =+=, (2)每月内通话250分钟,两种移动通讯费用相同. (3)200元话费用“全球通”可通话375分钟,“神州行”可通话31333分钟,选择“全球通”合算. 4.(1).242.1)60(2.1608.0-=-+⨯=x y x y , (2)x x 88.0242.1=-,75=x ,667588.0=⨯=y (元)5.(1)汽车速度为40千米/时,.1040+=x y (2)汽车若按原速度不能按时到达,若要汽车按时到达C 站,车速最少应提高到每小时60km .6.(1)直线b kx y +=过(2000,2500),(2001,2330)两点,∴ ⎩⎨⎧=+=+,23302001,25202000b k b k 解得⎩⎨⎧=-=.382520,190b k ∴.382520190+-=x y (2)设x 年时,入学人数为1000人,1000382520190=+-x ,2008=x ,即从2008年起入学儿童人数不超过1000人.7.(1)∵ 28001300<<x ,∴ 2000800500<-<x ,∴ %.5500%10)500800(⨯+⨯--=x y(2)∵ %5%1020095%5500+⨯<<⨯,∴ 2000,251.0)1300(95=+⨯-=x x ,某乙一月份工资、薪金是2000元.8.(1).2002.0)2003.0(5.02003.021-=+-=+=x x x y x y ,(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)⎩⎨⎧>-≤≤=).60(,2404.12),600(,4.8x x x x y (2)资费调整前,上网70小时所需费用为75670)2.76.3(=⨯+元.资费调整后,若上网60小时,则所需费用为504604.8=⨯(元). ∵ 504756>,∴ 晓刚现在上网时间超过60小时.由7562404.12≤-x ,解得32.80≤x . ∴ 晓刚现在每月至多可上网约80.32小时.(3)设调整前所需费用为1y (元);调整后所需费用2y (元),则x y 8.101=.当600≤≤x 时,x x x y 4.88.104.82>=,,故21y y >. 当60>x 时,2404.122-=x y ,当21y y =时,150,2404.128.10=-=x x x ;当21y y >时,150,2404.128.10<->x x x ;当21y y <时,150,2404.128.10>-<x x x .综上可得:当150<x 时,调整后所需费用少;当150=x 时,调整前后所需费用相同;当150>x 时,调整前所需费用少.10.(1)x x y 50)80(45+-=.由⎩⎨⎧≤+-≤+-.524.0)80(9.0,701.1)80(6.0x x x x 解得4440≤≤x . ∴ 自变量的取值范围为40,41,42,43,44.(2)当44=x 时,有最大值,最大值为3820元.。
八年级数学一次函数与分式应用题及答案
八年级数学一次函数与分式应用题及答案一次函数1.某人在银行存入本金200元,月利率是0.22%,求本息和(本金与利息的和)y(元)与所存月数某之间的函数关系式,并求出10个月后的本息和.2.如图14-2-4所示,已知四边形ABCD中,∠ABC=∠CDA=90°,BC=12,CD=6,点P是AD上一动点,设AP=某,四边形ABCP的面积y与某之间的函数关系是y=a某+30,当P与A重合时,四边形ABCP的面积为△PBC的面积,试求出a的值.3.如图14-2-5所示,温度计上表示了摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的函数关系?如果今天气温是摄氏32℃,那么华氏是多少度?4.甲、乙两地相距600km,快车走完全程需10h,慢车走完全程需15h,两辆车分别从甲、乙两地同时相向而行,求从出发到相遇,两车的相距离y (km)与行驶时间某(h)之间的函数关系式,指出自变量某的取值范围.5.旅客乘车按规定可能随身携带一定质量的行李,如果超过规定,则需购买行李票.设行李票y(元)是行李质量某(千克)的一次函数,其图象如图14-2-6所示.求:(1)y与某之间的函数关系式;(2)旅客最多可以免费带行李的质量.6.学生进行竞走比赛,甲每小时走3千米,出发1.5小时后,乙以每小时4.5千米的速度追甲,令乙行走时间为t小时.(1)分别写出甲、乙两人所走的路程与时间t的关系式;(2)在同一坐标系内作出它们的图象.7.甲、乙二人沿相同的路线由A到B匀速行进,A、B两地间的路程为20km,他们行走的路程(km)与甲出发后的相间t(h)之间的函数图象如图14-2-7所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1hD.甲比乙晚到B地3h8.如图14-2-9所示,直线l1:y=某+1和l2:y=-2某+m(m>0)交于点P,并且l1交某轴于点A,交y轴于点Q,l2交某轴于点B,若四边形PQOB的面积是5,求直线l2的解析式.6参考答案1.分析:本息和等于某个月的利息+本金.