硝化与反硝化池

合集下载

硝化与反硝化反应

硝化与反硝化反应

硝化与反硝化反应一、硝化反应1、硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌:NH4++ 3/2 O2→ NO2-+ 2H++ H2O - △E △E=278.42KJ接着亚硝酸盐转化为硝酸盐:NO2-+ 1/2 O2→ NO3-- △E △E=278.42KJ这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++ 2 O2→ NO3-+ 2H++ H2O - △E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4++1.83O2+1.98HCO3-→0.02C5H7O2N+0.98NO3-+1.04H2O+1.88H2CO3上式可知:在硝化过程中,1g 氨氮 NH4+-N 氧化为转化为 NO2--N 需 3.43gO2,氧化1gNO2--N 需要 1.14gO2,所以氧化 1gNH4+-N 需要 4.57gO2;硝化过程中释放出H+,将消耗废水中的碱度,每 lg 氨氮 NH4+-N 氧化为 NO3-,将消耗碱度2*50/14=7.l4g(以 CaCO3计)。

2、影响硝化过程的主要因素有:(1)pH 值和碱度当 pH 值为 8.0~8.4 时(20℃),硝化作用速度最快,其中亚硝化菌 6.0~7.5,硝化菌 7.0~8.5。

由于硝化过程中 pH 将下降,当废水碱度≤70mg/l,则需投加石灰,维持 pH 值在 7.5 以上。

(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃ ,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;5℃时完全停止。

(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1 (温度20℃ ,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

硝化与反硝化

硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。

生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

好氧、厌氧、硝化反硝化

好氧、厌氧、硝化反硝化

水解酸化池:水解酸化的作用是调节废水的pH值,为后续的生化反应的反应创造条件;因为很多工艺要求水质在一定pH值范围内,而进水水质往往达不到要求,故要设计酸化池。

水解酸化主要用于有机物浓度较高、SS较高的污水处理工艺,是一个比较重要的工艺。

如果后级接入UASB工艺,可以大大提高UASB的容积负荷,提高去除效率。

水中有机物为复杂结构时,水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,一端加入H+,一端加入-OH,可以将长链水解为短链、支链成直链、环状结构成直链或支链,提高污水的可生化性。

水中SS高时,水解菌通过胞外粘膜将其捕捉,用外酶水解成分子断片再进入胞内代谢,不完全的代谢可以使SS成为溶解性有机物,出水就变的清澈了。

这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式。

但是COD在表象上是不一定有变化的,这要根据你在设计时选择的参数和污水中有机物的性质共同确定的,长期的运行控制可以让菌种产生诱导酶定向处理有机物,这也就是调试阶段工艺控制好以后,处理效果会逐步提高的原因之一。

水解工艺并不是简单的,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、污泥回流方式、设计负荷、出水酸化度、污泥消解能力、后级配套工艺(UASB或接触氧化)。

接触氧化池:生物接触氧化法的反应机理生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法工艺,其特点是在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。

该法中微生物所需氧由鼓风曝气供给,生物膜生长至一定厚度后,填料壁的微生物会因缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生物膜的生长,此时,脱落的生物膜将随出水流出池外。

生物接触氧化法具有以下特点:1、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷;2、由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力;3、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。

污水深度处理的硝化与反硝化

污水深度处理的硝化与反硝化

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载污水深度处理的硝化与反硝化地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容污水深度处理的硝化与反硝化一。

硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。

硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2 ——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度 t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。

57克O2消耗7。

14克碱度(擦CaCo3计)生成0。

17克硝酸菌细胞(4) 亚硝酸菌的增殖速度t=25OC活性污泥中µ(Nitrosmohas)=0.18e0.116(T-15) day –1µ(Nitrosmohas)=0.322 day–1 (20OC)纯种培养:µ(Nitrosmohas)=0.41e0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。