解:y=0.22%某200某+200,即y=0.44某+200(某>0),当某=10时,y=0.44某10+200=204.4,则10个月后本息和为204.4元.点拨:此题是关于利率问题的应用,通过函数形式表达更明了.2.分析:当P与A重合时,某=0可由解析式求出△PBC的面积,进而求出AB,利用面积关系可求a值.解:当P与A重合时,某=0,y=30,S△PBC=AB·BC=30,所以AB=5;S四边形ABCP12=S△ABC+S△ACP=某5某12+·某·6=30+3某,即3某+30=a某+30,所以1212解得a=3.点拨:此题求AB的值是关键,找准图形的特点解题.3.分析:题中给出了摄氏温度与华氏温度的部分对应关系,利用对应的数据,及日常生活经验,我们知道摄氏温度与华氏温度的转换存在一个比例函数,再加上常数32,就呈现一次函数关系.解:设摄氏温度为某,华氏温度为y,根据已知条件可设y=k某+32(k≠0),取某=100,y=212代入上式中,解得k=1.8,则y=1.8+32,将0,0,某5某2和22,y1y4分别代入y=1.8某+32,等式都成立,因此可证明摄氏温度和华氏温度间存在一次函数关系:y=1.8某+32.当摄氏温度某=32℃时,y=1.8某32+32=89.6(°F).点拨:很多问题中的两个变量之间存在对应关系,通过对所给数据的观察、估计列出函数关系,再用余下的数据进行验证.4.分析:如图14-2-2′所示,根据题意可知,快车每小时走的路程为车每小时走的路程为600,慢10600,可由已知得出自变量某的取值范围,由解析式和15自变量取值范围,图象可画出来.解:如图14-2-3′所示,则y=600-由600600·某,即y=600-100某,1510某0,得0≤某≤6是自变量的取值范围.因为y是某的一次函数,根据0y0≤某≤6,所以图象为一条线段,即(0,600),(6,0)连接两点的线段即为所求函数图象.点拨:要注意自变量的取值范围.5.分析:一次函数解析式为y=k某+b,根据图象提供的信息可列出方程组再求解析式.160ab5,a,解:(1)设y与某之间的解析式为y=k某+b,由题意可知解得690ab10,b5,1则y与某的函数关系是y=某5.61(2)当y=0时,由某-5=0,得某=30,则旅客可以最多免费携带30千克行李.6点拨:根据所给信息,进行收集和处理,要有决策的能力.6.分析:路程=速度某时间.解:(1)甲=3某1.5+3t,整理得甲=3t+4.5,乙=4.5t.(2)如图14-2-4′所示.7.C分析:考查考生从一次函数图象中获取正确信息的能力.8.分析:先求直线l1与某轴交点A,Q的坐标,再把直线l2与某轴交点B的坐标用m的代数式表示出来,然后l1,l2的解析式联立成方程组,用m的代数式表示P点坐标,可用S四形形PQOB=S△PAB-S△AQO,求m 值.解:令y=某+1,y=0得某=-1,由某=0,得y=2.则A(-1,0),Q(0,1),令y=-2某+mm1某,y某1,mm3中y=0,得某=,则B,0,由所以得y2某m,m222y.3m2mm1m2,P.又因为S四边形,因为m>0,则AB=+1,|yp|=33235115=S-S=,所以AB·|yp|-OA·OQ=,有△△PQOBABPAOQ 62261mm215m211,m(2=5),3m+2)2=16,m+2=4.所以(1223262m1=2,m2=-6(不合题意,舍去),所以直线l2的解析式为y=-2某+2.点拨:充分利用已知件,审清题意,认真分析找出解题思路.1、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.2、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2022年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2022年省会城市的污水处理率不低于,那么...70%”我市2022年每天污水处理量在2007年每天污水处理量的基础上至少还需要..增加多少万吨,才能符合国家规定的要求?3、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:你们是用9天完成4800米我们加固600米后,采用新的加固模长的大坝加固任务的式,这样每天加固长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天加固的米数.4、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天4数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此5项工程各需多少天?。
浙教版初中数学八年级上册 5.4 一次函数的图像 作业及答案