反硝化滤池的原理及新描述

反硝化滤池的原理及新描述

反硝化滤池的原理及新描述反硝化滤池是一种常用的水处理设施,用于去除废水中的硝酸盐。

它是基于自然界中的反硝化过程而设计的,通过利用特定微生物的代谢活动,将硝酸盐转化为氮气并释放到大气中。

本文将探讨反硝化滤池的原理,并尝试提供一种新的描述方式来理解这一过程。

一、反硝化滤池的原理反硝化滤池主要由沉淀池、滤池和埋地管道组成。

废水首先经过沉淀池,在沉淀池中固体颗粒物沉淀下来,使水质得到初步改善。

接下来,水流进入滤池,滤池填充了一层导反硝化微生物的滤材,例如生物膜、砾石或活性炭。

这些滤材提供了微生物生长和代谢所需的表面,并形成了一个良好的生物反应环境。

在反硝化滤池中,主要发生以下两个过程:1. 硝化过程:废水中的氨氮通过氨氧化细菌的作用,被氧化成硝酸盐。

这一过程将有机氮转化为无机氮,为后续的反硝化提供了基础。

2. 反硝化过程:在滤材中存在着具有反硝化功能的细菌。

当硝酸盐进入滤材层时,反硝化细菌利用有机物质作为电子供体,将硝酸盐还原成氮气,并释放到大气中。

这一过程不仅去除了废水中的硝酸盐,还将其转化为无害的氮气,从而达到净化水质的目的。

反硝化滤池通过利用微生物的代谢活动,将废水中的硝酸盐转化为氮气,从而实现水质的净化。

这种处理方式相对简单且成本较低,因此在废水处理领域得到广泛应用。

二、一种新的描述方式除了传统的原理描述外,我认为可以通过一个生态系统的类比来更好地理解反硝化滤池的工作原理。

将反硝化滤池比作一个小型的湿地生态系统,滤池中的微生物就像是湿地中的植物和动物。

废水进入滤池,就像是水流进入湿地,植物和动物依靠彼此相互作用,共同维持着整个生态系统的平衡。

在这个生态系统中,氨氮就像是湿地中的有机物质,氨氧化细菌则起到植物的角色,将氨氮转化成硝酸盐(相当于植物的养分吸收)。

而具有反硝化功能的细菌,则像是湿地中的动物,利用有机物质作为能量来源,并将硝酸盐还原成氮气(相当于动物的代谢排泄)。

这种类比方式使得我们对反硝化滤池的理解更加直观和有趣。

硝化反硝化

硝化反硝化

A、硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:亚硝化反应方程式:55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3硝化反应方程式:400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O硝化过程总反应式:NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。

B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。

当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。

污水处理中的硝化与反硝化过程

污水处理中的硝化与反硝化过程
污水处理中的硝化与反硝化应用
污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。

硝化与反硝化池

硝化与反硝化池

硝化与反硝化池 The manuscript was revised on the evening of 2021■反硝化池反硝化池主要是去除废水中的氨氮,同时降解废水中其他的污染物质。

反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。

微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。

许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。

另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。

能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。

大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。

可进行以下反应:5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4■硝化池这里的硝化主要是指生化处理工艺段的好养段,将氨氮氧化成亚硝酸氮或者硝态氮的过程。

由于污水氨氮较高。

该反应历程为:亚硝化反应(2-6)硝化反应(2-7)总反应式(2-8)亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。

硝酸菌有硝酸杆菌属、硝酸球菌属。

亚硝酸菌和硝酸菌统称为硝化菌。

发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。

假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应(2-9) 硝化反应(2-10)工艺中采用了两段硝化工艺设施。