课后作业设计:5.4 一次函数的图像(2)班级 姓名第一部分1. 如果直线y kx =经过点(1,-3),则k = .2. 一次函数y =2x +2的图象不经过第 象限.3. 一次函数y =2x +2中, y 随着x 的增大而 .4. 请写出一个一次函数,使y 随着x 的增大而减小: .5.在一次函数2y x =+中,y 的值随x 值的增大而 (用“增大”或“减小”填空).6.若一次函数y =kx +b 的图象经过点(0,-2)和(-2,0),则y 随x 的增大而 .7.已知函数3y x =-+,当21x -≤≤时, y ≤≤ .8.一次函数具有下列性质:①图像经过点(12)-,;②当0x <时,函数值y 随自变量x 的增大而增大.满足上述两条性质的函数解析式可以是 (只要求写一个).9. 已知某种商品的进价为168元, 售价的10%用于缴税和其它费用.若要使纯利润保持在售价的10%—20%之间(包括10%和20%), 问怎么确定售价?10.富阳为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下表:(1)设刘爷爷一年的实际医疗费为x 元(500<x ≤10000),按标准报销的金额为y 元,试求y 与x 的函数关系式.(2)若刘爷爷一年内自付医疗费为2000元(自付医疗费=实际医疗费-按标准报销的金额),则刘爷爷当年实际医疗费为多少元?(3)若刘爷爷一年内自付医疗费不小于6250元,则刘爷爷当年实际医疗费至少为多少元?第二部分1、对于一次函数y =(m +4)x +2m -1,如果y 随x 增大而增大,且它的图象与y 轴的交点在x 轴下方,试求m 的取值范围.2、下列一次函数中,y 随x 的增大而减小的是…………………………………………( )A. 32y x =-B. 113y x =-+ C. 3y =-+ D. 1)y x = 3、公司在甲、乙两座仓库分别有农用车12辆和6辆。
苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)
《第6章一次函数》一、填空1.已知函数y=x﹣2,则当x=3时,y= .2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= .3.函数y=x+3的图象与x轴的交点坐标为.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.412.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.513.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.14.把函数y=3x+2的图象沿着y轴向下平移一个单位,得到的函数关系式是()A.y=3x+1 B.y=3x﹣1 C.y=3x+3 D.y=3x+515.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x 的函数解析式为( )A .y=20x+5%xB .y=20.05xC .y=20(1+5%)xD .y=19.95x17.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定18.在y=kx 中,当x=2时,y=﹣1,则当x=﹣1时,y=( )A .﹣2B .C .D .2三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量20.已知一次函数y=x+6﹣m ,求:(1)m 为何值时,函数图象交y 轴于正半轴?(2)m 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 为何值时,图象经过原点?21.用图象法求下面二元一次方程组的近似解.22.已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.《第6章一次函数》参考答案与试题解析一、填空1.已知函数y=x﹣2,则当x=3时,y= 1 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=3代入方程,即可求得y的坐标.【解答】解:根据题意,把x=3代入方程,可得y=3﹣2=1.故填1.【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= 5 .【考点】正比例函数的定义.【分析】根据正比例函数的定义列出关于m的方程组,求出m的值即可.【解答】解:∵函数y=(m﹣2)x+5﹣m是x的正比例函数,∴,解得m=5.故答案为:5.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.3.函数y=x+3的图象与x轴的交点坐标为(﹣3,0).【考点】一次函数图象上点的坐标特征.【分析】令y=0,即可得函数与x轴交点坐标.【解答】解:根据题意,把y=0代入y=x+3得:0=x+3,解得x=﹣3,∴图象与x轴的交点坐标为(﹣3,0).【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】由题意得y=3x过点(0,0),故平移过后一次函数过点(0,2),再根据平移之后k值不变,故可得出该一次函数解析式.