硝化反硝化池流程

硝化反硝化池流程

硝化反硝化池流程
硝化反硝化池的工艺流程主要包括进水、曝气、硝化、沉淀、反硝化等几个阶段。

下面我们将详细介绍硝化反硝化池的工艺流程。

一、进水阶段
在进水阶段,废水首先经过预处理工艺去除污水中的大颗粒杂质,然后进入硝化反硝化系统。

污水在硝化反硝化系统进水口经过进水平整器均匀分布到硝化反硝化系统中,以便后面的处理步骤能够更加均匀地进行。

二、曝气阶段
在曝气阶段,污水中的有机物被氧化成二氧化碳和水,同时氨氮被氧化为硝态氮。

这一阶段主要通过曝气装置将空气吹入水中,利用曝气池来提供氧气,促进细菌的活动和生长,加速有机物的降解和氨氮的氧化。

三、硝化阶段
在硝化阶段,硝化细菌利用氨氮进行氧化,将其转化为亚硝酸盐和硝酸盐。

这一阶段需要控制曝气量和污水的进水量,以保证硝化细菌有足够的氧气和氨氮来进行反应。

四、沉淀阶段
在沉淀阶段,硝化后的液体经过沉淀池,使得活性污泥与水分离,进而去除污水中的悬浮物和胶体物质。

这一阶段的沉淀过程非常重要,其效果将直接影响后续的处理效果。

五、反硝化阶段
在反硝化阶段,亚硝酸盐和硝酸盐被反硝化细菌还原成氮气,从而实现对氮的去除。

这一阶段需要控制曝气量和氧气的供应,以保证反硝化细菌能够正常进行反应。

总结:
硝化反硝化池的工艺流程是一个复杂的系统工程,需要对各项操作参数进行精确控制,以确保处理效果。

同时,硝化反硝化池是一个生物处理工艺,对污水中的微生物有一定的要求,要求操作人员对污水的特性、微生物的种类和数量等有一定的了解,才能更好地控制整个处理过程。

希望本文对您有所帮助。

反硝化滤池工作原理

反硝化滤池工作原理

反硝化滤池工作原理反硝化滤池是采用石英砂作为反硝化生物的挂膜介质,去除硝酸氮(NO3-N)及悬浮物的构筑物。

1、在生物脱氮方面,深床滤池利用适量的碳源,附着生长在石英砂表面上的反化细将NOx-N转换成N2完成脱氯反应过程。

在反硝化过程中,由于硝酸(盐)氮不断被还原为氮气,深床滤池中会逐渐集聚大量的氮气,这些气体会使污水绕窜于介质之间,增强了微生物与水流的接触,同时也提高了过滤效率。

但是当池体内积聚过多的氮气气泡时,则会造成水头损失,这时就需要驱散氮气,恢复水头,每次持续2~5min左右,扰动频率从2h一次到4h一次不等。

2、悬浮物处理方面,由于石英砂介质比表面积较大,具有一定深度的滤床可以避免穿透现象,即使前段处理工艺发生污泥膨胀或异常情况也可取得较好的SS截留效果。

悬浮物不断地被截留会增加水头损失,当达到设计数值时,需要反冲洗来去除截留的固体物。

由于固体物负荷高、床体深,因此需要较高强度的反冲洗。

滤池采用气、水协同进行反冲洗。

反冲洗污水一般返回到前段处理单元。

3、通常每毫克SS中含BOD5约为0.4~0.5mg,因此在在去除固体悬浮物的同时,也降低了出水中的BOD5。

此外,出水中固体悬浮物含有氮、磷及其他重金属物质,去除固体悬浮物通常能降低部分上述杂质,配合适当的化学处理,能使出水总磷稳定降至0.5mg/L以下。

反硝化滤池能満足出水SS不大于8mg/L(通常SS为5mg/L左右)和浊度小于5NTU的要求。

4、除磷方面,深床滤池可通过微絮凝直接过滤除磷,通过在进水中投加除磷絮凝剂,经机械混合后直接进入滤池,不仅可以进一步降低CODcr和BOD5,而且可以稳定保证SS、TP达标,可简化污水处理处理流程、降低投资费用、减少运行费用,而且还可延长过滤周期,提高产水量及出水水质。