【解答】解:由题意得:∵y=3x过点(0,0)∴y=3x平移过后过点(0,2)又∵平移不影响k的值,故可得出y=3x+b过点(0,2)代入得:2=b∴可得出该一次函数解析式为:y=3x+2.【点评】本题考查待定系数法求一次函数解析式,注意平移不影响k的值是关键.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为m<3 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】利用一次函数的性质得到关于m的不等式.【解答】解:∵y值随x的增加而减小∴m﹣3<0,即m<3.故填m<3.【点评】熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大;当k<0,y值随x的增加而减小.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为y=x+2 .【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】先设一次函数的解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.【解答】解:设一次函数的解析式为y=kx+b,把(﹣2,0)、(0,2)代入得,解得,所以一次函数的解析式为y=x+2.故答案为y=x+2.【点评】本题考查了待定系数法求一次函数解析式:设一次函数的解析式为y=kx+b,再把直线上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k与b的值即可.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为(﹣2,4).【考点】两条直线相交或平行问题.【专题】计算题.【分析】可设此点的坐标为(a,b)分别代入解析式求解方程组即可.【解答】解:根据题意,设点P的坐标为(a,b),代入两个解析式可得,b=﹣3a﹣2①,b=2a+8②,由①②可解得:a=﹣2,b=4,∴P点的坐标为(﹣2,4).【点评】本题考查了一次函数图象上的点的坐标特征,是基础题型.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:y=﹣x+1(答案不唯一).【考点】一次函数的性质.【专题】开放型.【分析】设一次函数的解释为y=kx+b(k<0),再把点(﹣1,2)代入得出k、b的关系,找出符合条件的k、b的值即可.【解答】解:∵一次函数y的值随x的增大而减小,∴设一次函数的解释为y=kx+b(k<0),∵函数的图象经过点(﹣1,2),∴﹣k+b=2,∴当k=﹣1时,b=1,∴符合条件的函数解析式可以为:y=﹣x+1.故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的性质,此题属开放性题目,答案不唯一.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把四个点的坐标分别代入y=﹣3x+1,若满足解析式,则可判断此点在直线y=﹣3x+1上.【解答】解:A、当x=2时,y=﹣3×2+1=﹣5,则点(2,﹣5)在直线y=﹣3x+1上,所以A选项正确;B、当x=1时,y=﹣3×1+1=﹣2,则点(1,0)不在直线y=﹣3x+1上,所以B选项错误;C、当x=﹣2时,y=﹣3×(﹣2)+1=7,则点(﹣2,3)不在直线y=﹣3x+1上,所以C选项错误;D、当x=0时,y=﹣3×0+1=1,则点(0,﹣1)不在直线y=﹣3x+1上,所以D选项错误.故选A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线;直线上任意一点的坐标都满足函数关系式y=kx+b.10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,2x﹣5≥0,解得x≥.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据当x=3时,两个函数的函数值相等,将x=3代入两个函数中,令其相等,即可解得m 的值.【解答】解:∵当x=3时,两个函数的y值相等,即:3+m=3m﹣1解得:m=2故选B.【点评】本题比较简单,直接代入x=3的值,就可得出结果.12.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.5【考点】一次函数图象上点的坐标特征.【分析】先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式求解即可.【解答】解:∵令x=0,y=3,令y=0,则x=﹣3,∴此函数与y轴的交点为(0,3),与x轴的交点为(﹣3,0),∴一次函数y=x+3的图象与两坐标轴所围成的三角形面积=×3×3=4.5.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数与坐标轴的交点特点是解答此题的关键.13.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D .【点评】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.把函数y=3x+2的图象沿着y 轴向下平移一个单位,得到的函数关系式是( )A .y=3x+1B .y=3x ﹣1C .y=3x+3D .y=3x+5【考点】一次函数图象与几何变换.【分析】原来函数过点(0,2),现在沿着y 轴向下平移一个单位,可知现在函数过(0,1)且斜率不变,即可得平移后的函数解析式.【解答】解:根据题意,可设平移后的直线的解析式为:y=3x+b ,而函数y=3x+2的图象过点(0,2),∴沿着y 轴向下平移一个单位可得点为(0,1),即点(0,1)在平移后的函数上,代入得:b=1, ∴函数关系式为:y=3x+1,故选A .【点评】本题考查了一次函数图象与几何变换,是基础题型.15.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定【考点】一次函数图象上点的坐标特征.【分析】分别把点代入解析式求坐标值比较或是根据﹣5<﹣4及函数递减性质直接判断.【解答】解:由直线y=﹣7x+b 可得,k=﹣7<0,∴函数图象上y 随x 的增大而减小,又∵﹣5<﹣4,∴y 1>y 2.故选A .【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k<0时,y随x的增大而减小.16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x册,需付款y(元)与x的函数解析式为()A.y=20x+5%x B.y=20.05x C.y=20(1+5%)x D.y=19.95x【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式.【解答】解:由题意得;购买一册书需要花费(20+20×5%)元∴购买x册数需花费x(20+20×5%)元即:y=x(20+20×5%)=20(1+5%)x故选C.【点评】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.17.如图,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快 B.乙比甲快 C.甲、乙同速D.不一定【考点】函数的图象.【分析】因为s=vt,同一时刻,s越大,v越大,图象表现为越陡峭,可以比较甲、乙的速度.【解答】解:根据图象越陡峭,速度越快;可得甲比乙快.故选:A.【点评】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.18.在y=kx中,当x=2时,y=﹣1,则当x=﹣1时,y=()A.﹣2 B.C.D.2【考点】待定系数法求正比例函数解析式.【专题】计算题.【分析】先根据所给自变量和函数的对应值,确定正比例函数的解析式,然后再将x=﹣1代入解析式,求出y的值.【解答】解:把x=2时,y=﹣1代入y=kx中,得2k=﹣1,解得,k=,所以y=x,当x=﹣1时,y=﹣×(﹣1)=.故选C.【点评】本题要首先利用待定系数法确定出正比例函数的解析式,当函数解析式确定后,已知x或y的任意一个值,都可以求出另一个值.三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.【解答】解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.【点评】此题由数量关系列出函数解析式,再把自变量的值代入函数解析式求得相对应的函数值,问题解决.20.已知一次函数y=x+6﹣m,求:(1)m为何值时,函数图象交y轴于正半轴?(2)m为何值时,函数图象与y轴的交点在x轴的下方?(3)m为何值时,图象经过原点?【考点】一次函数图象与系数的关系.【专题】计算题.【分析】(1)要使函数图象交y轴于正半轴,y=kx+b中b的值需大于0,即6﹣m>0,解不等式即可.(2)要使函数图象与y轴的交点在x轴的下方,y=kx+b中b的值需小于0,即6﹣m<0,解不等式即可.(3)图象经过原点,即6﹣m=0.【解答】解:(1)由题意得,6﹣m>0,解得,m<6;(2)由题意得,6﹣m<0,解得,m>6;(3)由题意得,6﹣m=0,解得,m=6.【点评】对于直线y=kx+b,当b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.21.用图象法求下面二元一次方程组的近似解.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由题意求方程的近似解,画出函数y=﹣+2与函数y=3x﹣4的图象,两函数的图象即为所求的方程组的解.【解答】解:由题意可知函数y=﹣+2与函数y=3x﹣4的交点即为方程组的解,如下图,由上图可知,交点近似为(1.8,1.3),∴二元一次方程组的近似解为.【点评】此题主要考查一次函数的性质及其图象,把二元一次方程同一次函数联系起来,利用函数的图象来解二元一次方程,是一道不错的题型.22.