反硝化滤池工艺流程:滤池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。

滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于滤池没有污泥膨胀问题,微生物不会流失,能保持较高的生。

污水深度处理的硝化与反硝化

污水深度处理的硝化与反硝化

污水深度处理的硝化与反硝化一。

硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。

硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。

57克O2消耗7。

14克碱度(擦C a Co3计)生成0。

17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。

污水处理—硝化与反硝化

污水处理—硝化与反硝化

污水处理—硝化与反硝化污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。

此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将含氮物质转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。

两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用。

一、硝化反应过程硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:1.亚硝化反应方程式:55NH4++76O2+109HCO3-→C5H7O2N﹢54NO2-+57H2O+10 4H2CO32.硝化反应方程式:400NO2-+195O2+NH4++4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O3.硝化过程总反应式:NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1. 04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。

二、反硝化反应过程反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

污水处理中的硝化反硝化技术

污水处理中的硝化反硝化技术

反硝化反应的原理
01
反硝化反应是指将硝酸盐或亚硝酸盐在反硝化细菌的作用下还 原成氮气的过程。
02
反硝化反应通常在缺氧或厌氧条件下进行,需要有机物作为电
子供体。
反硝化细菌通过异养方式将硝酸盐或亚硝酸盐还原成氮气,同
03
时释放能量。
硝化反硝化过程中的微生物种类与作用
硝化细菌
包括亚硝酸盐菌和硝酸盐菌,通 过自养方式将氨氮转化为硝酸盐 。
硝化反应的特点
硝化反应需要消耗溶解氧,反应速度 较慢,是限速步骤之一。同时,硝化 细菌属于自养型微生物,可以利用无 机碳源进行生长繁殖。
反硝化反应的定义与特点
反硝化反应
反硝化反应是污水处理中另一个重要 的生物化学过程,主要是通过反硝化 细菌的作用,将硝酸盐还原成氮气, 从水中去除氮。
反硝化反应的特点
城市污水处理厂的硝化反硝化工艺流程通常包括前置反硝化、主硝化和后置反硝化 等阶段。
城市污水处理厂应用硝化反硝化技术可以有效降低氨氮和总氮的排放量,提高出水 水质。
04
硝化反硝化技术的优化与改

硝化反应的优化与改进
增加曝气量
通过增加曝气量,提高硝化细菌的活性,促进硝 化反应的进行。
调整pH值
硝化细菌对pH值较为敏感,通过调整pH值,创造 适宜的硝化环境。
硝化反硝化技术与其他污水处理技术的联合应用
01
活性污泥法与硝化反硝化技术的结合
利用活性污泥法的吸附作用,提高硝化反硝化的处理效果。
02
生物膜法与硝化反硝化技术的结合
通过生物膜法形成生物膜载体,为硝化反硝化细菌提供良好的生长环境

03
化学沉淀法与硝化反硝化技术的结合
利用化学沉淀法去除污水中的重金属离子,降低对硝化反硝化的影响。

反硝化滤池工作原理

反硝化滤池工作原理

反硝化滤池工作原理反硝化漉池是采用石英砂作为反硝化生物的挂膜介质,去除硝酸氮(No3-N)及悬浮物的构筑物。

1、在生物脱氮方面,深床滤池利用适量的碳源,附着生长在石英砂表面上的反化细将NOx-N转换成N2完成脱氯反应过程。

在反硝化过程中,由于硝酸(盐)氮不断被还原为氮气,深床漉池中会逐渐集聚大量的氮气,这些气体会使污水绕窜于介质之间,增强了微生物与水流的接触,同时也提高了过滤效率。