(2014秋•四川校级期末)已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】(1)设一次函数解析式为y=kx+b,把两个点的坐标代入函数解析式求解即可;(2)△AOC的边OC的长度为2,OC边上的高等于点A的纵坐标的长度,代入三角形的面积公式计算即可.【解答】解:(1)设一次函数解析式为y=kx+b,∵图象经过A(2,4),B(0,2)两点,∴,解得,∴一次函数解析式为y=x+2;(2)=×OC×AC=×2×4=4,S△AOC∴△AOC的面积为4.【点评】本题主要考查待定系数法求函数解析式,待定系数法是求函数解析式常用的方法,也是中考的热点之一.。
(完整版)一次函数图像应用题(带解析版答案).doc
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数( 8 开纸) x(面)的函数图象,那么从图象中可看出,复印超过100 面的部分,每面收费()A. 0.4 元 B.0.45 元 C.约 0.47 元D.0.5 元2.如图,函数 y=kx( k≠ 0)和 y=ax+4(a≠ 0)的图象相交于点A( 2,3),则不等式 kx>ax+4 的解集为()A.x>3B.x< 3 C. x> 2 D.x<2 3.如图,已知:函数 y=3x+b 和 y=ax﹣3 的图象交于点 P(﹣ 2,﹣ 5),则根据图象可得不等式 3x+b> ax﹣3 的解集是()A. x>﹣ 5B.x>﹣ 2 C.x>﹣ 3D.x<﹣ 24.甲、乙两汽车沿同一路线从 A 地前往 B 地,甲车以 a 千米 / 时的速度匀速行驶,途中出现故障后停车维修,修好后以 2a 千米 / 时的速度继续行驶;乙车在甲车出发 2 小时后匀速前往 B 地,比甲车早 30 分钟到达.到达 B 地后,乙车按原速度返回A 地,甲车以2a 千米/ 时的速度返回A 地.设甲、乙两车与A 地相距(s千米),甲车离开 A 地的时间为(t 小时),s 与 t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为 1 小时;③两车在途中第二次相遇时t 的值为 5.25;④当 t=3 时,两车相距 40 千米,其中不正确的个数为()A. 0 个B.1 个 C. 2 个 D.3 个【解答】 ①由函数图象,得 a=120÷3=40 故①正确,②由题意,得 5.5﹣ 3﹣ 120÷( 40×2), =2.5﹣1.5,=1.∴甲车维修的时间为 1 小时;故②正确,③如图:∵甲车维修的时间是 1 小时,∴ B (4,120). ∵乙在甲出发 2 小时后匀速前往 B 地,比甲早 30 分钟到达. ∴E (5,240).∴乙行驶的速度为: 240÷3=80,∴乙返回的时间为: 240÷80=3,∴ F (8,0). 设 BC 的解析式为 y 1 1 1, EF 的解析式为 2 2 2,由图象,得=k t+b y =k t+b,解得 , ,∴ y 1=80t ﹣200,y 2=﹣80t+640,当 y 1=y 2 时, 80t ﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时 t 的值为 5.25 小时,故弄③正确,④当 t=3 时,甲车行的路程为 120km ,乙车行的路程为 80×( 3﹣ 2)=80km ,∴两车相距的路程为: 120﹣80=40 千米,故④正确,故选: A .5.甲、乙两车从 A 地驶向 B 地,并以各自的速度匀速行驶, 甲车比乙车早行驶2h ,并且甲车途中休息了 0.5h ,如图是甲乙两车行驶的距离 y (km )与时间 x(h )的函数图象.则下列结论: (1)a=40,m=1;(2)乙的速度是 80km/h ;( 3)甲比乙迟 h 到达 B 地;(4)乙车行驶 小时或小时,两车恰好相距 50km .正确的个数是() A .1 B . 2 C .3 D .4第 2页(共 15页)【解答】(1)由意,得 m=1.5 0.5=1.120÷( 3.5 0.5) =40(km/h ), a=40,故( 1)正确;( 2) 120÷( 3.5 2)=80km/h(千米 / 小),故( 2)正确;(3)甲休息之后行路程(y km)与(xh)的函数关系式y=kx+b,由意,得解得:∴y=40x20,根据形得知:甲、乙两中先到达 B 地的是乙,把y=260 代入 y=40x 20 得, x=7,∵乙的行速度80km/h ,∴乙行 260km 需要 260÷80=3.25h,∴7( 2+3.25)= h,∴甲比乙h 到达 B 地,故( 3)正确;(4)当 1.5<x≤7 , y=40x 20.乙行的路程y 与 x 之的解析式y=k'x+b',由意得解得:∴ y=80x 160.当40x 20 50=80x 160 ,解得: x= .当 40x 20+50=80x 160 ,解得: x=.∴2=,2=.所以乙行或小,两恰好相距50km,故(4).故( C)二.填空(共 3 小)6.