但是当池体内积聚过多的氮气气泡时,则会造成水头损失,这时就需要驱散氮气,恢复水头,每次持续2〜5min左右,扰动频率从2h一次到4h一次不等。

2、悬浮物处理方面,由于石英砂介质比表面积较大,具有一定深度的滤床可以避免穿透现象,即使前段处理工艺发生污泥膨胀或异常情况也可取得较好的SS截留效果。

悬浮物不断地被截留会增加水头损失,当达到设计数值时,需要反冲洗来去除截留的固体物。

由于固体物负荷高、床体深,因此需要较高强度的反冲洗。

滤池采用气、水协同进行反冲洗。

反冲洗污水一般返回到前段处理单元。

3、通常每毫克SS中含BOD5约为0.4〜0.5mg,因此在在去除固体悬浮物的同时,也降低了出水中的BoD5。

此外,出水中固体悬浮物含有氮、磷及其他重金属物质,去除固体悬浮物通常能降低部分上述杂质,配合适当的化学处理,能使出水总磷稳定降至0∙5mg∕L以下。

反硝化滤池能满足出水SS不大于8mg∕L(通常SS为5mg∕L左右)和浊度小于SNTU的要求。

4、除磷方面,深床漉池可通过微絮凝直接过滤除磷,通过在进水中投加除磷絮凝剂,经机械混合后直接进入滤池,不仅可以进一步降低CODer和BOD5,而且可以稳定保证SS、TP达标,可简化污水处理处理流程、降低投资费用、减少运行费用,而且还可延长过滤周期,提高产水量及出水水质。

反硝化滤池工艺流程:漉池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。

滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于滤池没有污泥膨胀问题,微生物不会流失,能保持较高的生物浓度,因此日常管理简单。

反硝化滤池工作原理

反硝化滤池工作原理

反硝化滤池工作原理反硝化滤池的工作原理随着社会的发展和人们环保意识的提高,污水处理技术越来越受到关注。

反硝化滤池作为一种重要的污水处理技术,在许多领域得到了广泛应用。

本文将深入探讨反硝化滤池的工作原理、优缺点以及实际应用效果。

反硝化滤池是一种生物过滤方法,主要利用微生物来去除污水中的氮化合物。

这些微生物通过将硝酸盐和亚硝酸盐还原成氮气,实现去除氮污染物的目标。

反硝化滤池在污水处理中起着至关重要的作用,有助于减少氮排放,从而降低水体富营养化的风险。

反硝化滤池的工作原理主要包括三个阶段:填料曝气阶段、生物反应阶段和沉淀物去除阶段。

首先,填料曝气阶段。

在这个阶段,污水进入反硝化滤池,与池中的填料充分接触。

同时,通过曝气系统向污水和填料混合物中充入空气,提供微生物所需的氧气。

其次,生物反应阶段。

在反硝化滤池中,污水中的硝酸盐和亚硝酸盐在微生物的作用下被还原成氮气。

这些微生物通过分解有机物获得能量,并将硝酸盐和亚硝酸盐还原成氮气。

这个过程中产生的氮气通过气泡形式从水中释放出来,从而实现脱氮。

最后,沉淀物去除阶段。

在这个阶段,反硝化滤池底部的沉淀污泥经过沉淀作用逐渐沉到池底。

这些污泥定期从池中排出,以防止污泥过度积累影响过滤效果。

同时,上清液从池中排出,完成整个污水处理过程。

反硝化滤池具有以下优点:1、高效脱氮:反硝化滤池能有效地去除污水中的氮化合物,降低水体富营养化的风险。

2、适应性强:反硝化滤池对水质和水量的变化具有较强的适应性,能处理不同性质的污水。

3、操作简单:反硝化滤池运行管理相对简单,只需定期维护和排泥。

然而,反硝化滤池也存在一些缺点:1、占地面积大:为了确保过滤效果,反硝化滤池需要占用较大的空间。

2、投资成本高:反硝化滤池的建设和维护需要较高的投资成本。

3、滤池易堵塞:滤池中的填料容易堵塞,影响过滤效果,需要定期清洗或更换。

在实际应用中,反硝化滤池已广泛应用于城市污水处理、工业废水处理等领域。

厌氧氨氧化的影响因素

厌氧氨氧化的影响因素

厌氧氨氧化的影响因素厌氧氨氧化与短程硝化反硝化的区别,很多小伙伴容易搞混,本文从两个工艺本身的原理出发写一写两个工艺的异同点!一、短程硝化反硝化生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N的过程;然后通过反硝化作用将产生的NO3—N经由NO2--N转化为N2,NO2--N是硝化和反硝化过程的中间产物。