如,已知 A1,A2,A3,⋯,A n是 x 上的点,且 OA1=A1A2=A2A3=⋯ =A n A n+1=1,分点 A1, 2 ,3,⋯, n+1 作x 的垂交一次函数的象于点 1 ,A A AB B2,B3,⋯,B n+1,接 A1B2,B1A2,A2B3,B2A3,⋯,A n B n+1,B n A n+1依次生交点 P1,2,3,⋯,n,P n的坐是(n+,).P P P【解答】由已知得 A1, A2,A3,⋯的坐:( 1, 0),(2,0),(3,0),⋯,又得作 x 的垂交一次函数y= x 的象于点 B1,B2,B3,⋯的坐分( 1,),(2,1),(3,),⋯.由此可推出 A n,B n,A n+1, B n+1四点的坐( n,0),(n,),(n+1,0),(n+1,).所以得直 A n B n+1和 A n+1B n的直方程分解得故答案:( n+,).7. 下是士一病人的体温化,位病人中午12的体温℃ .8.某高速路即将在2019 年底通,通后,重到阳、广州等地的将大大短. 5 月初,路局甲、乙两种列在路上行运行,两种列同从重出,以各自速度匀速向 A 地行,乙列到达 A 地后停止,甲列到达 A 地停留 20 分后,再按原路以另一速度匀速返回重,已知两种列分距 A 地的路程 y( km)与 x(h)之的函数象如所示.当乙列到达 A 地,甲列距离重km.【解答】设乙列车的速度为xkm/h ,甲列车以 ykm/h 的速度向 A 地行驶,到达 A 地停留 20 分钟后,以 zkm/h 的速度返回重庆,则根据 3 小时后,乙列车距离 A 地的路程为 240,而甲列车到达 A 地,可得 3x+240=3y,①根据甲列车到达 A 地停留 20 分钟后,再返回重庆并与乙列车相遇的时刻为 4 小时,可得 x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得 x=120, y=200,z=180,∴重庆到 A 地的路程为 3×200=600(km),∴乙列车到达 A 地的时间为 600÷120=5( h),∴当乙列车到达 A 地时,甲列车距离重庆的路程为600﹣( 5﹣3﹣)× 180=300(km),故答案为: 300.三.解答题(共10 小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在 2h 以内(含 2h)的部分,每 0.5h 计费 1 元(不足 0.5h 按 0.5h 计算);骑行时长超出 2h 的部分,每小时计费 4 元(不足 1h 按 1h 计算).根据此收费标准,解决下列问题:(1)连续骑行 5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费 24 元,求其连续骑行时长的范围.【解答】(1)当 x=5 时, y=2×2+4×( 5﹣2)=16,∴应付 16 元;(2) y=4( x﹣ 2) +2×2=4x﹣4;故答案为: y=4x﹣4;(3)当 y=24,24=4x﹣ 4, x=7,∴连续骑行时长的范围是: 6<x≤7.10.如图, “十一 ”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为 x 小时,租用甲公司的车所需费用为y 1 元,租用乙公司的车所需费用为 y 2 元,分别求出 y 1,y 2 关于 x 的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据( 2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设 y 1=k 1x+80,把点( 1,95)代入,可得: 95=k 1 +80,解得 k 1=15,∴ y 1=15x+80(x ≥0);设 y 2=k 2 x ,把( 1,30)代入,可得 30=k 2,即k 2=30, ∴ y 2=30x (x ≥0);( 2)当 y 1 2 时, ,解得x=;=y 15x+80=30x答:当租车时间为小时时,两种方案所需费用相同;( 3)由( 2)知:当 y 1 2 时,x=;当 1> 2 时, > ,=yy y 15x+80 30x解得 x <;当 y 1< 2 时, < ,解得 x > ;y 15x+80 30x∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出 A、 B、 C 三种上网的收费方式:收费方式月使用费 / 元包时上网时间 / 小时超时费 / (元 / 分钟)A 30 25 0.05B 50 50 0.05C 120 不限时( 1)假设月上网时间为 x 小时,分别直接写出方式 A、B、C 三种上网方式的收费金额分别为 y1、y2、y3与 x 的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式 A:y=30(0≤x≤25),y=30+3x(x>25);收费方式 B:y=50(0≤x≤50),y=50+3x(x>50);收费方式 C:y=120(0≤x);(2)函数图象如图:(3)由图象可知,上网方式 C 更合算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年一次函数中考专题参考答案与试题解析一.选择题(共5小题)1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元【分析】由图象可知,不超过100面时,一面收50÷100=0.5元,超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元;【解答】超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元。
故选A.2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2【分析】写出直线y=kx(k≠0)在y=ax+4(a≠0)上方部分的x的取值范围即可;【解答】由图可知,不等式kx>ax+4的解集为x>2;故选C.3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选B.4.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s (千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t 的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个 B.1个 C.2个 D.3个【分析】①由图象的数量关系,由速度=路程÷时间就可以直接求出结论;②先由图象条件求出行驶后面路程的时间,然后可求出维修用的时间;③由图象求出BC和EF的解析式,然后由其解析式构成二元一次方程组就可以求出t的值;④当t=3时,甲车行的路程为120km,乙车行的路程为:80×(3﹣2)=80km,两车相距的路程为:120﹣80=40km.【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【分析】(1)先由函数图象中的信息求出m的值,再根据“路程÷时间=速度”求出甲的速度,并求出a的值;(2)根据函数图象可得乙车行驶3.5﹣2=1小时后的路程为120km进行计算;(3)先根据图形判断甲、乙两车中先到达B地的是乙车,再把y=260代入y=40x ﹣20求得甲车到达B地的时间,再求出乙车行驶260km需要260÷80=3.25h,即可得到结论;(4)根据甲、乙两车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【分析】由已知可以得到A1,A2,A3,…点的坐标分别为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),…,由此可推出点A n,B n,A n+1,B n+1的坐标为(n,0),(n,),(n+1,0),(n+1,).由函数图象和已知可知要求的P n 的坐标是直线A n B n+1和直线A n+1B n的交点.在这里可以根据推出的四点求出两直线的方程,从而求出点P n.【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为,(n,0),(n,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为:y﹣0=(x﹣n)+0,y﹣0=(x﹣n﹣1)+0,即,解得:,故答案为:(n+,).7.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为38.15℃.(精确到0.01℃)【分析】由于图象是表示的是时间与体温的关系,而在10﹣14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【解答】∵图象在10﹣14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=﹣,b=39.05,∴y=﹣x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.8.“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【分析】先设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A地停留20分钟后,以zkm/h的速度返回重庆,依据题意列方程,求得未知数的值,进而得到重庆到A地的路程,以及乙列车到达A地的时间,最后得出当乙列车到达A地时,甲列车距离重庆的路程.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【分析】(1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x 的函数表达式即可;(2)当y1=y2时,15x+80=30x,可得x的值;(3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。