1975年Voets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N积累的现象,首次提出了短程硝化反硝化脱氮的概念。

如下图所示。

比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2-、NO3-和NO3- 、NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点:1、可节约供氧量25%。

节省了NO2-氧化为NO3-的好氧量。

2、在反硝化阶段可以节省碳源40%。

在C/N比一定的情况下提高了TN的去除率。

并可以节省投碱量。

3、由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。

4、短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过程中可以减少产泥约50%。

由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。

二、厌氧氨氧化本文说的厌氧氨氧化是目前的主流的应用的工艺流程(彭永臻院士的短程反硝化暂时不介绍)。

Anammox是在无氧条件下,以氨为电子供体、亚硝酸为电子受体,产生氮气和硝酸的生物反应。

Anammox包括两个过程:一是分解(产能)代谢,即以氨为电子供体,亚硝酸盐为电子受体,两者以1:1的比例反应生成氮气,并把产生的能量以ATP的形式储存起来;二是合成代谢,即以亚硝酸盐为电子受体提供还原力,利用碳源二氧化碳以及分解代谢产生的ATP合成细胞物质,并在这一过程中产生硝酸盐。

关于用活性污泥法脱除废水中氨氮实验报告

关于用活性污泥法脱除废水中氨氮实验报告

关于用活性污泥法脱除废水中氨氮实验报告一、目的:用活性污泥法脱除废水中的氨氮,使之达到废水处理后的排放标准。

二、基本原理: 活性污泥法脱氨氮是生物脱氮方法中的一种,它包括硝化和反硝化两个反应过程。

硝化是废水中氨氮在好氧条件下,首先,利用亚硝化杆菌在爆气的好氧池中将氨氮转化为NO 2-,然后在利用硝化细菌把NO 2-氧化为NO 3-。

最后,利用异养型微生物在缺氧或厌氧条件下把NO 3-转化为N 2,从而使废水得到净化[7]。

硝化的总反应式为:NH 4++2O 2→NO 3-+2H ++H 2O ;反硝化的反应式为:2NO 3-+2H ++2.5C→N 2+2.5CO 2+H 2O三、工艺流程示意图循环回流四、操作步骤A 、初期处理阶段1、将含酸、碱废水由出关排放至中和调节池。

2、开启鼓风机进行鼓风搅拌,同时视在线检测酸碱度指示数据决定加入酸碱跳PH 值合格。

3、当PH 值合格后,加入配制后的絮凝剂。

4、加入絮凝剂,继续用鼓风搅拌5-10分钟,停鼓风。

让其静止自然沉淀,观察形成絮花情况,视情况在调整絮凝剂及鼓风。

5、澄清后,开启提升泵将底物周围的沉淀抽到泥浆池进行处理。

B 、生物脱氮阶段1、接种培养驯化;将硝化池,反硝化池注满污水,然后投入定量的活性污泥。

开启罗茨风机向硝化池通入空气曝气搅拌。

曝气量不宜太大。

2、开启回流泵,使硝化吃部分污泥回流到反硝化池,形成回流循环。

回流量控制在3-4m 3/h,同时向反硝化池内滴加葡萄糖液,其浓度为2.5%。

3、视在线检测PH 、DO 值来调节空气曝气搅拌。

4、罗茨风机、回流泵24小时运行。

葡萄糖溶液24小时滴加。

5、污泥在培养驯化需8-10天时间。

分析氨氮含量调节回流量及葡萄糖滴加量,并确定培养驯化是否达到要求。

6、调节水流量至满负荷。

五、工艺操作指标1、中和池废水调整后PH 值在7-9含氨废水 鼓风机 中和调节池二级沉降池 泥浆池 压滤机 滤渣 厌氧池 好氧池 MBR 池 终沉降池 清水池。

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例

硝化曝气生物滤池与反硝化生物滤池工程实例1. 引言1.1 硝化池和反硝化池简介硝化池是一种用于将氨氮通过硝化作用转化为硝酸盐的设施,主要包括硝化桶和曝气装置。

硝化池通常是废水处理系统中的重要部分,用于降低废水中的氨氮浓度,同时提高水质。

硝化池的运作原理是利用硝化细菌将氨氮氧化为硝酸盐,从而使废水中的氨氮得到有效去除。

反硝化池则是一种用于将硝酸盐通过反硝化作用转化为氮气的设施,主要由反硝化池和生物填料组成。

反硝化池通常是在硝化池之后设置,用于进一步处理废水中的硝酸盐,以减少对环境的污染。

硝化池和反硝化池在废水处理工程中起着至关重要的作用,能有效地降低废水对环境的影响。

它们不仅能够去除废水中的氨氮和硝酸盐,还能提高水质,保护水资源。

硝化池和反硝化池的设计和运行对于环境保护和水资源利用至关重要。

1.2 硝化曝气生物滤池和反硝化生物滤池工程应用硝化曝气生物滤池和反硝化生物滤池是水处理领域常见的工艺设备,广泛应用于城市污水处理厂和工业废水处理工程中。

硝化曝气生物滤池主要用于将废水中的氨氮通过硝化作用转化为硝态氮,达到去除氨氮的效果。

而反硝化生物滤池则是将硝态氮通过反硝化作用还原为氮气,从而达到去除硝态氮的目的。

在实际工程应用中,硝化曝气生物滤池和反硝化生物滤池经常联合使用,形成硝化-反硝化池组合工艺,以实现高效、稳定的氮素去除效果。

这种工艺组合不仅能够降低处理成本,还可以减少对环境的负面影响,是目前常见的氮素去除工艺之一。

硝化曝气生物滤池和反硝化生物滤池工程应用具有灵活性大、处理效果好、运行稳定等优点,被广泛应用于各种规模的污水处理项目中。

随着技术的不断进步和工艺的不断完善,硝化曝气生物滤池和反硝化生物滤池在水处理领域的应用前景将会更加广阔,为改善水质和保护环境发挥着重要作用。

2. 正文2.1 硝化曝气生物滤池设计实例第一步是确定处理规模和工艺流程。

根据水处理厂的实际情况和需求,确定硝化曝气生物滤池的处理规模和工艺流程,包括污水进出口位置、流程图、设备布置等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

■反硝化池
反硝化池主要是去除废水中的氨氮,同时降解废水中其他的污染物质。

反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。

微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。

许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。

另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。

能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。

大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。

可进行以下反应:5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
■硝化池
这里的硝化主要是指生化处理工艺段的好养段,将氨氮氧化成亚硝酸氮或者硝态氮的过程。

由于污水氨氮较高。

该反应历程为:
亚硝化反应 (2-6)
硝化反应 (2-7)总反应式 (2-8)亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。

硝酸菌有硝酸杆菌属、硝酸球菌属。

亚硝酸菌和硝酸菌统称为硝化菌。

发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。

假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:
亚硝化反应 (2-9)硝化反应 (2-10)
工艺中采用了两段硝化工艺设施。

最大限度上降低生化手段降低氨氮的浓度,同时减少其他污染物的浓度。

同时废水中的其他污染物质在两段反硝化+硝化的过程中得到有效降解。

相关文档
最新文档